

Automatic Synthesis of Dynamic Fault Trees from UML System Models

Ganesh J Pai, Joanne Bechta Dugan

Department of ECE, University of Virginia, Charlottesville, USA
{gpai,jbd}@virginia.edu

Abstract

The reliability of a computer-based system may be as im-

portant as its performance and its correctness of compu-
tation. It is worthwhile to estimate system reliability at the

conceptual design stage, since reliability can influence the

subsequent design decisions and may often be pivotal for

making trade-offs or in establishing system cost. In this

paper we describe a framework for modeling computer-

based systems, based on the Unified Modeling Language
(UML), that facilitates automated dependability analysis

during design. An algorithm to automatically synthesize

dynamic fault trees (DFTs) from the UML system model is

developed. We succeed both in embedding information

needed for reliability analysis within the system model and

in generating the DFT. Thereafter, we evaluate our app-
roach using examples of real systems. We analytically

compute system unreliability from the algorithmically de-

veloped DFT and we compare our results with the analy-

tical solution of manually developed DFTs. Our solutions

produce the same results as manually generated DFTs.

Keywords: Dynamic fault trees, Fault tree synthesis, Relia-

bility analysis, UML

1. Introduction

To make the design process of a dependable computer-
based system effective, we must estimate the system relia-

bility requirements during the conceptual design stage it-

self. If system designs can be analyzed for their reliability

characteristics as soon as they are available, both design

time and associated resources can be reduced allowing

designers to decide if redesign is required. Tradeoffs are
most effective when key attributes of the system, such as

performance and reliability, can be calculated much earlier

during the critical design stages.

Many fault-tolerant systems are complex because of

redundancy, reconfigurability and various interactions bet-

ween their components. One practice in realizing these
complex systems is to use block diagrams annotated with

behavioral descriptions in an architectural description lan-

guage. A promising approach in system modeling is to use

advanced formalisms such as constraint automata [1].

Although these design-stage modeling approaches are suf-
ficient to simulate a system and estimate its performance,

they do not convey enough information to support auto-
matic reliability analysis. Instead, information regarding

spares, error propagation and redundancy is generally sup-

plied in the accompanying specifications and require-

ments documents. While there are tools that automatically

solve reliability models, constructing the models them-

selves requires perusing these documents and largely re-
mains a manual procedure. As a result, the reliability ana-

lysis process often takes a long time. Hence the design and

the reliability analysis stages are usually separated and the

results of reliability analysis are available only much later

in the engineering cycle. By performing reliability analysis
in parallel with system design, we can alleviate this pro-

blem and aid early validation of the architectural design.

This is the primary motivation behind our work.

Our approach is to embed statistical information needed

for reliability analysis and information related to compo-

nent redundancy, reconfiguration or dependencies within
the architectural design itself. Thereafter, we automatically

generate a reliability model, which can be analyzed using

existing solvers.

The primary reason why the UML was chosen was our

sponsor’s constraints. The UML is “a standard graphical

language used to visualize, specify, construct and docu-
ment the artifacts of a software-intensive system” [2]. It

provides formal constructs to deal with varying levels of

modeling abstraction to visualize and specify both the sta-

tic and dynamic aspects of the system. Although these con-

structs have no formal semantics, there are generic frame-

works for formalizing the UML [3]. While the UML was
designed with the intent to model software systems, the

logical models produced using UML constructs can be

used to model hardware systems as well. Extensibility is a

powerful feature of the UML: it has mechanisms like ste-

reotypes, tagged values and constraints with which the se-
mantics of model elements can be customized and exten-

ded. It also provides conceptual tools to manage the comp-

lexity of system design. The models generated in the UML

can be connected to a variety of object oriented program-

ming languages such as C++ and Java, or to architectural

description languages such as VHDL [4].
The UML provides designers with a variety of diagrams

to graphically model a system. The rationale is that the

problem of designing a complex system is best approached

through a set of concise and independent views of the sys-

tem, instead of a single viewpoint.

Proceedings of the 13 th International Symposium on Software Reliability Engineering (ISSRE’02)
1071-9458/02 $17.00 © 2002 IEEE

Fault tree analysis is a popular analytical technique for

reliability estimation [5]. Fault trees are graphical models

that represent logical relationships between events that

lead to system failure. They also provide a systematic
mathematical framework for analyzing potential causes of

failure. From a design perspective, they allow the designer

to understand the ways in which a system may fail. Fault

trees comprise basic events connected by gates, in a logical

path, to a top node that represents system or subsystem

failure. Dynamic fault trees (DFTs) [6] are introduced as
extensions to static fault trees to model sequence depen-

dencies, functional dependencies and spares in a fault-

tolerant system. Owing to the complexity of these systems,

corresponding lower level reliability models such as petri

nets and markov chains are themselves complex. Other
combinatorial models like reliability block diagrams are

insufficient to model dynamic failure behavior. DFTs pro-

vide an elegant abstraction to model both non-combina-

torial and combinatorial failures in these systems.

We first develop a methodology, based on the UML for

modeling fault tolerant computer-based systems. The focus
is on specifying the criteria needed to allow reliability ana-

lysis to proceed in parallel. Next, we develop an algorithm

to automatically synthesize DFTs from the UML system

model. It works on the logical system structure inherent in

the UML model, and can also be applied to non-UML sys-

tem models if similar logical structures can be extracted
from them. This is our main contribution. The goal is to

permit designers, who have first hand knowledge of the

system, to also specify the failure or success criteria. We

want to have the modeling methodology be able to convey,

as far as possible, not only what the designer has in mind
but also the information necessary for reliability analysis.

The rest of our paper is organized as follows: Section 2

briefly introduces dynamic fault trees and presents current

approaches to automatic synthesis of dependability models

from system designs. In section 3, we describe our UML

based modeling methodology with an example of a co-
designed and reconfigurable system. We present an algo-

rithm to automatically generate DFTs from the UML sys-

tem model in section 4. In section 5 we present the results

of reliability analysis using our methodology over a broad

class of real systems. Reconfigurable systems, co-designed

systems, and hierarchical systems are chosen for the illus-
trative examples. Section 6 concludes the paper and iden-

tifies future work.

2. Background

There are two approaches to constructing reliability mo-

dels from the engineering model of a system. One tech-
nique is “simulation-based” and synthesizes reliability mo-

dels from behavioral models [7]. Behavioral models are

rather complex and reliability models can be obtained from

them only once the system has been completely described.

The second approach is to use functional models and ob-
tain analytical solutions to estimate reliability. Analytical

techniques for reliability assessment are desired because

they are versatile and allow the designer to perform “what-

if” analyses. Our belief is that functional models are suffi-

cient for providing accurate results in estimating system
reliability [15]. Analytical models, e.g. DFTs, are rela-

tively easy to solve and are easier to use for qualitative

analysis than when using simulation. The main advantage

of using analytical models is that they can be generated du-

ring the design stage from the engineering model itself.

2.1. Dynamic fault trees

Fault trees are used to graphically and mathematically
model events that can cause system failure. Fault tree ana-

lysis is both qualitative and quantitative, and may be used

in analyzing failure modes of critical systems. Besides this,

they are hierarchical enabling them to model large sys-

tems. In qualitative analysis we use minimal cut-sets to de-

termine the presence of single points of failure in the sys-
tem or the combination of events that will lead to unsafe

operation. In quantitative analysis, we determine the pro-

bability of occurrence of the top event of the tree, given

the probability of occurrence of the basic (failure) events.

Classical fault tree analysis considered only static fault
trees with AND, OR, and M-of-N type logic gates. DFTs,

extensions to static fault trees, allow modeling of spares,

sequence, and functional dependencies, which static fault

trees cannot model. Conversion of dynamic fault trees to

markov models [5] allows expression of certain kinds of

sequence dependencies. We use Galileo [8, 9], a tool that
uses a combination of static and dynamic fault trees, to

solve the DFTs that we generate from UML system des-

criptions. The tool incorporates the BDD solution of static

fault trees [10] and the DIFTree methodology [11].

Besides this, fault trees can be used to model software

[12]. The idea is to use a fault tree to represent the poten-
tial failures associated with each function that a software

system is intended to perform, i.e. representing software

modules that may produce failure as basic events and con-

necting these to the top node through a set of gates that de-

fines the logical path to failure. These basic events in the
fault tree model of software can be decomposed to the

point where they can be tested or detected by reliable fail-

ure detection mechanisms. Thus, the fault tree for a soft-

ware system and its associated analysis can help the de-

signer to discover particular classes of software failure that

leads to system failure. The ability to model hardware and
software systems and their static and dynamic aspects us-

ing fault trees is a forté, because most fault-tolerant sys-

tems today are software intensive and dynamic. Thus, a

combination of static and dynamic fault trees can elegantly

model a large variety of dependable systems.

2.2. Related work

Our idea of using UML system models [21] and their
translation into reliability models is not new. The HIDE

Proceedings of the 13 th International Symposium on Software Reliability Engineering (ISSRE’02)
1071-9458/02 $17.00 © 2002 IEEE

framework [13] incorporates transformation of UML de-

signs into timed petri nets (TPNs) for model based depend-

ability evaluation. In HIDE, the UML is primarily used for

designing the system after which subsequent dependabili-
ty analysis is performed. UML structural views are used to

convey relevant dependability information and are then

converted into an intermediate model (IM). The IM is ac-

tually the dependability model and it is defined as a hyper-

graph, where every node corresponds to a component des-

cribed in the UML model and every arc corresponds to the
associated UML relationship. The TPN model represents

the broad class of deterministic and stochastic petri nets.

Each module of the IM is converted into a semantically

equivalent TPN subnet. The system, as a whole, comprises

an interconnection of these subnets. This work also creates
a set of extensions for the UML to identify dependability

structures and to define dependability parameters. Specifi-

cally, a redundancy manager, a variant and an adjudicator

are prescribed as three stereotype-based extensions to the

basic UML constructs, to indicate the objects that are used

for redundancy management, voters and comparators res-
pectively. Besides this, tagged value based extensions are

used to indicate dependency parameters. One of the goals

of the HIDE framework is to analyze the dependability att-

ributes of a system while it is still being designed. The va-

lidation of designs described in the UML is the main goal

of the HIDE framework [20].
Our approach differs from the HIDE approach in the

following manner: Primarily, our target reliability models

are dynamic fault trees instead of TPNs. We extract the lo-

gical system structure and obtain structural redundancy, at

translation time, from the UML model, while failure para-
meters are conveyed as a property of the structural model

of the component. We develop a scheme to capture and

classify dependencies within the system. Further, we add-

ress the software to hardware mapping issue as well as dy-

namic reconfiguration in the presence of failures.

OpenSESAME [14], RIDL [15] and the RBD translator
[16], represent other related work in translating design-

stage system descriptions into reliability models. Briefly,

the OpenSESAME approach attributes a set of parameters

for every component, and uses a separate graphical ex-

pression of dependencies. The tool accepts a high level

graphical model of a system described using redundancy
structure diagrams. Failure propagation diagrams are used

to indicate dependencies that arise as a result of error pro-

pagation. Quantitative availability analysis is then perfor-

med on the system by automatically translating the system

description into generalized stochastic petri nets (GSPNs).

RIDL is a graphical design language for modeling depend-
able systems and has a functional modeling framework

that facilitates automatic translation of a system model

described in the RIDL, to fault trees. RIDL graphically pro-

jects a functional view of the system by considering each

component in the system as a black box with associated
statistical failure information. Basic building blocks, inter-

connects and success criteria, along with their associated

semantics are defined to capture the system schematic. It

explicitly defines constructs to represent components and

classifies them as being essential, redundant, supporting,

irrelevant, repeated, support, N-of-M type, or as spares. Di-
rected arcs are used to indicate error propagation. The

RBD translator uses elementary UML modeling principles

developed in [16] and [17] to convert the description into

reliability block diagrams.

Our approach differs from these three approaches in the

following ways: We do not define components as being
essential, redundant, or otherwise as in RIDL. Instead, this

information is inherent and is interpreted during trans-

lation. A key observation is that both RIDL and Open-

SESAME offer only a singular projection into the system.

However, our approach allows the designer to model the
system from at least two views: a purely functional pers-

pective, and a behavioral perspective. Besides these, we

address the issues of reconfiguration and hardware to soft-

ware mapping, which has not been addressed in RIDL. Un-

like OpenSESAME, we indicate dependencies in a single

diagram of the logical system structure. Moreover, error
propagation is explicitly shown using stereotypes that ex-

tend the dependency construct of the UML. We indicate

probabilities of error or failure propagation as attributes.

Finally, we generate DFTs from our system description in-

stead of GSPNs or RBDs.

3. Modeling fault tolerant systems in the UML

Current reliable systems usually have redundant compo-

nents (both hardware and software) and may be reconfig-

red on the fly to allow system operation in the presence of

faults. Therefore, capturing redundancy information and
reconfigurability issues unambiguously within the UML

model is important. Using UML constructs we would like

to have a system model that primarily conveys the follow-

ing:

�� The number of copies of each component that exists in

a redundant system,
�� The minimum number of components required for

successful system operation.

�� In the presence of spares, the active components that

are replaced by the spares when failures occur. If a

pool of spares exists, the components that are drawn

from this pool to replace the faulty components.
�� Dependencies that exist within redundant components,

and the effect of failure of one component on others.

�� Software to hardware mapping as well as any mapping

changes or reconfiguration in response to failures.

We would also like the model to be as complete and
correct as possible, and as close as possible to the design-

er’s perspective of the system. The UML has semi-formal

syntax and semantics that are specified using a meta-

model. One approach to modeling in UML is to augment

the UML with an existing and well-accepted architectural
description language (ADL) [18]. However, this results in

Proceedings of the 13 th International Symposium on Software Reliability Engineering (ISSRE’02)
1071-9458/02 $17.00 © 2002 IEEE

making the UML non-standard, although it would provide

the modeler with greater freedom and flexibility due to the

combined constructs of the UML and the ADL. Instead,

we introduce stereotypes to constrain the UML to mod-
eling hardware and dependable systems. Stereotypes, tag-

ged values and constraints are extension mechanisms with

which the semantics of model elements can be customized

and extended. The extension mechanisms are used to res-

trict the way the UML meta-model is employed in cons-

tructing and interpreting UML models. Although stereo-
types create new modeling constructs they are valid UML

interpretations. Thus a model described in a syntax that

does not deviate from the UML constructs permits it to be

universally understood. Moreover, it also allows existing

commercial UML tools to easily manipulate the model.
Explanation of our modeling methodology is nece-

ssarily anecdotal. We use an example of a reconfigurable

and co-designed system, namely the mission avionics sys-

tem (MAS), to describe our approach.

3.1. The mission avionics system

The mission avionics system (MAS) is a highly redun-

dant mission-critical and safety-critical system, with both
hardware and software components. It comprises five criti-

cal subsystems whose success is crucial for system suc-

cess: the crew-station control system, the scene and obs-

tacle control system, the local path generation sub-system,

the system management subsystem and the vehicle man-

agement subsystem. Figure 1 shows the block diagram mo-
del for the MAS illustrating these subsystems and their

interconnections. Initially, we assume that every subsys-

tem is a software module that has been mapped to a dedi-

cated processor. Each processor (and the mapped soft-

ware) has a hot spare backup unit that takes over control

from the primary processing unit if a failure or error is
detected. This is the static model for the mission avionics

system without any reconfiguration. CrewStnA represents

the crew-station control system primary processor, while

CrewStnB is its hot spare backup processor. Similarly

S&OA, S&OB, PathGenA, PathGenB, SysMgtA and Sys-
MgtB represent the primary and hot spare backups for the

scene and obstacle, local path generation and the system

management subsystems respectively.

The vehicle management system has additional functio-

nality and requires the use of two processing units VM1A

and VM1B. Each of these units has its respective hot spare
backups, VM2A and VM2B. There is a pair of cold spare

processors shared by the first four subsystems (Spare1 and

Spare2) and another pair of cold spares for the vehicle

management system (VMSp1 and VMSp2). The first pool

of spares (Spare1 and Spare2) is used as backups in the

event of two failures in any of the four subsystems (crew
station, scene and obstacle, local path generation and sys-

tem management). These spares do not cover any faults

that may occur in the vehicle management subsystem. Ins-

tead, they have their own dedicated pool of cold spares

(VMSp1 and VMSp2) that cover two failures. A triplicated

mission management bus (MMBus) interconnects these

five subsystems. Besides this, memory units (Memory1

and Memory2) are connected to four sub-systems by a trip-
licated background data bus (B/G Data Bus). The vehicle

management system has its own duplicated vehicle man-

agement bus (VMBus).

Memory1 Memory2

S&OA S&OB PathGenA PathGenB SysMgtA SysMgtB Spare1 Spare2CrewStnA CrewStnB

VM1A VM2A VM1B VM2B VMSp1 VMSp2

B/G Data Bus

MMBus

VMBus

Figure 1. MAS block diagram

System failure occurs if both memories fail, if all of the

duplicated or triplicated buses fail, or if any of the critical
subsystems fail. Clearly, neither these failure criteria nor

the spare allocation strategies are apparent from the block

diagram.

3.2. Modeling hardware and redundancy

Class and object diagrams are used to logically model

the structural associations between the components of the

system. Our work is an initial attempt to present that
reliability analysis can be performed in conjunction with

design. We anticipate that UML features such as the object

constraint language (OCL) or other diagrams e.g. compo-

nent diagrams, may also be used. In this paper, however,

we use class, object and deployment diagrams mainly be-

cause these are intuitive. Every component in MAS can be
considered as an instance of a class (an object) with pro-

perties, attributes and operations. The statistical reliability

information of any component (such as failure rate and dis-

tribution, coverage, restoration, etc.) is an attribute of that

component. Hence, this information is specified among the

attributes in the class construct. The class construct also
allows the designer to specify cardinality of the classes.

Essentially, the number of instances of the component that

exist, when the system is operational, is present within the

UML class construct itself. Figure 2 shows the class dia-

gram for the static MAS. The class diagram conveys infor-

mation about the static structure of the system. Each of the
components in the system has been modeled as a class

with attributes, and each of the classes has the appropriate

name of the component. The classes are labeled with the

stereotype <<hardware>>, to indicate that the compo-

nents being modeled are hardware components.
The solid lines without arrowheads, that connect the

classes, represent bi-directional associations between the

components. Associations are structural relationships and

are primarily used to connect structural constructs like

classes. Each association relationship has a number indica-

Proceedings of the 13 th International Symposium on Software Reliability Engineering (ISSRE’02)
1071-9458/02 $17.00 © 2002 IEEE

ting the multiplicity of the association. The multiplicity
shows the cardinality of the classes on either end of the

association. The dependencies between components are re-

presented in the UML as dotted lines with arrowheads,

while the solid lines with solid arrowheads represent the

generalization relationships.
Dependencies are semantic constructs that connect two

or more structural or behavioral things, and they are used

to show that a change in the independent thing may lead to

a change in the semantics of the dependent thing. In Figure

2, dependencies are annotated with the <<propagates

error to>> stereotype, to show that the dependency bet-
ween components is established because of error propa-

gation. The generalization relationship relates objects of a

child element to a parent element. A generalization indi-

cates that a structural thing “is a type of” the thing it is

related to, and that it may be substituted for the parent.

This is a powerful UML construct because it is useful
while modeling dependable systems to show that some

components can substitute for or replace others. In Figure

2, the generalization is stereotyped as <<substitutes for>>

to indicate that the class Spare can substitute for the

classes PathGenProc, SOProc, CrewStnProc and SysMgt-
Proc. The dependency, association and generalization rela-

tionships are the some of the basic relational building

blocks of the UML.

Virtually all information that was conveyed from the

block diagram is also apparent from the class diagram.

Besides this, the class diagram also conveyed additional
information about dependencies and interactions among

the components. Attributes related to these dependencies,

such as the probability of error propagation is conveyed as

an attribute of the classes. The attributes for the compo-

nents have been shown for two of the classes to indicate

how this information is conveyed from the class diagram.

From a redundancy perspective, we need to know the
minimum number of components that are needed for suc-

cessful system operation. Deployment diagrams are used

to model these system success criteria. Figure 3 shows the

deployment diagram for the MAS system. The deployment

diagram shows only one memory, four processors and the
software that has been mapped to them, a single MMBus,

VMBus and BGDataBus, and two VMProcessors. These

are precisely the success criteria, and this is the infor-

mation that we are interested in obtaining from the model.

The deployment diagram is a snapshot of the system at

runtime and shows the minimal operational version. There-
fore, so long as the deployment diagram shows the mini-

mal success criteria, the particular configuration of the de-

ployed structure is inconsequential for generating the re-

liability model.

Path

Gen

Proc

VM.

Proce

ssor1

Crew

Stn

Proc

Sys

Mgt

Proc

SO

Proc

VM

Proce

ssor2

VM

Bus

MM

Bus

BGDa

taBusM1

PathGen

SO

SysMgt

CrewStn

VM1A

VM2A

Figure 3. Deployment diagram for the MAS

Complexity management involves being able to modu-

larize the system design to permit modeling of each

module in detail, or being able to model hierarchy in the
system. The UML not only provides different diagrams to

model the structural and behavioral aspects of a system in

<<hardware>>

BGDataBus

Lambda : Double

Cov : Double

Dorm : Double

Distribution : String

SPF : Double

<<hardware>>

Memory

Lambda : Double

Cov : Double

Dorm : Double

Distribution : String

SPF : Double

<<hardware>>

VMProcessor

<<hardware>>

PathGenProc

prob_errprop: Double

<<hardware>>

SOProc

<<Spare>>

Spare

<<hardware>>

MMBus

<<hardware>>

SysMgtProc

<<hardware>>

CrewStnProc

<<hardware>>

VMBus

<<propagates error to>>

<<propagates error to>>

<<propagates error to>> <<propagates error to>>

<<propagates error to>>

<<propagates error to>>

<<propagates error to>><<propagates error to>>

<<propagates error to>>

<<propagates error to>>

2 3 3

2

2

3
4

3

4

2

<<Spare>>

VMSp

<<propagates error to>>

<<propagates error to>>

3

2

2 2

3 3 3
3

2 2 2

2

<<propagates error to>>

<<propagates

error to>> <<propagates

error to>>
2

2 2 2

3

3
3 3

<<substitutes for>>

<<substitutes for>>

<<substitutes

for>>

<<substitutes

for>>

<<substitutes for>>

Figure 2. UML class diagram for the MAS (static)

Although class diagrams provide a

high level model of the system

structure, the abstraction causes
some information loss. Specifi-

cally information about how the

individual class instances are con-

nected to each other has been lost.

For fully interconnected systems

such as the MAS, this information
loss is inconsequential. In systems

that are not fully interconnected,

we use the object diagram to show

the structural view of the system in

more detail. The object diagram

simply instantiates the classes def-
ined in the class diagram to show

the details of all the object inter-

connections that exist in the sys-

tem. Thus, class diagrams allow us

to define how many components

exist in the system.

Proceedings of the 13 th International Symposium on Software Reliability Engineering (ISSRE’02)
1071-9458/02 $17.00 © 2002 IEEE

varying levels of detail, it also provides the concept of

packages and subsystems that allow us to organize mod-

ules into manageable portions. Capturing hierarchy using

our modeling methodology is straightforward. We simply
model the details of the upper level or the lower level in

another class or object diagram e.g. consider the Memory

class of the MAS; we would model the internals of this

component using another class diagram that describes its

structural organization. We would use the object diagram

to describe the internal connections in greater detail.
Similarly, if a larger system (say an aircraft) actually

contains the MAS the UML model of this system itself has

a class MAS that abstracts the complexity of Figure 2 into a

single class construct. Similarly, each class diagram would

have its associated deployment diagram that captures the
success criteria.

3.2. Modeling spares and dependencies

Spares are components that provide redundancy by re-

placing faulty components. Since spares are replicas of a

particular class of components, we indicate spares in the

class diagram but not in the deployment diagram. We

showed how the spare components were modeled (Figure
2) as separate classes with a generalization relationship

between the spares and the components that they replace.

Recall that a generalization relationship is used to repre-

sent an “is-a-type-of” or a substitution relationship. The

generalization indicates that the instance of the spare class

is a type of the instance of the class that it replaces and
may substitute for it. We also define a <<spare>> stereo-

type for the class itself identifying it as a spare, with a

simple generalization relationship between the respective

classes. Depending on how and when the spares are used,

the spares are classified as hot, cold or warm spares. The

dormancy factor attribute of each component is used to
identify if the component is a spare and determine the type

of spare it is.

Modeling dependencies is straightforward, using the

dependency construct. We have already shown in Figure 2

how error propagation dependencies were modeled in the
MAS. Dependency between the hardware and software is

modeled analogous to dependencies among hardware com-

ponents. We define the <<Runs On>> stereotype to indi-

cate that the dependency is one where the software runs on

the hardware. The dependency is unidirectional from the

software module to the hardware module. It is implicit
from this that failure of the hardware module causes the

software to fail, but not the reverse. Horizontal dependen-

cies among two or more classes are represented by using

the dependency construct and the corresponding stereotype

to connect the classes. Vertical dependencies exist across

layers of hierarchy and these are represented using a class
that is common to the layers across which the dependen-

cies exist. An alternate way to represent dependencies ac-

ross layers is to collapse both layers into one diagram and

represent the dependencies among the classes in these

layers. We introduce a tagged value “SEQDEP = a” indi-

cating the sequence enforcing order for a dependency. We

also introduce the constraints {OR} and {AND} to indicate

the possible relation between two or more dependencies
i.e. if an object depends on two components then it may be

dependent on either of the two or both of them.

Table 1 provides a list of stereotypes that we define to

identify dependencies, generalizations and the type of

component that is being modeled, and their corresponding

fault tree realizations. Error propagation can occur not only
between two or more hardware components, but also bet-

ween a hardware component and the software that has

been mapped to it. Besides this, an error caused in soft-

ware may propagate to another software component. In

either case, we use the <<propagates error to>> stereo-
type. The probability of error propagation is defined along

with other attributes in a class, i.e. it is considered as a

property of the component causing the error. We can also

define attributes that define the rate with which faults are

activated for both hardware and software components, and

include them as attributes.

3.3. Modeling reconfiguration

Reconfiguration is an important property in dependable

systems and it is the ability to change system structure or

behavior, either for the purpose of providing higher

performance or to maintain system service in the presence

of failures. A structural reconfiguration might be the re-

allocation of resources such as a redistribution of the load
on the system onto available computing units, or a change

in the mapping between hardware and software resources.

Behavioral reconfiguration occurs when the system has to

show a predefined failure behavior such as graceful degra-

dation. Reconfiguration either in the structure or behavior

of the system affects the overall reliability of the system.
In this paper, we only address the issue of modeling struc-

tural reconfiguration because the events leading to reconfi-

guration directly affect the construction of the target

dependability model.

Incorporating reconfigurability into the MAS adds an
interesting aspect to the system as compared to hardware

redundancy. Suppose that all processors are identical

(which in fact they are in reality) and that the software

mapped to the processors can run on any of them. We fur-

ther suppose that two of the software subsystems, scene &

obstacle, and local path generation, have alternate mini-
mal versions that provide reduced functionality and require

comparatively fewer computing resources. The minimal

versions are switched in, to replace the full versions in one

of following scenarios. MinSO (the minimal version)

replaces FullSO (the full version) if the full version of the

software fails. Similarly, MinPathGen replaces FullPath-
Gen. We assume that both the minimal versions together

require only one processor to execute, while the full ver-

sions each require two (one primary processor and one hot

spare). If both the processors fail and there are no spares

Proceedings of the 13 th International Symposium on Software Reliability Engineering (ISSRE’02)
1071-9458/02 $17.00 © 2002 IEEE

Table 1. Stereotype definitions for dependency relationships, generalizations and classes

Stereotype Stereotype Meaning Fault Tree Realization

<<propagates error to>> Propagation of error caused due to hardware

fault (transient or permanent) to direction

indicated by dependency

Error propagation probability asso-

ciated with the class as an attribute,

used as a basic event parameter

<<Runs On>> Dependency because of software mapping to

hardware components. Failure of the hardware

component causes the software to fail.

FDEP trigger and dependent com-

ponents

<<requires>> Dependency to indicate that the target com-
ponent is required by the component from

where the dependency originates.

FDEP trigger and dependent com-
ponents

<<spare>>, <<hotSpare>>,

<<coldSpare>>,

<<warmSpare>>

Spare component and type of spare. (Alter-

nately, the dormancy factor can be used to

identify the type of spare)

CSP, HSP, WSP

<<substitutes for>> Generalization that indicates that the spare

substitutes for a particular component

Determines spare and primary con-

nection to HSP/CSP/WSP

<<hardware>>,

<<software>>

Hardware and software components respec-

tively.

-

available to replace both, then the minimal versions of
both modules replace the full versions and run on a single

processor i.e. irrespective of whether one full version is

still functioning, if two processors of the other essential

module fail, then both modules are replaced with their

minimal versions running on a single processor (if there

are no spares to replace the failed processors).

<<hardware>>

Processor

Lambda : Double

Cov : Double

Dorm : Double

Distribution : String

SPF : Double

<<software>>

MinPathGen

Lambda: Double

<<software>>

MinSO

<<Spare>>

Spare

<<software>>

SysMgt

<<software>>

CrewStn

<<Runs On>>

<<substitutes for>>

<<software>>

FullPathGen

<<software>>

FullSO

<<substitutes for>>

<<substitutes for>>

<<Runs On>>

<<Runs On>>

<<Runs On>>

<<Runs On>>

<<Runs On>>

<<Runs On>>

<<Runs On>>

<<Runs On>>

<<Runs On>>

<<Runs On>>

<<Runs On>>

Figure 4. Class diagram for MAS with

reconfiguration

We assume that a mechanism exists where the failure of

a processor will cause the software mapped to it to be

remapped to the spare that is switched in. Conceivably, the

minimal versions and reconfigurability give the system a
chance to tolerate or recover from massive failures (such

as failure of the two pro-cessors and their respective hot
spares running SO and PathGen). The block diagram is

insufficient to model this complex nature of recon-

figuration. Figure 4 shows the modified class diagram

incorporating the minimal versions and the hardware to

software mappings for the first four sub-systems.

The modified class diagram for the VMProcessor class
is similar. Only the additions to the class diagram of

Figure 2 are shown. The processors have been modeled as

a single class because all the processor instances belong to

the same class. The mapping between the software and the

processors is shown using a <<Runs on>> stereotype.

The <<substitutes for>> stereotype in the generalization
between the full software versions and the minimal soft-

ware versions indicates that the minimal versions replace

the full versions. The main advantage of this represen-

tation is that it shows the true nature of the system i.e. the

software can run on any of the processors. More impor-

tantly it shows that the software to processor mapping is
transient and that the mapping is reconfigurable. Since the

reconfiguration activity is itself a behavior, it has to be

shown explicitly using an activity or statechart diagram

(Figure 5).

Activity and statechart diagrams are the behavioral mo-
deling constructs of the UML. Figure 5 essentially indi-

cates the triggers that lead to reconfiguration and the

actions taken during reconfiguration. Our interest in this

diagram is to determine how the occurrence of certain

failures (basic events in the fault tree) will affect the cons-

truction of the target model. The reconfiguration activity
diagram shows that the full versions of both SO and Path-

Gen are replaced by their respective minimal versions, if

Proceedings of the 13 th International Symposium on Software Reliability Engineering (ISSRE’02)
1071-9458/02 $17.00 © 2002 IEEE

either of the modules fails or if two processors fail. Fur-

ther, if two processors fail and two spares are not avail-

able, the minimal versions are both mapped to one spare.

The translation process for mapping these reconfiguration
activities into the correct dependability model is based on

keywords that we have used, namely Fails, Replace, and

With.

MinSO -> Processor

entry/ Replace FullSO with MinSO

MinSW -> Spare

entry/ Map MinSO to Spare

entry/ Map MinPathGen to Spare

MinPathGen -> Processor

entry/ Replace FullPathGen with

MinPathGen

[FullSO Fails]

[FullPathGen Fails]

[SOProcessor Fails]

[PathGen Processor Fails]

Start Reconfigure

End Reconfigure

Figure 5. Reconfiguration activity diagram for
MAS

The key points to be identified in this activity diagram
are the modules that failed and the modules that replace

failed components. These are analogous to basic event fail-

ures and spares in the fault tree. We now describe our al-

gorithm to convert the UML model to a dynamic fault tree.

4. Automatic DFT synthesis

For analyzing our approach, we used Rational Rose, a

commercially available UML modeling tool. Our approach

to compiling the UML model to generate the DFT is

simple: we use a customized parser to extract the logical

model of the system, with all information about system
structure and the embedded reliability information. Con-

ceptually, this can be considered as creating an object that

logically encodes the system structure and the reliability

information. The actual synthesis algorithm works on this

logical structure to generate the dynamic fault tree.

4.1. The logical system object

We express the fault tree in code that is understandable
by Galileo. However the expression of the fault tree can be

customized to be input to other fault tree analysis tools.

The parser is tuned to recognize the keywords used by

either Rose in its internal representation of the UML. The

internal representation is a monolithic text file i.e. infor-

mation from the class, object and deployment diagrams are
all stored in a single file. For hierarchical modeling in

Rose, the hierarchies have to be created separately and

cannot be created from the tool itself. Therefore a model

for each hierarchical level is stored as a separate file.

We generate the object encoding the system structure

(Figure 6) as follows. The association relationships from

the class and the object diagrams are used to obtain the

system structure. The cardinality of the classes is used to
obtain how many components are present in the system;

the deployment diagram and the object diagram are used to

determine how many components are needed, and the

specifics of class associations. Together, these determine

redundancy information of the system. In figure 6, itsM,

itsN and itsK represent the number of components present,
the number needed and the number that will cause failure,

respectively. Stereotypes defined for the UML constructs

are used to build the corresponding fault tree analogues,

however not all stereotypes are used during the generation

of the DFT.

Sys_Object {
itsName; itsStereotype;
itsAssociations; itsGeneralizations;
itsDependencies {

itsStereotype; itsTaggedValue;
itsConstraint; };

itsInstances {
itsInstanceNames; itsInstanceGeneralizations;
itsInstanceAssociations; };

itsAttributes { ItsAttributeNames;
itsAttributeValues;};

itsMultiplicity {itsM; itsN; itsK; };
}

Figure 6. Structure of the logical object for the
system model

The attributes are used obtain the probabilistic informa-

tion needed for reliability analysis i.e. failure rates, dor-

mancy factor, coverage, restoration, distribution and SPF.
The reconfiguration activity diagram is used to account for

the reconfiguration in the system. Multiple model files are

used to determine the hierarchies in the system and the

model of each tier in the hierarchy is parsed to create its

own system object, which is then translated into its corres-
ponding DFT. Tagged values are used to determine the

input order or sequence for connecting the basic events to

the spare gates in case a primary component shares more

than one spare. The tagged values are specified on the

dependency, labeled with the appropriate stereotype.

The DFT generation algorithm then uses this object to
create the fault tree for the system. Figure 6 only shows the

structure of this object. Depending on the number of clas-

ses within a model and how these classes are associated or

depend on each other, there will be as many entries in this

object as there are classes with the respective values for

each of the fields.

4.2. Algorithm for DFT generation

Our algorithm for generating the DFT from the object

that encodes the system structure is a three-pass algorithm.

In the first pass we compute the count of the number of

classes, the number of instances per class and the number

Proceedings of the 13 th International Symposium on Software Reliability Engineering (ISSRE’02)
1071-9458/02 $17.00 © 2002 IEEE

of dependencies per instance of a class. A basic event (BE)

is created from each class instance and all BEs are connec-

ted to a top level OR gate. Creation of the BEs includes

assigning each BE parameter with the respective parameter
from the object. Thereafter, for every class that is identi-

fied in the class diagram we perform the following steps:

�� From the object encoding the structure, we determine

how many components exist and how many cause fail-

ure. Appropriately, an OR, AND or a K-of-M gate is

defined. If the system that is modeled is completely
static, then we need go no further because a static

system can be modeled using these three gates.

�� For a dynamic system, the dependencies for each BE

is determined and connected to the appropriate func-

tional dependency (FDEP) gate normal inputs.

�� Next, the BEs that are independent in the dependency
relationship are connected to the correct FDEP gates

as primary inputs i.e. as the trigger to the FDEP. If the

dependencies have an OR / AND constraint, then

either an OR / AND gate is created and the trigger BEs

connected to this gate.

In the second pass, the spare gates (HSP, CSP or WSP

for hot, cold and warm spares respectively) are identified
from the logical structure. In this case, for each class the

stereotype is used to determine if the spare should be

translated into an HSP, CSP or WSP. Once the spare gates

are identified for each instance of each class, the spare

gates are created and the respective basic events are

connected to either the primary or the normal connections
of the spare gates depending on the generalization relation-

ships i.e. if an object is a spare for another object then the

corresponding generalization entry is filled with the name

of the BE that it is a spare for. Therefore, the genera-

lization entry is connected to the primary input of the spare
gate and the object itself is connected to the secondary. If

the basic events now connected to the spare gates were

originally connected to other gates (such as OR, AND or

K-of-M gate) then the spare gates are then connected to

these gates also. The links from the BE to the original

gates are then deleted. We can use multiple linked list type
data structures for this purpose, and the idea is to simply

update the pointers, as new gates and the correct connec-

tions are determined in each pass. At this stage, the DFT is

complete if there is no reconfiguration in the system that

has been indicated with an activity diagram.

In the third pass, the DFT created from the first two
passes is modified to include the reconfiguration in the

system (if it exists). Recall that reserved words are used in

the activity diagrams that show reconfiguration. These

reserved words are then used to determine the events occur

that will cause or ‘trigger’ reconfiguration or system
failure. Accordingly, the basic events represented in the

DFT by these classes are connected to the FDEP gates and

the spare gates. Figure 7 shows our algorithm for gene-

rating dynamic fault trees.

In summary, our DFT generation algorithm can gene-

rate the AND, OR, K-of-M, CSP, WSP, HSP and FDEP

gates. Figure 8 shows the DFT that is generated using our

algorithm for the reconfigurable MAS system (Figures 2

and 3). We have shown a reduced version of the fault tree

and we have not expanded all the basic events. However,
we have indicated how many basic events are present in

each sub-tree. The DFT identifies all the failure criteria as

well as the reconfiguration in the system from the UML

model.

5. Example Systems

We evaluated our modeling methodology and the DFT

synthesis algorithm using three types of systems; namely

co-designed and reconfigurable systems, hierarchical sys-

tems and phased mission systems. In this paper, we present

the results of modeling and reliability analysis of only the

first two types.
The MAS (which we have already explained) is chosen

as an example of a co-designed and reconfigurable system.

A relatively complex configuration of the fault tolerant

parallel processor (FTPP) is chosen as an example of the

hierarchical system. First we analyzed the MAS with and

without reconfiguration; then we analyzed the FTPP both
as a hierarchical and a non-hierarchical system.

As a validation effort (i.e. informally), we used our al-

gorithm to generate DFTs for the MAS configurations

from [15] and [19] respectively and we compared our solu-

tion with the DFTs that were manually generated. For the

first example, our algorithm produced a DFT that is iden-
tical to the one presented in [15]. Figure 9 shows the com-

plete fault tree that was obtained for the second confi-

guration. The DFT that we generated differs from the one

in [19], as shown by the dotted lines. The DFTs that were

obtained are structurally different but logically equivalent.
We analytically solved them using the Galileo tool, using

the same basic event parameters. In all our analyses, an

exponential failure distribution was assumed. Table 2 lists

the parameters that we used for analysis and also summa-

rizes the results of the analysis i.e. the computed top event

unreliability (Q) for the MAS. Although the DFT we
produced differed, the analysis results clearly indicate that

our solution is correct as well. In fact, the result is not

surprising, simply because our solution can be reduced to

the solution of [19]. Since our DFT is algorithmically

generated, it lists all failure criteria. The sub-tree shown by

the dotted lines are actually inconsequential because they
have already been covered by the S&O, PathGen, Crew

and SysMgmt sub-trees.

As a second set of analyses, we modeled a relatively

complex FTPP configuration (#2 from [5]) both as a

hierarchical system and as a non-hierarchical system. We
present the results of these analyses and the parameters

that we used, in table 3. In both cases, the DFTs that were

generated were structurally different from the manually

generated ones. We do not present the fault trees in this

paper due to lack of space. However, the complete fault

trees that we generated are documented in [17].

Proceedings of the 13 th International Symposium on Software Reliability Engineering (ISSRE’02)
1071-9458/02 $17.00 © 2002 IEEE

In this case as well, our results were identical to the

manually generated DFTs. The reason for this, again, is
that our algorithm considers all failure criteria and there-

fore, our DFTs can always be reduced to simpler ones.

6. Summary and Conclusions

We have successfully conveyed, using our proposed UML

modeling methodology, the number of components that
exist in a fault tolerant computer-based system. We also

captured the success (and failure) criteria, the components

replaced from the spares when failures occur, the depen-

dencies between hardware components and between the

software and the hardware. We presented the modeling of
reconfiguration in a system, and described how system

complexity is managed. The models developed using our

approach also embed statistical reliability information such

as failure rates, coverage and failure distribution. The

methodology is flexible enough to capture system hierar-

chies. It could be viewed that our approach is equivalent to
specifying a dependability model in non-standard UML.

However, our approach simply specifies the criteria need-

ed for automating reliability analysis at design time itself.

e.g. number of components present, number of spares, etc.

// Pass 1 - BE, AND, OR, K-of-M and FDEP

Define TopLevel Gate as OR;
j = classCount = Number of Classes (Sys_Object);

n = dependencyCount = Number of Dep (Sys_Object.itsName);

p = instanceCount = Number of Instances (Sys_Object.itsName)

For (i = 0, i <= classCount, i ++) {

 Create BE from Sys_Object.itsInstances; }
EndFor;

While (j != 0) {
 Assign Sys_Object.itsAttributes to BE.itsParameters;

 Connect BE to TopLevel Gate;

 If ((Sys_Object.itsK < Sys_Object.itsM) &&
 (Sys_Object.itsK != 0,1))

 { Define KofM Gate; }

 ElseIf (Sys_Object.itsK = Sys_Object.itsM = 1)
{ Define OR Gate; }

 ElseIf ((Sys_Object.itsK = Sys_Object.itsM) &&

 (Sys_Object.itsM > 1)) { Define AND Gate; }
 EndIf;

 Connect BE to defined Gate In;

 Connect defined Gate to TopLevel;
 Delete BE link to TopLevel;

 For (p > 0; p --)

 {
 If ((Sys_Object.itsDependency exists) && (FDEP !exist))

 { Define FDEP Gate;

 While (n != 0) {
 If (Sys_Object.itsDependency.itsConstraint = OR||AND)

 { If (OR || AND Gate Exists) {

 Connect OR||AND Gate Out to FDEP Trigger In; }
 Else {

 Define Gate = Sys_Object.itsDependency.itsConstraint;
 Connect Gate Output to FDEP Trigger In;

 Connect Sys_Object.itsDependency to Gate In; }

 EndIf; }
 Else {

Connect Sys_Object.itsDependency to FDEP Trigger In;}

 EndIf;
 n-- ;

 } EndWhile;

 }
 ElseIf ((Sys_Object.itsDependency exists) && (FDEP exists))

 { Connect FDEP Normal In to BE; }

 Else {
 Connect FDEP Normal In to BE;}

 EndIf;

 } EndFor;
 j-- ;

} EndWhile; // End Pass 1

// Pass 2 - HSP, WSP, CSP

Reset j;
Reset p

While (j != 0) {
 If (Sys_Object.itsStereotype = "hotSpare" || "warmSpare" ||” coldSpare")

 {

 For (p > 0; p--) {
 If (HSP || WSP || CSP Exists) {

 Connect BE to Gate Normal In; }

 Else {
 Define Spare Gate = Sys_Object.itsStereotype;

 Connect BE to Spare Gate Normal In; }
 EndIf;

 Connect Sys_Object.itsGeneralization to Pri (Spare Gate);

 Connect Spare Gate to Gate that BE is connected to;
 Delete Connection from BE to Upper Gate;

 InputOrder = Sys_Object.itsTaggedValue;

 } EndFor;
 } EndIf;

 j-- ;

} EndWhile; // End Pass 2

// Pass 3 - Reconfiguration

Reset j;

Reset p;

While (j != 0) {

 Locate Keyword "Fails";
 Define OR Gate;

 Define FDEP Gate;

 If (Keyword = Found) {
 For (p > 0; p--) {

 If (BE connected to Gate){

Connect Gate Out to OR Gate In; }
 Else { Connect BE to OR Gate In; }

 EndIf;

 } EndFor;
 } EndIf;

 Connect OR Gate Out to FDEP Trigger In;

 Locate Keyword "Replace" and "with";
 If (Keyword = Found) {

 For (p > 0; p--) {

 Connect FDEP Normal In to BE before "with"; }
 EndFor;

 } EndIf;

 j-- ;

} EndWhile; // End Pass 3

Figure 7. Algorithm for automatic DFT synthesis

Proceedings of the 13 th International Symposium on Software Reliability Engineering (ISSRE’02)
1071-9458/02 $17.00 © 2002 IEEE

MAS Failure

BGDataBus

3 * DB

MMBus

3 * MMB

VMBus

2 * VMB

Memory

2 * M

Processors

5

8

8 * CSP

CSP

P

Spare1

Spare2

VMProcessor
s

3

4

4 * CSP

CSP

VM

VMSp1

VMSp2

CrewStn

2 * CS

SysMgt

2 * SM

Full Version
Failure

FullPathGen

FullSO

Any One Fails

Reconfigure

FDEP

Min Version
Failure

PG-CSP

CSP

SO-CSP

CSP

MinPathGen MinSO

Figure 8. DFT for the reconfigurable MAS

Component λ Coverage Restoration SPF Q from [19] Q (From Our Algorithm)

All Processors 5E-04 0.999 0.0 1E-03

Memory 1E-06 0.4999 0.5 1E-04 7.76449E-04 7.76449E-04
All Buses 1E-05 1.0 0.0 0.0

Software 5E-06 0.9999 0.0 1E-04

Table 2. List of Parameters and Summary of Results (MAS)

MAS Failure

BGDataBus MMBus VMBus Memory

DB1 DB3DB2 MMB
1

MMB
3

MMB
2

VMB
1

VMB
2

M1 M2

VehMgmt1 VehMgmt2

VehMgmt1a

CSP

VehMgmt1b

CSP

VehMgmt2a

CSP

VehMgmt2b

CSP

VM1
a

VM1
b

VM2
a

VM2
b

VM-
Sp1

VM-
Sp2

Crew

Crew1a

CSP

Crew1b

CSP

C1a C1b

SysMgmt

SysMgmt1a

CSP

SysMgmt1b

CSP

SM1
a

SM1
b

S&O

S&O1a

CSP

S&O1b

CSP

SO1
a

SO1
b

PathGen

PathGen1a

CSP

PathGen1a1b

CSP

PG1
a

PG1
b

Sp1 Sp2

OneFails

Reconfig

FDEP

Software

S&O

CSP

PathGen

CSP

Full
S&O

Full
Path
Gen

Min
S&O

Min
Path
Gen

TwoFail

Processors

5

8

CSP

P6

CSP

P7

CSP

P8

CSP

P5

CSP

P4

CSP

P3

CSP

P2

CSP

P1

Sp1 Sp2
VM-
Sp1

VMProcessor
s

3

4

CSP

VMP
4

CSP

VMP
3

CSP

VMP
2

CSP

VMP
1

VM-
Sp2

VMProcessors

Figure 9. DFT generated using our algorithm for MAS configuration of [19]

Component λ Coverage Restoration Q from [5] Q (Our Algorithm) Q (Our Algorithm)

Network Element 3.0E-07 1.0 0.0

A-Triad 1.5E-04 1.0 0.0

B-Triad 2.5E-04 1.0 0.0

Non Hierarchical

Hierarchical

C-Triad 3.5E-04 1.0 0.0

D- Triad 4.5E-04 1.0 0.0 1.20372E-05

1.20372E-05

1.20372E-05

Spare 5E-06 1.0 0.0

Table 3. List of Parameters and Summary of Results (FTPP)

Proceedings of the 13 th International Symposium on Software Reliability Engineering (ISSRE’02)
1071-9458/02 $17.00 © 2002 IEEE

Since the designer knows this information, extending a

traditional UML model permits automatic reliability ana-

lysis along with design. This extensibility of the UML is

one of its major advantages. We use this property and ex-
tend the constructs’ semantics to define stereotypes that in-

dicate the types of dependencies, and generalizations that

exist in the system. Class or object diagrams are used to

capture the static system structure while deployment dia-

grams captures a runtime snapshot. Another advantage is

that the UML itself is fairly standard, in that most design-
ers understand its constructs.

We then presented an algorithm that converted the

UML model into a dynamic fault tree. We have shown, us-

ing examples of some complex systems, that the models

we develop are sufficient to automatically generate dyna-
mic fault trees. We compared the results of the analytical

solutions of the DFTs that we obtained with the results

from manually generated DFTs. Our results indicate that

the solution of our algorithm is usually identical to, or can

be reduced to, the DFTs that are manually generated. The

algorithm we presented generates the AND, OR, K/M,
FDEP, CSP, WSP and HSP gates. We believe that a signi-

ficantly large variety of real world dependable systems can

be analyzed using the same.

One disadvantage of the UML is that it is a semi-formal

modeling language. Another limitation is that the UML

design tool that the designer chooses could limit our mode-
ling methodology. Although the constructs are precise, the

semantics are not. A formally defined model, on the other

hand, has several desirable advantages. Application of for-

mal methods to precisely define the model removes any

ambiguities about the model from the designer’s mind.
Therefore, one of the avenues of future work is to define a

translation from UML to a formal model that can be chec-

ked by model checkers such as SPIN, and to formally de-

fine the DFT synthesis algorithm. Our algorithm for gene-

rating dynamic fault trees from system descriptions is in-

dependent of the internal UML representations; it is also
independent of the tools. In fact, were the UML to change

in its constructs (but not in their semantics) we will still be

able to generate DFTs automatically using our approach.

This is mainly because the initial stage of the automatic

translation converts the system description to an internal

logical representation of the system. It is this represen-
tation that is used to generate the DFT. Conceivably, if we

construct the same logical system object from alternate

modeling methodologies, specifically those that do not use

the UML, we will still be able to automatically construct

dynamic fault trees from the engineering model.

Acknowledgements

We thank the anonymous reviewers for the their helpful
comments and suggestions on improving the paper. This

work was partially supported by Lockheed Martin under

grant EE-LM/NESS-0429-01 & NASA-LaRC under grant

NAS1-99098.

References

[1] A. Rauzy, G. Point, “AltaRica: Langage de modélisation

par automates à contraintes”, Modélisation des Sytèmes

Réactifs, Mar. 1999, pp. 81 – 90.

[2] G. Booch, J. Rumbaugh, I. Jacobson, The Unified Mode-

ling Language User Guide, Addison Wesley, 1999.

[3] W.E. McUmber, B.C. Cheng, “A generic framework for

formalizing UML”, Proc. of the IEEE International Con-

ference on Software Engineering, May 2001.

[4] W.E. McUmber, B.C. Cheng, “UML based analysis of

embedded systems using a mapping to VHDL”, Proc. of

4th IEEE International Symposium on High Assurance Sys-

tems, Nov. 1999

[5] J.B. Dugan, S.J. Bavuso, M.A. Boyd, “Fault trees and

markov models for reliability analysis of fault tolerant sys-

tems”, Journal of Reliability Engineering and System Sa-

fety, Vol. 39, 1993, pp. 291 – 307.

[6] J.B. Dugan, S.J. Bavuso, M.A. Boyd, “Dynamic fault-tree

models for fault tolerant computer systems”, IEEE Trans.

on Reliability, Vol. 41, No. 3, Sept. 1992, pp. 363 – 373.

[7] R. Rao et al., “Synthesis of reliability models from beha-

vioral performance models”, Proc. of Ann. Rel. and Maint.

Symposium, 1994, pp. 292 – 297.

[8] D. Coppit, J.B. Dugan, K.J. Sullivan, “The Galileo fault

tree analysis tool”, Proc. of IEEE FTCS, June. 1999, pp.

232 – 235.

[9] D. Coppit, J.B. Dugan, K.J. Sullivan, “Developing a high-

quality software tool for dynamic fault tree analysis”,

Proc. of ISSRE-99 ., Nov. 999.

[10] S.A. Doyle, J.B. Dugan, “Dependability assessment using

binary decision diagrams”, Proc. of the IEEE FTCS, 1995.

[11] J.B. Dugan et al., “DIFTree: A software package for the

analysis of dynamic fault tree models”, Proc. of Rel. and

Maint. Symposium, Jan. 1997.

[12] D. S Hermann, Software Safety and Reliability: Chapter 2,

IEEE Computer Society Press, 1999.

[13] A. Bondavalli et al., “Automated dependability analysis of

UML designs”, Proc. of 2nd IEEE Intl. Symp. on Object-

oriented Real-time Distributed Computing, 1999.

[14] M. Walter, “OpenSESAME: A Tool’s Concept”, Proc. of

the Satellite Workshops of the 27th Intl. Colloquium on

Automata Languages, and Programming, Nov. 2000

[15] K.K. Vemuri, J.B. Dugan, K. J. Sullivan, “Automatic syn-

thesis of fault trees for computer-based systems”, IEEE

Trans. on Rel., Vol. 48, No. 4, Dec. 1999, pp. 394 – 402.

[16] T.S. Assaf, Automated reliability analysis of computer-

based systems using UML, MSEE Thesis, Dept. of ECE,

Univ. of Virginia, Jan. 2001.

[17] G.J. Pai, A UML framework for modeling and automated

dependability analysis of computer-based systems, MSEE

Thesis, Dept. of ECE, Univ. of Virginia, Jan. 2001.

[18] N. Medvidovic et al., “Modeling software architectures in

the Unified Modeling Language”, Tech. Rep. USC-CSE-

2000-512, University of Southern California, Aug. 2000

[19] J.B. Dugan, T.S. Assaf, “Dynamic fault tree analysis of a

reconfigurable software system”, Proc. of the 19th Intl.

System Safety Conference, Sept. 2001, pp. 480 – 487.

[20] A Bondavalli et al., “Dependability analysis in the early

phases of UML based dystem design”, Jrnl. of Computer

Systems Science and Eng., Vol. 16, pp. 265-275, 2001

[21] H. Singh, B. Cukic et al., “A bayesian approach to relia-

bility prediction and assessment of component based sys-

tems”, Proc. of ISSRE-01, Nov. 2001

Proceedings of the 13 th International Symposium on Software Reliability Engineering (ISSRE’02)
1071-9458/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

