
Bayesian Networks applied to Software IV&V

Ganesh Pai, Joanne Bechta-Dugan and Khalid Lateef†

University of Virginia, Department of ECE, Charlottesville, Virginia, USA
†TITAN Corporation, Greenbelt, Maryland, USA

{gpai,jbd}@virginia.edu, †Khalid.Lateef@titan.com

Abstract

In this paper, we describe how Bayesian networks can
be used to merge quantitative and qualitative informa-
tion to support IV&V of use cases. Essentially, sim-
ple metrics from the use cases are computed, which are
then input to a Bayesian network. This network mod-
els the relationships between the observable parameters
of an IV&V process for use cases, and the desired fea-
tures of the requirements specifications. The output of
the network is an assessment of the maturity of the re-
quirements, in terms of the probability that they exhibit
the desired properties. We apply our proposed approach
to a real system: a software simulator built to test atti-
tude control for an aerospace system, to illustrate how
IV&V can be quantitatively supported.

Keywords: Use cases, software requirements specifica-
tions, probabilistic networks, independent verification &
validation, software reliability engineering.

1 Introduction

Requirements errors are most expensive to correct if
they are not discovered early during development; such
errors are most often responsible for software failures
[1, 2]. Therefore, receiving early feedback regarding
the validity and/or maturity of evolving requirements
during software requirements specification (SRS) devel-
opment, is valuable. Software independent verification
and validation (IV&V) may be used in critical projects
to assess and mitigate risk, to increase product quality,
and to reduce cost [3]. Typically, IV&V, which takes
place in parallel with development, often needs to be
relatively rapid to positively influence the development
process. The longer the analysis takes, the less useful
its results may become, especially for evolving require-
ments during the SRS development phase.

Owing to the popularity of the unified modelling lan-
guage (UML) and model-driven development of soft-
ware, one commonly finds requirements being modelled

as UML use cases. The documentation of these use cases
and their associated scenarios frequently appears as in-
formal text. Additionally, the UML semantics are semi-
formal. Consequently in practice, determining that the
requirements are acceptably mature mainly depends on
engineering judgement. The primary motivation of the
work presented in this paper, is to develop a method-
ology to (1) harness the existing inspection/subjective
analysis techniques and (2) systematically and quanti-
tatively analyse the readiness of requirements, captured
as UML use cases.

One approach for the analysis of requirements during
IV&V has been the application of lightweight formal
methods, where partial analysis is performed on partial
specifications, and there is no commitment to convert-
ing the entire informal requirements document into a
formal one [4, 5]. There is limited guidance in the lit-
erature regarding performing V&V on use case based
requirements in general, [6] and their applicability has
not been addressed in the context of IV&V constraints.
To the best of our knowledge, these techniques have not
yet been applied in IV&V of UML use cases. In this
paper we focus mainly on the use of Bayesian networks
for quantitative IV&V analyses.

The rest of this paper is organised as follows: In sec-
tion 2, we first describe a real example system and pro-
vide a high-level overview of the functionality desired
from the system. Then, in section 3 we present a process
flow for IV&V of use cases. The Bayesian network used
to support this process flow is detailed in section 4. Sec-
tion 5 presents a discussion of the analysis while section
6 presents related work in the literature. We conclude
the paper in section 7 and identify avenues for future
work.

2 Real example system

To illustrate our approach, we consider a real example
system (figure 1): a hybrid hardware/software simula-
tor (PC) built to test the attitude control subsystem
(AC) of an aerospace system. The simulator is used to

1

test the AC to verify that it functions correctly. The PC
not only models system dynamics but also simulates the
sensors and actuators of the AC. Additionally, the sim-
ulator interfaces directly with the AC hardware, provid-
ing a real-time, hardware-in-the-loop test environment.
The user interacts with the simulator to provide test
scripts, to command or configure the simulator, and to
display telemetry information. The simulator can be
used to model the ground support equipment software
as well. Its main purpose is low-level testing of the flight
hardware and sensors.

PC

Hardware

(Win NT workstation)

Hardware

Computing racks

Software Models for

Sensors & Actuators

Simulator

Software

Bus

Ethernet

User

Interface

Machine

Attitude control system

(AC)

Processor

Dedicated

AC

Hardware

Dedicated

Links

Figure 1: Block diagram of the simulator system

The initial requirements document for this system
had been constructed by its developers in natural lan-
guage, and it included the interface specifications be-
tween the simulator and the ground support equipment
functions. For this paper, we consider the interface re-
quirements between the PC and the software model for
a digital sun sensor. Specifically, the latter provides fine
measurement of the sun-direction and this measurement
data is communicated to the simulator during a simu-
lation run. Use cases were not available directly; hence,
these were constructed from the natural language re-
quirements document using the procedure shown in ta-
ble 1.

2.1 Requirements representation as use cases

Figure 2 shows three software requirements from
the original natural language requirements document.
In the figure, the underlined text represents the
main use cases, the underlined italicized text repre-
sent conditions, the boldface text represent actors,
the boldface italicized text highlights an associ-
ation between an actor and a use case, while the
underlined boldface text highlights a secondary use
case related to the main use case by means of an in-
cludes relationship. Such use cases are captured in our

use case descriptions as the operations of a scenario of
the main use case.

The original requirements document distinguished
software requirements from hardware/system require-
ments and each software requirement, if there was more
than one per module, was numbered. We see in figure 2
that each requirement further had a description of the
necessary functionality in a structure which permitted
the use of an algorithmic approach to constructing the
use cases(table 1).

This procedure constructs the main use cases, the
secondary use cases which are related to the main use
cases by relationships of type includes, the actors, as
well as the associations between actors and use cases.
It also assigns unique names to both use cases and ac-
tors, corresponding to the the respective functionalities
described in the original requirements document. In the
use case descriptions, secondary use cases are included
as operations of a scenario with the corresponding ac-
tions and conditions, whereas they are shown explicitly
in the use case diagram. Each actor, use case and func-
tionality name are included in the domain dictionary to
permit traceability analyses between the use cases and
the original requirements. The use cases are, thus, a
direct translation of the original requirements and con-
sistency between the two was not otherwise established.

To further maintain consistency, scenario descriptions
were only re-structured and minimally altered, without
actually translating them into more precise descriptions.
For example, the sentence {the sun presence bit shall be
1...} was re-written as {Sun presence bit = 1} in the
post-conditions for the associated operation. However,
it is straightforward to precisely represent these oper-
ations using the events-conditions-actions table model,
as applied by Gervasi et al. [7]. Indeed, with the use
of a domain based parser, as in their work, the use case
construction procedure can be modified to operate on
the parse trees of natural language requirements, to au-
tomatically build the use cases. One of the avenues for
our future work is constructing a domain model of the
system to formalise the scenario and operation descrip-
tions using the object constraint language (OCL) of the
UML.

Figure 3 shows the use case descriptions that were
obtained, while figure 4 shows the corresponding use
case diagram. In figure 3, the highlighted text repre-
sents some of the problems identified with the original
requirements after they were structured into use cases.
Specifically four pre- and post-conditions, and one al-
ternate scenario was missing in the use case PC-SW in
SunSensor Interface while two conditions were unclear
in the use case AC-SW in SunSensor Interface.

2

Subsystem: Digital Sun Sensor Interface.

Software Requirement:

The
hybrid dynamic simulator software

 shall output to
 the
hybrid dynamic simulator

hardware
 values for the two sun sensor data words, with the specified format. The

command shall have values for
 Na
 and
Nb
, computed for the time at the cycle tick,

offset for the true sun sensor sampling times; this is a time-critical signal.
 Na
 and

Nb
 shall be computed by inverting the equations for the sun angles
 a
 and
b
 as a

function of
 Na
and
Nb
. The coefficients in the equations for
 Na
and
Nb
 shall be

configurable.
 The sun presence bit shall be 1 if the sun is within +/- 32 degrees of

the sun sensor optical axis, 0 otherwise
 ; the sun presence bit shall also be

commandable. The
 sun sensor orientation
 in the spacecraft frame shall be configurable

Ground Support Equipment Software Requirement (1):

In
flight algorithm test mode
 ,
attitude control system ground support equipment

software
 shall model the digital sun sensor values, and
 output them
 to the
attitude

control system ground support equipment hardware

digital sun sensor stimulus interface
 ,

either when the signals are set directly, or when the corresponding angle is set.

Ground Support Equipment Software Requirement (2):

In
flight hardware test mode
 , attitude control system ground support equipment software

shall output to
 the
attitude control system ground support equipment hardware digital

sun sensor sun emulator interface
 a commandable value.

Figure 2: Sample natural language requirement

Table 1: Procedure to construct use cases from the natural language requirements

Procedure: Construct use case

1. ∀ software requirements Ri in the original requirements document
2. identify required functionalities fi ∩ ∀ fi ∃ a unique name
3. identify system boundary
4. identify actors Ai outside the system boundary ∩ ∀ Ai ∃ a unique name
5. ∀ fi ∃ use case ui with operations oi ∩

name(ui) = name(fi) ∩
actions(oi) = actions(fi) ∩
conditions(oi) = conditions(fi)

6. ∀ ui identify associations aij between ui and actor Aj

7. identify relationship rij between functionalities fi and fj

8. determine whether type(rij) = {extends} or {includes}
9. ∀ fj for which type(rij) = {includes} ∃ rij from ui to uj in the use case diagram ∩

∃ operations oj in ui in the use case description such that

name(oj) = name(fj) ∩
actions(oj) = actions(fj) ∩
conditions(oj) = conditions(fj)

10. ∀ oi of ui identify temporal ordering (oi)
11. include name(fi), name(ui)in the domain dictionary
12. include name(Ai) in the domain dictionary

3

Table 2: Use case metrics

Metrics Explanation

NS No.(normal scenarios)
ES No.(exceptional scenarios)
Op No.(operations)
PreC No.(pre-conditions)
PostC No.(post-conditions)
A No.(actors)
DNincorrect No.(instances of improper use case notation)
Nrep No.(instances of repeated use case or actor names)
Samb No.(statements for which meaning is unclear or ambiguous)

Use Case:
 PC -SW in SunSensor_Interface

Actors
: PC-HW

Main scenario:

 - Operation: SunSensor_Signal_Output()

Pre-condition:
{Sun detected}

Post-conditions: {SunSensor data word values available} AND {data word matches specified format} AND

 {Values for Na and Nb available} AND {time of computation = cycle tick time} AND

 {Sun within ± 32 degrees of SunSensor Optical axis} AND {Sun presence bit = 1} AND

 {{Sun outside ± 32 degrees of SunSensor Optical axis} AND {Sun presence bit =0}

 - Operation: Command_Sun_Presence_Bit()

Pre-condition:
{Sun detected}

Post-conditions: {Sun presence bit value set by user} AND
 {Values are 1 or 0}

 - Operation: Configure_Orientation()

Pre-condition:
Not specified

Post-conditions: {SunSensor orientation value set by user} AND
 {Value matches specified format}

 - Operation: Configure_equation_coefficients()

Pre-condition:
Not specified

Post-conditions: {Na and Nb computed as a function of sun angles} AND
 {sun angles a and b available}
 AND

 {user specifies values for coefficients of equations of Na and Nb} AND

{Coefficient values match specified format}

Alternate Scenario:

Pre-condition: ¬ {Sun detected}

Post-conditions: Not specified

Use case:
 AC-SW in SunSensor_Interface

Actors:
 AC-HW

Scenario (1):

 - Operation: SunSensor_Model()

Pre-condition:
 {Flight algorithm test mode = true} AND

{
{Signal set directly}
 OR
{Corresponding angle set}
 }

Post-condition:
 {Sun Sensor values available from SunSensor_model} AND

{output to AC-HW SunSensor stimulus interface}

Scenario (2):

 - Operation: SunSensor_Emulator()

Pre-condition:
 {Flight hardware test mode = true}

Post-condition:
 {output commandable value to AC-HW SunSensor sun emulator interface}

Figure 3: Use case descriptions

4

SunSensor

_Model

AC-SW
 PC - SW

SunSensor

_Signal_Output
 Command_Sun

_Presence_Bit

Configure_orientation

Configure_equation

_coefficients

SunSensor_

Emulator

SunSensor_Interface

PC - HW

AC - HW

<<includes>>
<<includes>>

<<includes>>

<<includes>>

<<includes>>

<<includes>>

Figure 4: Use case diagram

2.2 Computation of metrics from use cases

Use cases and the associated analysis can be used to
compute some simple metrics (table 2) which can be
directly obtained from the use cases. Besides these, ad-
ditional metrics have been developed by Marchesi [8],
for use case complexity analysis. Each of these metrics
are evaluated for every main use case in a use case di-
agram. The metrics subscripted with the term missing
are metrics to measure the related missing parameter as
identified by the IV&V analysis. These derived metrics
are defined as follows.

NStotal = NS + NSmissing (1)

EStotal = ES + ESmissing (2)

Optotal = Op + Opmissing (3)

PreCtotal = PreC + PreCmissing (4)

PostCtotal = PostC + PostCmissing (5)

Atotal = A + Amissing (6)

DNincorrect + DNcorrect = TotalNo.(Statements) (7)

These metrics used as input to the bayesian network
developed in section 4.

3 IV&V process flow

The primary function of IV&V at the SRS stage is
the identification and mitigation of risks. A proposed
IV&V process flow, developed in earlier work [9], for
addressing the risks associated with use case based re-
quirements is shown as an activity diagram in figure 5.

The tasks identified include aspects of the traditional
IV&V analysis criteria at the SRS phase i.e. analysing
correctness, completeness, consistency, accuracy, read-
ability and testability [3].

Rate

Stakeholders

Finalise Use case

Dependencies

Rate Use

case

Prioritize Use Cases

System

boundary

analysis

Determine

Use case

precision

Main IV & V Analyses

Consistency

Analysis

Completeness

analysis

Testability

analysis

Evaluation of

use case

complexity

Determining base

value of system

complexity

Prioritise use case packages

Develop use case

priority list (UPL)

Analysis of

understandability

Correctness

Analysis

Figure 5: IV&V procedure: use case analysis

This process flow is used to construct the bayesian
network with which quantitative analysis can be per-
formed. We note that the observable parameters of
some of the activities in the process flow, are the metrics
which were described earlier in this paper. Specifically,
the main rationale in using a probabilistic network (also
known as a Bayesian network (BN)) is formalising the
reasoning used during IV&V, by modelling the relation-
ships between the observable (IV&V) process parame-
ters and the desired features of requirements in gen-
eral i.e. clarity, lack of complexity, completeness, cor-
rectness, consistence, identification of constraints, trace-
ability and testability. In the next section, we describe
the Bayesian network formalism and its application to
IV&V.

4 Bayesian networks applied to IV&V

Briefly, a BN is a concise representation of a joint
probability distribution on a set of statistical variables,
encoding an acyclic graph of nodes and directed edges
[10, 11]. The nodes model the variables and the edges
model the probabilistic relations between them. Each

5

node has an associated conditional probability distribu-
tion P (A|π(A)) which characterizes the relationship of
the node with its immediate parents π(A). The joint
probability distribution for a node is computed by mar-
ginalization, while the conditional posterior distribution
for the nodes given evidence i.e. observations about the
state of a node, is computed using Bayes’ rule. The qual-
itative part of a BN is encoded in the structure of the
digraph, while the specification of conditional probabil-
ity distributions for the nodes encodes the quantitative
portion.

One of the strengths of a BN is that both subjective
judgement and empirically obtained data can be used
as input. It is flexible enough to allow inclusion of evi-
dence into nodes when it is available. Additionally, the
network topology may be changed by adding nodes, or
links between nodes. The underlying mathematics per-
mits the propagation of evidence in either direction in
the network to update belief. The task of modelling
using a BN is essentially one of identifying the correct
belief structure, and specifying the conditional proba-
bility distributions on the nodes.

4.1 BN structure

Figure 6 shows one possible BN reflecting our rea-
soning or belief as to the relations between the pro-
posed IV&V process activities and the general proper-
ties which need to be checked for maturity assessment
of use cases. The nodes with the capitalized names
- Clarity, Complexity, Complete, Correct, Consistent,
Constraints, Traceable - represent the features that are
typically desired from a requirements specification doc-
ument. Each of the parents for these nodes are factors
that we believe are relevant in determining the matu-
rity of the requirements by applying the IV&V process
flow. The BN was essentially constructed manually by
relating the key process activities to the properties of
the requirements, that the activities are checking.

For example, the clarity of a use case is being checked
by the activities that examine whether the use case
boundary and its scope has been clearly defined, as well
as by the presence of domain or context information.
Complexity, on the other hand is related to the number
of interactions among the use cases, between actors and
use cases, the UCP metric as suggested by Marchesi
[8], and on how understandable the use cases are. Con-
sistence and correctness are dependent on whether the
result of scenario executions match the expected output,
as well as the consistent use of use case modelling rules,
unique use case and actor names and use case design
rules.

One approach to validate such a network is to actually
determine from IV&V analysts whether these are the

CONSISTENCE

Formalism_

Consistence

CLARITY

Scope

Scenario

Walkthrough

CONSTRAINTS

CORRECT

COMPLETE

Boundary

Domain /

Context

Scenario

Completeness
Exception

Scenario

Regular

Scenario

Edge Guard

Condition

Actor

Identification

Post

Condition

Pre

Condition

Use Case

Names

Use Case

Modeling Rules

Design

Notation

User

Agrees

COMPLEXITY

UCP

Metric

#

Interactions

Expected result/

OP matches

P&PC

Understandability

SWFootprint

CPU cycles

RAM

TRACEABLE

Glossary of

terms

Data dictionary

Figure 6: Example BN for IV&V

criteria used. The presence of other alternative criteria
is easily handled since the network can be modified to
include them. We note that the BN shown here is not
a comprehensive set of conditions that may be used to
assess maturity.

4.2 Specifying root node probabilities

Each node in this BN has three states
〈True,Unknown,False〉. True represents the state
where the conditions for that node are true, while False
represents the state that the conditions for the node
are false. The state Unknown captures the uncertainty
that the analyst is not completely sure whether the
node is in either of the former two states. The prior
distribution on the root nodes is a specification of
the likelihood that the node is in a particular state.
Some of these are constructed from the metrics defined
earlier in this paper. Other nodes can presently only
be quantified from observations of an inspection or
from subjective judgement e.g. the node Understand-
ability which models cognitive complexity. As another
instance, consider the node Completeness. In an ideal
case, a given use case may be determined as being

6

completely specified at a particular level of abstraction
if all of its scenarios, both normal and exceptional have
been defined, all conditions existing on the flow of
events in the scenarios have been defined, all the actors
have been identified, all the pre- and post-conditions
have been specified and if scenarios have been walked
through to determine exceptional situations.

To specify the probability distributions for the root
nodes, the fraction of missing pre- and post-conditions,
actors, and scenarios can be computed from equa-
tions (1), (2) and (4)-(6). e.g. for the node
Post Condition, we have P (PostCondition = F) =
PostCmissing/PostCtotal.

In reality, this value is the lower bound since we
may not know in the early stages whether more post-
conditions have been left unspecified. This uncertainty
can be captured in the state P(Post Condition = Un-
certain), while P(Post Condition = True) = 1 - (P(Post
Condition = False) + P(Post Condition = Uncertain)).
Values for P(Post Condition = Uncertain) can typically
be quantified from historical information of the IV&V
process i.e. whether the IV&V process has been suc-
cessful in the past in identifying missing conditions.

We note that if use cases are formally specified, com-
pleteness may be automatically checked or a complete
set of scenarios may be generated for each use case, as
suggested in reference [6]. The advantage of the BN
is that such evidence may be directly entered into the
nodes. i.e. we may specify that (P(Scenario Complete-
ness = True) = 1). When lightweight formal meth-
ods are used for requirements analysis, we may popu-
late some nodes with information obtained from these
techniques while other nodes can be populated with the
proposed approach. The most difficult task in the BN
based approach is quantifying the conditional probabil-
ity tables for intermediate nodes. The size of the ta-
ble grows exponentially with the number of parents and
their states. To construct the conditional node probabil-
ity tables (NPT) associated with child nodes, we use the
quantifying judgement (QJ) method [12], summarised in
section 4.3.

4.3 Specifying conditional node probability ta-

bles

The QJ methodology developed by Donohue et al.
[12], proposes that the knowledge that a child node is in
a particular state is contributed by those parent nodes
which are in the same state as the child. Two pieces
of information need to be elicited for each of the child
nodes:

• The order of importance of the parent nodes and the
relative weights for each node in the order. This is a

partial order, termed as relative contribution value
(RCV). The absolute contribution value (ACV)
is then constructed by multiplying the weight as-
signed to the higher ranked parent with the weight
assigned to the lower ranked parent which immedi-
ately precedes it in the order.

• The amount of new information added when a par-
ticular parent node is added, given that another par-
ent node already exists. This knowledge, specified
either in terms of the fraction of overlap between
the ACVs of two nodes or the fraction added, is
called the relative added value (RAV). The RAV is
elicited relative to the node with lower ACV. The
absolute added value (AAV) is computed from the
RAV as AAVi = ACVi − (RAVj)ACVj , if the RAV
is specified as a fraction of overlap. Alternately,
if the RAV is specified as a fraction added, then
AAVi = ACVj − ACVi(1 − RAVi). Here i is the
node being considered, while j is the node overlap-
ping with node i. All the 2-way, 3-way and n-way
overlaps need to be elicited if the number of parents
is greater than 2. For simplicity in computing the
AAV we assume that for n > 4, the fraction of over-
lap is zero. Consequently, the number of parents is
restricted to at most 4 by construction to facilitate
ease of NPT construction and model usage.

Using these values, the NPT is automatically gener-
ated and as a function of ACV and AAV values for each
child node. For this paper, the RCV and the RAV were
elicited from an IV&V analyst who ranked the respec-
tive nodes in the BN.

5 Discussion

The original requirements document from which use
cases were constructed was specified in natural lan-
guage. This document was 22 pages long. 14 modules
were analysed and there were 52 use cases in all, includ-
ing primary and secondary use cases. These were de-
scribed as operations in scenarios of the main use cases.
The analysis was conducted by one graduate student,
with no relevant domain knowledge of the system, over
a period of three months.

5.1 Analysis results

We provide use case analysis results and the com-
puted metrics for the Digital sun sensor Interface mod-
ule in table 3.

Figure 7 shows a snapshot of the BN subnet used
to estimate the likelihood that the module Digital Sun
Sensor Interface was completely specified. As shown in

7

Table 3: Digital Sun Sensor Interface metrics

Metrics Value Node probability

NStotal 1 + 0(missing) = 1 P(Regular scenario = F) = 0
EStotal 0 + 1(missing) = 1 P(Exception Scenario = F) = 1
Optotal 6 + 1(missing) = 7 P(Scenario Walkthrough = F) ≥ 0.143
PreCtotal 5 + 4(missing) = 9 P(Pre Condition = F) ≥ 0.444
PostCtotal 16 + 4(missing) = 20 P(Post Condition = F) ≥ 0.2
Atotal 2 + 0(missing) = 2 P(Actor = F) = 0
Samb 2 P(Understandability = F) = 0.0833
Size of Use case description 24 statements

Figure 7: Analysis for node Complete

the figure, the network estimated that about 68% of the
module was completely specified.

Figure 8 shows the values that were elicited for the
quantifying judgement analysis from the IV&V analyst.

Complete
 RCV
 RAV
 SW
 PPC
 AC
 AI

Scenario Walkthrough
 1
 SW
 1

Pre and Post Condition
 2
 PPC
 0.3

Activity Completeness
 5
 AC
 0.6
 0.7

Actor Identification
 5
 AI
 0.65
 0.55
 0.1

Figure 8: Elicited values for QJ

Table 4 shows the probability distribution over all the
properties that were assessed using the BN for the mod-
ule Digital Sun Sensor Interface.

In analysing all the BNs, we made the following as-
sumptions: the lower bound of the metric values was
used to populate the nodes. For the nodes where met-
ric values were available, the likelihood of a node being

Table 4: Complete BN analysis: DSS Interface

Node Probability distribution {T,U,F}
Clarity {0.65, 0.34, 0.0}
Complexity {0.607, 0.345, 0.048}
Complete {0.687, 0.024, 0.289}
Consistence {0.5672, 0.2038, 0.2289}
Correct {0.5127, 0.1310, 0.3561}
Traceable {0.693, 0.34, 0.0}
Constraints {0, 1, 0}

in state Unknown was assumed to be zero. Since edge
guard conditions are applicable to conditions specified
as a statechart diagram, and since this conversion was
not performed, we assumed that it was equally likely
that this node was in one of its three states. Also, since
constraint information was not specified in the require-
ments for the module, this subnet in the BN was pop-

8

ulated with (P(state = unknown) = 1) for all its par-
ents. Additionally, the probability distribution for the
node Understandability was constructed as the fraction
of the statements that were ambiguous to the size of the
use case descriptions, although this is not a measure of
cognitive complexity of the use cases.

In general, the original requirements document was
carefully constructed, went through at least three re-
visions and was relatively consistent in terminology.
The lack of sufficient domain information, however, re-
sulted in increased cognitive complexity of the doc-
ument. Completeness and correctness could not be
checked apart from the analysis performed. This re-
quires more rigorous examination of the requirements
and the application of formal methods, which was out of
the scope of the intended work. Although use cases were
not directly available, the procedure for structuring the
natural language requirements into use cases provided
insights into identifying missing scenarios, ambiguous
conditions and in general, understanding the require-
ments better.

5.2 Interpretation of the BN analysis

To apply the BN for maturity analysis of all the re-
quirements, we observe that each element of table 4 is
a probability distribution for the event that a certain
property of a set of requirements captured as a use case
has been met to a certain degree. Recalling that the exit
criterion for the IV&V process at the SRS stage is that
at least 95% of the requirements should be mature be-
fore development can proceed. This can be considered
as determining whether each element in table 4 has a
value of least 0.95, as the probability of being in the
state true.

A comprehensive argument for requirements matu-
rity, or the lack thereof, can be systematically built by
evaluating table 4 for every use case in the set of software
requirements. Essentially, we can build a quantitative
case to establish whether the exit criterion has been met
by every use case and in turn, the requirements specifi-
cation. Table 4 by itself provides a concise representa-
tion of potential problem areas to the development team
or the customer. For example, the node Correct has a
low probability of being in state true. Thus, effort can
be diverted to algorithm and control flow analysis. Con-
sequently, in the early stages, the network is valuable in
the decision making process and in identifying poten-
tial problem areas of the requirements, where resources
should be deployed. This is augmented with the BN
structure which formalises the IV&V process and the
underlying reasoning used to arrive at the assessment
of maturity.

The use case based analysis and the resulting metrics

provide an empirical means to quantifying the probabil-
ity distributions for some nodes in the BN. Quantifying
the NPT in the BN required an elicitation of the relative
importance and information contributed by the parent
nodes. Since the analysis is being performed at a very
early stage, the true nature of the relations between the
nodes is yet unknown. Hence, a subjectively qualified
NPT is an attractive option. Thus, the variance in the
model results and the actual values is to be expected.
These are primarily due to the uncertain nature of the
NPT itself.

The semantics of the BN NPT are versatile enough to
model not only deterministic relationships but also con-
tinuous and discrete probabilistic relationships. Thus
a BN has a greater expressive power over a functional
form or a checklist based approach for maturity assess-
ment. It is also worthwhile to reiterate that probabil-
ities can be propagated in the reverse direction in the
BN. This permits reasoning about flaws in the process
itself. That is, supposing the model estimates low matu-
rity for a certain parameter but an alternative approach
provides evidence that this assessment is incorrect, the
evidence can be incorporated into the network to rea-
son about the potential contributors to the incorrect
assessment. Thus, the network can be tuned and its
estimations can be refined. Furthermore, there also ex-
ist probabilistic networks where intervals can be propa-
gated instead of point values, as has been done in this
paper. Thus it is possible to represent the states of the
nodes as distributions rather than point values, to ac-
count for early variance in model estimations.

It is possible, with historical information about IV&V
process activities and a relatively small amount of rele-
vant data, to learn the conditional probability distribu-
tions for the nodes. Furthermore, as development and
IV&V teams iterate, the nature of the relations between
the nodes becomes more apparent. The NPT can then
be updated and model results can be refined.

6 Related work

Use case based techniques have been applied for ver-
ification and validation by Winter et al. [13]. In this
work, use cases are coupled to class diagrams by speci-
fying scenarios using extensions to the activity diagram
construct of the UML, and by mapping both activity di-
agrams and class diagrams to activity graphs. The au-
thors precisely define the extensions for activity graphs
and activity diagrams that facilitate this coupling. The
main applicability of such coupling seems to be in ver-
ifying that designs represented by class diagrams are
consistent with the use case based requirements specifi-
cations. With respect to validation, the authors propose
inspection and scenario walkthroughs as the mechanism

9

of choice and develop a tool to assist in V&V. Sutcliffe et
al. [6, 14] present two alternative approaches for V&V
of scenario based techniques. In the first of these, use
cases and the related modeling notations are formally
defined using temporal semantics and a tool is built
to automatically generate all possible normal scenar-
ios. Exceptional scenarios may either be automatically
constructed or the tool can be used to assist users when
they specify scenarios. In the second approach, the au-
thors build a BBN of human error assessment and use
this in the validation of system performance and relia-
bility requirements. Easterbrook et al. [15, 4] have ad-
dressed the use of lightweight formal methods for IV&V,
however, they do not address the applicability of their
techniques to use cases.

In general most techniques address V&V at the SRS
stage and advocate a formal approach to use case analy-
sis. However the context of existing work is V&V that is
to be performed during the development process. They
do not address the applicability of the techniques to use
cases in the IV&V context where rapid analysis is re-
quired. This is the main point of difference between
our work and the existing work in the literature. Our
work also differs in identifying activities for IV&V of
UML use cases and in building a BN model to systemat-
ically and quantitatively assess maturity. The proposed
IV&V process can be easily used in conjunction with
lightweight formal techniques. These may be selectively
applied to use cases that have been identified as having
a high priority for IV&V. For example, it is straightfor-
ward to map the operations in the use case descriptions
(figure 3) to the ECATAB model developed by Gervasi
et al. [7].

It is clear that a significant degree of assurance for
IV&V cannot be achieved by using informal and ad-hoc
techniques. The process of formalising the requirements
helps identify problems early on. We support this notion
and observe that this may be used regardless of whether
requirements are translated into use cases or if use cases
are the baseline model for requirements. The BN based
approach can easily aggregate information from both
formal and informal IV&V techniques; results from the
formal analysis can be confidently used by representing
these results as “hard” evidence.

7 Conclusions

Our contribution in this paper, is the development of
a Bayesian network using the IV&V process flow, for use
case analysis. The input to the network are metrics and
subjective information obtained from the IV&V process
activities. This information can be combined in the BN
to systematically and quantitatively assess the maturity
of evolving requirements. The BN provides a means to

formalise the IV&V process, the underlying reasoning
and its results are a concise representation of potential
problems areas within the requirements.

Acknowledgements

We would like to thank the NASA IV&V center, which sup-
ported this work under NASA Grant NAG5-11953, TITAN
Corporation, and Mike Chapman at WVU/NASA IV&V
Center for supplying the example system used in this pa-
per.

References

[1] R.R. Lutz, “Analyzing software requirements errors in
safety-critical embedded systems,” in Proc. of the Intl.

Symp. on Req. Eng., Jan. 1993.
[2] B.W. Boehm, Soft. Eng. Economics, Prentice Hall,

1981.
[3] NASA Software IV&V Facility, “Software independent

verification and validation handbook for program man-
agement,” NASA GSFC technical report, Aug. 2000.

[4] S. Easterbrook et al., “Experiences using lightweight
formal methods for requirements modeling,” IEEE

Trans. on Soft. Eng., vol. 24, no. 1, pp. 4–14, Jan. 1998.
[5] V. Gervasi and B. Nuseibeh, “Lightweight validation of

natural language requirements: A case study,” in Proc.

of the 4th Intl. Conf. on Req. Eng., June 2000.
[6] A.G. Sutcliffe, et al., “Supporting scenario-based re-

quirements engineering,” IEEE Trans. on Soft. Eng.,
vol. 24, no. 12, pp. 1072–1088, Dec. 1998.

[7] V. Gervasi and B. Nuseibeh, “Lightweight validation
of natural language requirements,” Software - Practice

and Experience, vol. 32, pp. 113–133, 2002.
[8] M. Marchesi, “OOA metrics for the Unified Modeling

Language,” in Proc. of the Euromicro Conf. on Soft.

Maintenance and Reengineering , Mar. 1998.
[9] K. Lateef, “OO V&V requirements techniques,” Tech-

nical report, NASA Software IV&V Facility, Aug. 2003.
[10] J. Pearl, Probabilistic reasoning in intelligent systems,

Morgan Kaufmann, 1988.
[11] F.V. Jensen, An Introduction to Bayesian Networks,

Springer-Verlag, 1996.
[12] S.K. Donohue and J.B. Dugan, “Transforming expert

opinion into subjective conditional probabilities: the
quantifying judgement methodology for bayesian belief
networks,” In review, IEEE Trans. on Knowledge and

Data Eng., July 2004.
[13] M. Winter et al., “Coupling use cases and class models

as a means for validation and verification of require-
ments specifications,” Req. Eng. Jrnl., vol. 6, no. 1, pp.
3–17, 2001.

[14] A. Sutcliffe and A. Gregoriades, “Validating functional
system requirements with scenarios,” in Proc. of the

IEEE Joint Intl. Conf. on Req. Eng., 2002.
[15] S. Easterbrook and J. Callahan, “Formal methods for

V&V of partial specifications: an experience report,”
in Proc. of the Intl. Symp. on Req. Eng., 1997.

10

