
Combining Software Quality Analysis with Dynamic Event/Fault

Trees for High Assurance Systems Engineering

Joanne Bechta Dugan, Ganesh J. Pai† and Hong Xu

Charles L. Brown Department of ECE, University of Virginia, USA
†Fraunhofer IESE, Kaiserslautern, Germany

{jbd|xu.hong}@virginia.edu, †ganesh.pai@iese.fraunhofer.de

Abstract

We present a novel approach for probabilistic risk assess-
ment (PRA) of systems which require high assurance that
they will function as intended. Our approach uses a new
model i.e., a dynamic event/fault tree (DEFT) as a graph-
ical and logical method to reason about and identify depen-
dencies between system components, software components,
failure events and system outcome modes. The method also
explicitly includes software in the analysis and quantifies the
contribution of the software components to overall system
risk/ reliability. The latter is performed via software qual-
ity analysis (SQA) where we use a Bayesian network (BN)
model that includes diverse sources of evidence about fault
introduction into software; specifically, information from the
software development process and product metrics. We il-
lustrate our approach by applying it to the propulsion system
of the miniature autonomous extravehicular robotic camera
(mini-AERCam). The software component considered for
the analysis is the related guidance, navigation and control
(GN&C) component. The results of SQA indicate a close
correspondence between the BN model estimates and the de-
veloper estimates of software defect content. These results
are then used in an existing theory of worst-case reliability
to quantify the basic event probability of the software com-
ponent in the DEFT.

1. Introduction and motivation

Probabilistic risk assessment (PRA) is one among sev-
eral analysis techniques often recommended for use when
evaluating whether a system will function as intended; es-
pecially so, in the domain of high-assurance systems [1]. Es-
sentially, PRA is a comprehensive and logical methodology
with the dual goals of (a) risk identification and reduction,
and (b) cost-effective improvement of system safety and per-
formance. Although traditional PRA gives little guidance
on how to address the risks posed by the software compo-
nents in the system, it is clear that not doing so can lead
to potentially unmitigated, hazardous system states and/or

disastrous consequences [2, 3].

Furthermore, given the fact that software is increasingly
used as the central control component in complex computer-
based systems, it is important to understand not only the
dependencies between the software and the system, but also
the software contribution to system failure. This is the pri-
mary motivation for the work presented here. Specifically,
there is a need for (1) techniques to effectively include soft-
ware into PRA, and (2) quantifying the risk presented by
the software components of the system. In this paper, we
present a novel approach for system-level PRA that also
considers the software components of the system.

In particular, we use dynamic event/fault trees (DEFT)
[4] to identify the relationships and dependencies between
system components, including software. DEFT are a new
modeling mechanism which provide improved expressive ca-
pability over event trees (ET) or fault trees (FT) alone.
Among its main ideas is the notion that pivot events in ET
can be modeled as dynamic fault trees (DFT). DEFT al-
low the modeling of dependencies affecting a component,
dependencies between components, as well as dependencies
between pivot events. Thus, it provides a rich and sophis-
ticated set of features to capture the relationship between
system components and software, in the context of PRA.

Within this framework, when we characterize software
component risk and its contribution to overall system risk,
we are primarily interested in quantifying the probability of
software failure or software reliability. We use Bayesian net-
works (BN) together with diverse sources of evidence from
the software product and the software development process
to evaluate software quality e.g., in terms of its defect con-
tent, reliability, failure intensity, etc.

We illustrate and evaluate our method by applying it
to the propulsion subsystem of the miniature autonomous
extra-vehicular robotic camera (mini-AERCam) system:
first, we evaluate the quality of the software component of
the propulsion system via its estimated defect content and
estimated residual fault content. Then, these are used to
compute worst-case failure intensity, using an existing the-
ory [5, 6] that relates residual defect content to reliability.
This estimation of software component failure intensity is

10th IEEE High Assurance Systems Engineering Symposium

1530-2059/07 $25.00 © 2007 IEEE
DOI 10.1109/HASE.2007.73

245

10th IEEE High Assurance Systems Engineering Symposium

1530-2059/07 $25.00 © 2007 IEEE
DOI 10.1109/HASE.2007.73

245

10th IEEE High Assurance Systems Engineering Symposium

1530-2059/07 $25.00 © 2007 IEEE
DOI 10.1109/HASE.2007.73

245

10th IEEE High Assurance Systems Engineering Symposium

1530-2059/07 $25.00 © 2007 IEEE
DOI 10.1109/HASE.2007.73

245

10th IEEE High Assurance Systems Engineering Symposium

1530-2059/07 $25.00 © 2007 IEEE
DOI 10.1109/HASE.2007.73

245

10th IEEE High Assurance Systems Engineering Symposium

1530-2059/07 $25.00 © 2007 IEEE
DOI 10.1109/HASE.2007.73

245

applied to the DEFT model of the propulsion subsystem to
compute overall risk.

The rest of this paper is organized as follows: in sec-
tion 2, we describe our overall research method, where each
component of the method is explained. Section 3 describes
the mini-AERCam system and the application of the PRA
method. Section 4 presents the quantitative analysis from
the methodology application and discusses the correspond-
ing results. In section 5 we identify the relevant related work
in the literature, and conclude the paper in section 6.

2. Research method

Our overall research method comprises: (1) the mod-
elling of the system and its components as a DEFT (2) us-
ing software process and product evidence in a BN model
to characterize the software component failure probability
(3) specifying the failure probabilities for the remainder of
the basic events (BE) in the DFT that represent the pivot
events, and (4) solving the DEFT to compute overall sys-
tem risk/ reliability. Since during system design hardware-
software partitioning occurs, the activities of DEFT mod-
elling and software quality analysis can occur independently,
and in parallel.

Pivot event 1 Pivot event 2

Success

Failure

1

2

3

Path Outcome

OK

OK

Failure

DFT-1

DFT-2

SW

Observed
Event

Success

Failure

Don’t care

Reliability / failure rate

BE1BE2BE3

DEFT Framework

Available
Product Metrics

Available
Process Metrics

Other sources
(subjective measures,
process variation, etc.)

Software
Quality

Observable /
Computable

(Fault Content, Fault
Proneness, Reliability,

Correctness,
Completeness, etc.)

Informs about

BN Model
(Product)

estimates

BN Model
(Process)

estimates

Input

InputInput

Input

Probabilistic software
quality analysis

Dependencies between the
system and its components

including software

Contribution of software
to system reliability / risk

Figure 1: PRA framework including software with
DEFT

Figure 1 shows the overall picture of our approach for

PRA. We note that each component of this approach:
namely the DEFT framework and the Probabilistic software
quality analysis element, can be used independently, or in
conjunction with other equivalent alternatives.

In our prior work [7, 8, 9] we have described each of these
elements in detail; the main contribution of this paper is the
combination of these methods into a cohesive PRA frame-
work that (1) explicitly highlights the dependencies between
the software, the system, and other system components as
DEFT and (2) includes and quantifies the software contri-
bution in the overall system risk analysis.

In the rest of this section, we describe the theory of
DEFT (section 2.1), and the BN based method for software
quality analysis (section 2.2)

2.1. Dynamic event/fault trees

An ET is a graphical representation of mitigating or ag-
gravating events that may occur in response to some initiat-
ing event (IE) or perturbation in the system [10]. In figure
1, an example ET is shown, where the possible scenarios en-
suing from the observed IE are expanded in terms of the oc-
currence or non-occurrence of a series of pivot events (PE).
The paths of the ET eventually terminate in success or fail-
ure outcomes. If the probability of occurrence of each PE
is known, then the joint probability of a path is computed
as the product of the probabilities of all involved branches.
Mathematically, if j is a path in the ET, Pi is the ith pivot
event and Xi is the corresponding Boolean variable, we have
[11]

p(j) = p

(
n⋂

i=1

Pi

)
, n ≥ 2 (1)

where

Pi = Xi , Xi = False

= Xi , Xi = True

Fault trees are another type of graphical representation
with underlying logical semantics to systematically reason
about the potential causes of system or subsystem failure.
Thus, unlike an ET which starts with an IE and terminates
in a success or failure event, in a DFT we start with a fail-
ure event and reason about the possible system components
which may have caused it. DFT [12] are extensions to clas-
sical static fault trees, that permit modeling of dynamic sys-
tem events e.g., sequential and/or functional dependencies,
spares, etc. In figure 1, we show a sample DFT (labeled as
DFT-2) with four basic events (labeled as BE1, BE2, BE3
and SW).

The rationale underlying DEFT stems from two main
facts: first, that ET and DFT are both used in PRA to
identify system inter-relationships with shared events; and
second, although they are both distinct formalisms, they
are closely linked; thus, some static fault trees can be rep-
resented as equivalent ET or vice-versa. In our case, DFT
are used to quantify system events that are part of the ET
sequence tree (as shown in figure 1). The idea is that dy-
namic system events are better captured by DFT and ET

246246246246246246

combinations as against combinations of static FT and ET.
Depending on whether or not the PE in the ET paths have
dependencies, the solutions of the DEFT model use differ-
ent strategies; in general we convert the DFT into Markov
chains and use modularization techniques. We refer the in-
terested reader to prior work [7], where solution strategies
for DEFT have been addressed in greater detail.

2.2. Software quality analysis

The ideas underlying our software quality assessment ap-
proach (shown in the bottom half of figure 1) are (a) per-
forming both evaluative and diagnostic analysis, and (b)
making assurance arguments that contain both determinis-
tic and probabilistic content.

We model the diverse sources that influence software
fault introduction during software development. Thus, we
consider not only software product data e.g., software met-
rics and/or observations of software properties, but also soft-
ware development process (SDP) data e.g., software process
metrics and/or qualitative evaluations of process parame-
ters. In general, our approach comprises two main activi-
ties:

2.2.1. Process modeling

We first model the process and product together by
building a dataflow model of the SDP. This process model
is intuitively closer to the domain of software development;
in figure 2, we show an abstract dataflow model for a pro-
cess activity. It identifies (a) the input entities to a process
activity, (b) the output entities generated, (c) the agents
enacting the process, and finally (d) quantifiable or qualifi-
able properties for each of the earlier entities. This abstract
model serves as the basis for building large process models.

Process
Activity

{Properties}

Input data

{Properties}

{Properties}

Output data

Agents {Properties}

Figure 2: Abstract process dataflow model

One of the purposes of building such a dataflow model is
that it provides a mechanism to either explicitly specify a
process that is intended to be followed, or to understand a
process that is already being followed. In doing so, the dif-
ferent process and product parameters which can influence
fault introduction become more apparent.

2.2.2. BN-based analysis

From the process model we algorithmically construct the
analysis model i.e., a Bayesian network (BN). The analysis
model is used for estimating the parameters of interest e.g.,

software quality level, defect level, defect content, etc. Ad-
ditionally, we compute residual defect content and, in-turn,
the worst case failure intensity.

A Bayesian network is a concise representation of a joint
probability distribution on a set of statistical variables,
encoded as an acyclic graph of nodes and directed edges
[13]. The graph models the assumptions of conditional
(in)dependence among the variables in the domain; con-
sequently, the presence of a directed edge between a set of
nodes can be interpreted as causal dependence in the direc-
tion of the edge.

Each node in the network has an associated set of condi-
tional probability distributions that specify the probability
of the node being in a particular state. The task of mod-
eling a domain with a BN involves: (1) identifying the pa-
rameters of interest in the domain (2) specifying the BN
structure by identifying the conditional independence rela-
tionships between the domain variables, and (3) specifying
a conditional probability distribution over the variables in
the BN.

Input data

Output data

Process Activity

Process properties

Input Properties
Agent properties

Agents

Output properties

Observable variables

Variable of
interest (hidden)

Figure 3: Example BN model

Figure 3 shows the BN model generated algorithmically
from the process model of figure 2. In the figure, each node
has an associated conditional prior probability distribution,
except for the parent nodes (nodes with no incoming arcs)
which have unconditional prior probability distributions.

We specify the latter using a parametric informative prior
[8, 14]. Specifically, we use the parametric form of the Gaus-
sian or Beta distribution, using information available from
the domain and/or expert judgement to specify the param-
eters.

The arcs between nodes can be interpreted as represent-
ing causal dependence or influence. By assuming that this
dependence relationship can be expressed as a generalized
linear model, we have shown that the conditional prior prob-
abilities for a node can be specified by using linear, Poisson
or binomial logistic regression [9].

Once such a BN model is obtained, solving it amounts
to computing the marginal probability of the query nodes
in the network. Thus, for a BN defined over a finite set
of random variables (r.v.) X = {X1, X2 . . . , Xn}, the joint
probability distribution over X is encoded as

p(X) =

n∏
i=1

p(Xi|PaXi) (2)

247247247247247247

where PaXi are the immediate parents of a node Xi. Given
this joint probability, the marginal probability of a query
r.v. Xi is computed as

p(Xi) =
n∑

Xj , j �=i , j=1

p(X) (3)

To tie these concepts into software quality assessment,
the data flow model of the process and the corresponding BN
formalize our conceptual notion of the dependencies between
the process and product parameters, and software quality.
The numerical specification of the analysis model is obtained
from product and process measures, and model refinement
is performed from observations of product parameters.

We are motivated to use BN as our (causal) model form
since they can easily handle data which are both quantita-
tive and qualitative. They are also are well suited to specify-
ing variable relationships which may be either probabilistic
or deterministic. Additionally, once a BN has been specified,
the underlying mathematics permit evidence propagation in
either direction in the network. Thus, in our context, using
a BN to model the relationship between product metrics and
quality permits us to explore the drivers of observed good
quality; the results can be used to benchmark subsequent
development.

3. Example and application

In section 2, we discussed our overall approach for PRA
briefly providing the background on DEFT and the BN
based approach for SQA. Now, we discuss the application of
our method to a real system i.e., the miniature autonomous
extra-vehicular robotic camera (mini-AERCam), designed
and developed at the NASA Johnson Space Center.

3.1. The mini-AERCam system

The mini-AERCam system is a demonstration prototype
of a small “nano-satellite” class free-flyer. This vehicle is
intended to provide remote viewing and external inspection
capabilities to support the operations on the international
space station. The eventual goal of system development
was to provide the capabilities of remote and autonomous
operation, free-flight and recharge. We perform PRA on
its propulsion system, which consists of twelve pressurized
xenon-gas thrusters that provide six degrees of freedom in
maneuvering (figure 4).

The propulsion system is controlled by the guidance,
navigation and control (GN&C) software, together with
a global positioning system (GPS) receiver and micro-
electromechanical system gyros for angular rate sensing [15].
In the application of our PRA method, we make certain as-
sumptions that simplify the system structures and the re-
sulting analysis; these are stated in the appropriate places.

X

Z

Y

7

8
12

1

2

3

4

5

6

9

11

10

Figure 4: Mini-AERCam thruster configuration

3.2. DEFT model for the propulsion system

Assuming that one thruster from the propulsion system
fails (no.7, on the X-axis, in figure 4), several PE represent
the responses that lead to various terminal scenarios. Figure
5 shows the corresponding DEFT model.

In the figure, the thruster failure has been identified as
the IE. From here, the ET branches into two possible re-
sponses: that the detector can successfully detect or not
detect such a hazard. In the latter, the system will enter
a hazardous state i.e., Potential injury to a crew-member or
damage to the orbiter. If detected, another PE i.e., Com-
pensate via other working thruster(s) further splits into two
paths: Works or Fails to work. If the compensation is success-
ful, no further PE need to be considered and the outcome
is a Success state. If the compensation fails, two further PE
i.e., Isolate fuel from the faulty thruster and Retrieving the
free-flyer via other working thruster(s), are extended. In the
DEFT model, the ET part of the considered IE indicates
six paths with five different system outcome modes.

In the basic quantitative analysis of this ET, we compute
the probability of each ET outcome mode without consider-
ing other issues such as common cause failure and imperfect
coverage. We note that dependencies may or may not exist
between the different PE. In figure 5, if we assume that all
the PE are independent, then the probability of each out-
come is given from equation (1). Thus, if Pi,i=1...4 are the
pivot events and j = 1 . . . 6 are each of the paths, then

p(Success) = p(j = 1) (4)

= p(P1 = Works) · p(P2 = Works) (5)

Similarly, we may compute the probabilities of other paths
in the ET.

To compute the quantity p(P1) i.e., the probability of
the first PE, we build a DFT (shown in figure 6, and labeled
as DFT1 in figure 5), whose top event represents the non-
detection of the thruster failure.

In figure 6, the top event occurrence is adjudged due
to (1) failure of the sensor which directly detects thruster
failure (event X2) and (2) failure of the system which indi-
rectly detects thruster failure (event X3). The former occurs
if the detecting sensor fails to self-test, whereas the latter
may occur due to one of two reasons: the first is related to
the hardware, including GPS, gyros and the power supply.

248248248248248248

Fails to
work

 Path Outcome

Works

DFT1 DFT2

One
Thruster
(#7) Fails

Fails to work

Detect the
thruster
failure

Compensate
via other

Thruster(s)

Isolate fuel
supply from
the faulty
thruster

Retrieve the
free-flyer via

other Thruster(s)

(Don’t care)
1 Success

2 Safely Return

DFT3

6 Potential injury / damage to
 EVA crew member or orbiter

Works

Works Works

3 In Free DriftFails to
work

 IE PE1 PE2 PE3 PE4

(Don’t care)

4 Unsafe Return
Works

5 In Free DriftFails to
workDFT4

Fails to
work

Figure 5: DEFT for thruster failure event

Self-Test Fails

Direct Sensor
Detecting Fails Indirect

Detecting Fails

1 2

1

GPS Error

2

Gyro Error

4

Hardware
Problem

1 2

Software failure

Fails to
Detect

FDEP 1

FDEP

Power 1

1

1

2 4

[PE1/DFT1]

X

X2 X3

X1
D

G3G1P1

510: −λ 510: −λ510: −λ

510: −λ

GPS2 Error

G2

510: −λ

2

3

GPS HSP

HSP

?:λS1

Figure 6: DFT for PE1

The second is related to software failure. Similar DFT can
be constructed for each of the remaining PE.1

1Due to space restrictions, in this paper we do not show the
remaining DFT.

Note that the failure rates are supplied for each of the
BE in the DFT of figure 6, except for software; the compu-
tation of software failure probability is discussed in detail
next. We also note that for this DFT, software is simply
considered as a black-box, whose failure implies loss of the
desired functionality. Alternatively, we may also consider
its internal components as basic events in a separate DFT,
whose failures lead to the occurrence of the top event i.e.,
event X3.

3.3. BN model for SQA

Now, we apply the BN based method for evaluating the
GN&C software component quality in the mini-AERCam
system. We initially assume that the software is developed
in a waterfall SDP, and consider the code development ac-
tivity for constructing the data-flow representation. The
choice of the process activity was motivated by the avail-
ability of software product measures for that phase. The re-
sulting data-flow model is algorithmically converted to the
BN model, eventually used for SQA (shown in figure 7).

We also adapt an existing theory of worst-case failure
intensity [6] as a BN; the idea is that both quality analysis,
performed in terms of its observable attributes, as well as
worst-case reliability analysis can be unified into a single
model.

In the figure, the model includes the sub-nets capturing
the contribution of (1) the process factors and (2) the avail-
able product metrics. The former are shown as the nodes
Testing process, Software specification quality, Code develop-
ment process, Developer, while the latter are modeled by
the nodes Defect content, SLOC, Essential complexity EV(G),
Cyclomatic complexity V(G), respectively.

The sub-net for process factors would ideally be ex-
panded to include the relevant process attributes. Observed
measurements for these attributes quantify the contribu-

249249249249249249

Defects found
in testing

Probability of
Fault Detection

Defect Level Fault Content

SLOC Cyclomatic
Complexity V(G)

Essential
Complexity EV(G)

Correct

Complete

Residual defect
content

Worst Case
Failure intensityTest time

sigma

Code QualityCode development
process

Developer

Testing process
Software specification
quality

Process factors Product factorsQuality attributes

BN derived from
data-flow model

BN for worst-case
failure intensity analysis

Figure 7: BN for SQA of the GN&C software component

tion of the respective process factors e.g., the quality of the
code development process may be quantified via the capabil-
ity maturity model (CMM) [16]. These were not explicitly
available; hence, we quantified these nodes using a paramet-
ric informative prior (as mentioned earlier in section 2.2.2).
Similarly, only those quality attributes for which some data
was available have been shown in the analysis model i.e.,
the nodes Defect level, Correct, Complete.

Each of the nodes in the BN model is assumed to be a
discrete r.v. Except for the nodes quantified from data, all
others are assumed to have five states mapped to a unit
interval as:

〈Very Low, Low, Medium, High, Very High〉 ⇔
〈[0 − 0.2], (0.2 − 0.4], (0.4 − 0.6], (0.6 − 0.8], (0.8 − 1]〉
Since the BN model is the main element for SQA, we

have only presented this aspect here2. Subsequently, we
outline our analysis procedure and then describe each item
in detail.

4. Analysis and discussion

We begin the description of our analysis procedures with
the BN based assessment (section 4.1), followed by the
DEFT analysis (section 4.2), since the failure probabilities
for all the basic events, except software, are provided in
the DFT model (figure 6). In practice, these can occur in
parallel.

4.1. SQA of the GN&C component

The GN&C component has 54 modules built in the C
programming language; the measurement data available for

2The details of the data-flow representation and the algorithm
to convert it to a BN are out of the scope of this paper, and we
refer the reader to reference [8].

these modules were obtained from the quality assurance
summary reports which were provided to us by the de-
velopers. Specifically, we considered the metrics of cyclo-
matic complexity V (G), module design complexity IV (G),
essential complexity EV (G) and module size measured us-
ing source lines of code (SLOC).

These metrics are exactly the nodes which will be in-
cluded in the BN sub-net capturing the contribution of the
product factors (figure 7). The metrics that actually appear
in the model are chosen via traditional correlational analy-
sis and stepwise backward linear regression. The latter also
forms the parametric form of the conditional prior distri-
bution for the node Fault content in the BN model (figure
7).

4.1.1. Estimating fault content

We note that the actual fault content data for the GN&C
component was not provided. However, we had access to
fault content and metrics data from an orbital satellite sys-
tem which had some similarity to mini-AERCam system,
and was also built in the C programming language. Assum-
ing the overlap in functionality of the navigation software
in both systems, we built a regression model relating fault
content to the available product metrics (table 1). This was
then used to specify the conditional probability distribution
for the node Fault content in the sub-net Product factors of
figure 7. The remaining nodes in the sub-net were quantified
directly from the available data.

As mentioned earlier, we also assumed informative pri-
ors for the process factors. In particular, we assumed a
“high quality” software specification, and a “medium” level
of contribution from the code development process, the de-
velopers and the testing process. These correspond to the
Beta priors shown in table 2.

The conditional distribution for the node Code Quality
(CQ) was specified with a Gaussian prior and weights as-

250250250250250250

Defect Level
very low
low
medium
high
very high

25.2
70.9
2.82
0.84
0.21

0.26 ± 0.12

Fault Content
0 to 2
2 to 5
5 to 7
7 to 10
10 to 12
12 to 15
15 to 20
20 to 25
25 to 50
50 to 65
65 to 80
80 to 100
100 to 150

54.5
20.6
5.05
8.01
2.10
1.25
2.32
2.07
1.66
0.49
0.53
0.57
0.85

6.38 ± 16

SLOC
0 to 20
20 to 50
50 to 100
100 to 150
150 to 200
200 to 500
500 to 1000
1000 to 1500
1500 to 2000
2000 to 6000

18.5
18.5
18.5
14.8
5.56
16.7
3.70
1.85
 0

1.85
234 ± 590

Correct
very low
low
medium
high
very high

0.40
5.65
63.9
29.3
0.67

0.548 ± 0.13

Code Quality
very low
low
medium
high
very high

0.20
5.23
64.8
29.4
0.42

0.549 ± 0.13

Testing process
very low
low
medium
high
very high

1.96
24.7
46.7
24.7
1.96

0.5 ± 0.17

Software specification quality
very low
low
medium
high
very high

.024
2.90
26.7
54.3
16.1

0.667 ± 0.16

Code development process
very low
low
medium
high
very high

1.96
24.7
46.7
24.7
1.96

0.5 ± 0.17

Developer
very low
low
medium
high
very high

1.96
24.7
46.7
24.7
1.96

0.5 ± 0.17

Complete
very low
low
medium
high
very high

0.51
6.71
62.7
28.6
1.46

0.548 ± 0.14

Essential Complexity EV(G)
0 to 5
5 to 10
10 to 20
20 to 25
25 to 50
50 to 100
100 to 300

83.3
9.26
1.85
 0

3.70
 0

1.85
8.15 ± 28

Cyclomatic Complexity V(G)
0 to 10
10 to 20
20 to 30
30 to 50
50 to 75
75 to 100
100 to 150
150 to 200
200 to 500
500 to 700
700 to 1000

66.7
14.8
1.85
11.1
 0

1.85
1.85
 0
 0
 0

1.85
30.1 ± 120

Figure 8: SQA for GN&C component

Table 1: Multiple linear regression model for fault
content estimation

Metric Value Std. error
Intercept 0.063 0.034
VG -0.027 0.006
EV(G) -0.039 0.010
SLOC 0.022 0.001

Table 2: Prior distributions for process factors

Node r.v. Prior
Software specification quality SSQ B(8, 4)
Code development process CDP B(5, 5)
Testing process TP B(5, 5)
Developer D B(5, 5)

sumed to reflect our prior belief regarding the contribution
of the process. Thus, we have

p(CQ|SSQ,CDP, TP, D) ∼ N (μCQ, 0.01)

μCQ = (4TP + 3SSQ + 2CDP + D)/10

Figure 8 shows the results of BN analysis for the GN&C
software component, indicating the code quality given the
defect level, and information regarding correctness and com-
pleteness. It also shows the distribution of defect content
per module given the product metrics for the GN&C com-
ponent i.e., the model estimates that (1) a module picked at
random from the GN&C component will have a “medium”
to “high” code quality, and (2) there is about a 75% chance
that the module will have between 0 − 5 defects.

Figure 9 compares the estimated defect content produced
from our approach (shown in the figure as a line graph),

0

10

20

30

40

50

60

70

80

90

100

1 6 11 16 21 26 31 36 41 46 51

Module number

Fa
ul

t c
on

te
nt

Developer Fault Content (Model)

Figure 9: Comparison of fault content estimations -
BN Model Vs. Developer model

with the developer estimations (shown in the figure as the
bar graph) for the GN&C component. From the figure, we
see that the trend in defect content as estimated by our
approach, although pessimistic, follows the trend shown by
the developers’ estimations. Although this comparison is
not a statistical validation of our approach, it provides a
reasonable initial baseline estimate for the fault content of
the modules in the GN&C software component.

4.1.2. Worst-case failure intensity estimation

The estimates of fault content from our model are used in
the BN for worst case failure intensity estimation (figure 7).
Underlying this BN is a deterministic relationship developed

251251251251251251

by Bishop et al. [6]. Mathematically,

λW ≤ N

σ.t.
√

2π
(6)

where N is the residual defect content, λW is the worst
case failure intensity bound, σ (the node sigma in figure
7) is the spread of the log-normal distribution and t is the
time for which the software was tested (the node Test time
in figure 7). Empirically, for complex software, we have
1.084 < σ < 3.5 [17].

To compute the residual defect content, we first estimate
the number of faults FT found in testing as a binomial
distribution, with parameters initial fault content FC and
a probability f of finding a fault. Corresponding to our
assumption of a “medium” level of testing process contri-
bution, we use a Gaussian prior for the probability of fault
detection i.e., f ∼ N (0.5, 0.1). Thus we have

p(FT |FC, f) ∼ B(FC, f) (7)

With n = 54 modules in the GN&C component, then we
compute the residual defect content (N) as

N =
∑

[n.(p(FC) − p(FT))] (8)

Equations (6), (7) and (8), are essentially encoded in the BN
for worst-case failure intensity estimation (figure 7). Table 3
shows the estimated residual fault content from our model.

Table 3: Residual defect content

Node Value
FC 240 faults (estimated)
FT 194 faults (estimated)
N 46 faults

Table 4 shows the corresponding range of estimations for
worst case failure intensity, given assumptions for σ and
testing time, t hours.

Table 4: Worst-case failure intensity estimates

Parameter λ(t) [N = 46]
σ t = 500 t = 750 t = 1000

1.084 3.386E-02 2.257E-02 1.693E-02
2 1.835E-02 1.223E-02 9.176E-03

2.5 1.468E-02 9.787E-03 7.341E-03
3 1.223E-02 8.156E-03 6.117E-03

3.5 1.049E-02 6.991E-03 5.243E-03

For the DEFT analysis, detailed next, we use the results
of table 4 and consider that the software component has a
failure probability of the order of 10−3.

4.2. DEFT analysis

Using the worst-case failure intensity for the software
component in the DFT model for the first pivot event (figure
6), we compute a top-event probability p(Fails to detect) =
p(X) = 0.999996008. We also assume that pivot events 2
and 4 have dependencies. To solve the DFT for the PE
which have dependencies, we combine both to form a new
model from which we construct an equivalent Markov chain.
The details of this solution are out of the scope of this paper,
and are provided in reference [18].

Table 5 shows the results of this DEFT analysis, indi-
cating the probability of each path and outcome of figure
5. Thus, given the failure of one thruster in the propulsion
system of the mini-AERCam as the IE, we have computed
the probabilities of different outcomes.

4.3. Discussion of results

To summarize the analysis performed in this section, we
first considered the GN&C software component of the mini-
AERCam system. Starting with the code-development pro-
cess we derived a BN model for analysis, which considers
both process factors and product factors (figure 7). To ad-
dress the validation of the BN model, we informally validate
the data-flow process model in discussion with the develop-
ers since the latter is intuitively closer to the domain com-
pared to the BN model.

The software (code) quality was evaluated mainly in
terms of its defect content using software product metrics
as well as prior information about the process factors (table
2). The product metrics are the independent variables in
a BN sub-net that essentially represents a linear regression
model (table 1). At the same time, other quality influenc-
ing properties have also been considered i.e., defect level,
correctness and completeness. The results of the BN analy-
sis provide a distribution of the expected fault content per
module in the software component. As per our estimations,
we compute that the GN&C component contains about 240
faults (figure 8 and table 3).

The distribution of faults per module was pessimistic but
closely followed the developers’ estimations (figure 9). Al-
though this is not a statistical validation of our approach
(since we are comparing two different models), it provides
an initial starting point to perform the remainder of the
PRA analysis. Assuming a “medium” quality testing pro-
cess, a correspondingly appropriate probability of fault de-
tection, the model computes that approximately 194 faults
are found in testing, with about 46 residual faults (table
3). Then, using an existing theory of worst-case failure in-
tensity and a range of testing times, the GN&C component
is expected to have a failure intensity of the order of 10−3

(table 4).

Second, we performed the DEFT analysis as part of our
PRA method. The DEFT model for the propulsion system
of the mini-AERCam (figure 5), indicates five distinct out-
come modes in six paths, with a thruster failure as an IE.

252252252252252252

Table 5: Mini-AERCam Propulsion system: DEFT analysis

Outcome Path j Pivot event Probability p(j)
PE1 PE2, PE4 PE3

Success 1 0.999996008 0.996002520 1.000000000 0.99599854
Safely return 2 0.999996008 0.001992500 0.999998002 0.00199249
In free drift 3,5 0.999996008 0.002004980 1.000000000 0.002004972

Unsafe return 4 0.999996008 0.001992500 1.998500e-6 3.982E-9
Injury/Damage 6 0.000003992 1.000000000 1.000000000 3.992E-6

The probability of occurrence of the pivot events consid-
ered on each of the paths is computed using a DFT model
i.e., the top event of the DFT model is essentially the pivot
event.

As an example, we showed the DFT for the first PE (fig-
ure 6). The failure intensity of the software basic event
in this DFT is now supplied from the BN based SQA per-
formed earlier (or in parallel). In the overall DEFT analy-
sis, we considered the dependence between PE2 and PE4,
and computed the probability of each outcome mode (table
5). It is also possible to perform sensitivity, diagnostic, and
uncertainty analysis within the DEFT framework for PRA
[11, 18].

For this paper, however, our primary intention has been
to show how we perform a relatively comprehensive PRA for
a system, including software components. The overall PRA
analysis, as a combination of the DEFT model and the BN
based SQA shows (1) the structure and nature of depen-
dencies between the system components and the software
components (2) quantifies the probability of occurrence of
system outcomes given an initiating event, and (3) quanti-
fies the contribution of the software component in the overall
system risk.

4.4. Threats to validity

We address the two main threats to the validity of our
results; namely internal validity and external validity.

Internal validity concerns the degree to which we can
draw conclusions from our models regarding (a) the depen-
dence between the software and hardware components ex-
pressed using the DEFT model and (b) the contribution of
the software component to overall system risk. The idea
of DEFT extends the traditional combination of static FT
and ET, which has already been addressed in the literature
[19]. One of the main differences with our work is the inclu-
sion of dynamic system events which cannot be handled by
traditional combinatorial models such as static FT.

ET and DFT are, traditionally, constructed using do-
main expertise and human reasoning. Hence it is possible
to overlook some scenarios within the DEFT model which
may not be easily conceivable and there is some threat to the
internal validity of the DEFT models. However, this threat
is reduced by inspection of the DEFT models by domain
experts, system and software requirements as well as by au-
tomatic construction of the reliability models from system

design [20].

There is significantly greater threat to the internal va-
lidity of our analysis of the software contribution to system
risk. In this work, specifically, we did not have actual fault
content data for the GN&C component; instead we com-
pared the results of our model with the fault content esti-
mates that the developers used. We believe that the threat
to the internal validity of our analysis is reduced due to
the relatively close correspondence between our estimates
of fault content per module, and theirs.

Secondly, we did not also have quantitative information
regarding the process which was followed during the SDP;
consequently, in the process factors sub-net (figure 7), we
have made certain assumptions regarding the contribution
of process factors to overall quality. Thus, this aspect also
threatens the internal validity of our SQA. We note that
the most significant approach to reduce this risk is to obtain
process metrics with which process contribution to overall
product quality can be examined. The BN-based approach
intuitively provides a mechanism to evaluate process asser-
tions about product quality; by providing evidence from
product and process measures, we can refine the model and
the initial assumptions or beliefs that it encodes.

External validity concerns the degree to which our re-
sults can be generalized to other research settings, within
the domain being addressed, or the population being stud-
ied. Since our analysis is applied to one system, the external
validity of our results are threatened. Specifically, we can-
not generalize the results of PRA on this system to another
avionics or space system, without a careful consideration of
the system and software requirements, operational and en-
vironmental criteria. However, the independent methodolo-
gies i.e., ET, DFT, and the BN-based SQA approach have
been applied and validated successfully in different domains.
Thus, we believe that our PRA approach which combines
these independently applicable and valid methods is exter-
nally valid.

5. Related work

In this paper, we have combined different techniques into
one novel approach for PRA. Specifically, we use ET and
DFT together in a new model i.e., a DEFT to reason about
the dependencies, outcomes and causes of system failures.
ET and static FT have been examined in combination by

253253253253253253

Andrews et al. [19], while DFT have been examined ex-
tensively by Dugan et al. [12]. In our prior work, Xu and
Dugan [11, 7] first examined the combination of DFT with
ET.

Our approach for PRA explicitly considers software com-
ponents using the DEFT to show possible dependencies be-
tween the software components, system components and
system outcomes. The inclusion of software into PRA has
been addressed by Li and Smidts [21]: their approach first
considers a taxonomy of failure modes, and uses a test-based
approach to quantify the probabilities of software compo-
nent failure in different modes.

Their work is similar to ours in consider software compo-
nents either as basic events or pivot events in FT and ET.
The primary difference lies in PRA approach the fact that
they consider static FT, while we consider DFT. The second
difference in our work and theirs lies in our combining ET
with DFT, whereas their approach considers software com-
ponents in ET or DFT separately. Thirdly, their approach
uses software testing and software fault trees to quantify
software contribution to system risk, whereas we consider
process and product evidence from the SDP to quantify soft-
ware failure intensity.

The use of BN together with diverse sources of evidence
to assess software quality has been studied by Fenton et al.
[22, 23, 24], in an industrial setting by Gras et al. [25, 26],
and more recently by Pai and Dugan [9].

Our approach for BN based SQA is similar to existing
work in the use of product metrics, and the idea of using di-
verse sources of evidence to reason about fault introduction
into software. However, our approach differs from existing
work in the way we construct and specify our BN model.
Specifically, we use the SDP and a dataflow representation
of the same, from which we algorithmically construct the BN
model. The numerical specification is obtained from data,
and by considering the relationship between the dependent
and independent r.v. as a generalized linear model.

6. Conclusions

The main contribution of this paper is a novel approach
for PRA which explicitly highlights the dependencies be-
tween system components, including software, and quanti-
fies the software contribution to overall system risk/ relia-
bility.

Specifically, we use DEFT to identify system outcomes,
failure events and reason about their potential causes. In
this reasoning, we logically identified the dependencies be-
tween the system components and explicitly include soft-
ware components into the analysis. Then we quantify the
contribution of the software components to overall system
risk by performing software quality analysis using BN. In the
SQA, we use diverse sources of evidence, including process
factors and product metrics to estimate software quality in
terms of its observable properties related to quality e.g., de-
fect content, defect level, correctness, etc. Within the BN
model itself, we include an existing theory for worst-case

reliability which uses an estimate of residual defect content.

We illustrated our approach by applying it to the propul-
sion functionality of the mini-AERCam system. Using one
thruster failure as an example of an initiating event, we con-
structed the DEFT model, identified the PE at which DFT
would be used, and illustrated one DFT as an example.
The GN&C software component which controls the system
propulsion was considered as the software component whose
failure may lead to loss of propulsion or navigation. We
quantified the worst-case failure intensity of this software
component using data available from product metrics, and
assumptions regarding SDP contributions to overall quality.
The results of our BN analysis produced defect content es-
timates that closely followed developer estimates. Finally,
we considered dependencies between PE in the DEFT and
quantified the probabilities of system outcome modes and
individual paths in the DEFT.

Acknowledgements. We thank the NASA Johnson
Space Center, which supported this work under grant
NNJ05JL56A. Opinions, findings, conclusions and recom-
mendations expressed in this paper are not necessarily the
views of NASA.

References

[1] M. Stamatelatos et al., “Probabilistic risk assessment
procedures guide for NASA managers and practition-
ers,” Technical Report ver 1.1, NASA Office of Safety
and Mission Assurance, Aug. 2002.

[2] N.G. Leveson, Safeware: System Safety and Comput-
ers, Addison-Wesley, 1995.

[3] J.L. Lions, “Ariane 5: flight 501 failure,” Inquiry board
report, European Space Agency, July 1996.

[4] J.B. Dugan and H. Xu, “Method and system for dy-
namic probability risk assessment,” Provisional patent
application serial no. 60/750,001, 2004.

[5] P.G. Bishop and R.E. Bloomfield, “A conservative the-
ory for long-term reliability growth prediction,” IEEE
Transactions on Reliability, vol. 45, no. 4, pp. 550–560,
1996.

[6] P. Bishop and R. Bloomfield, “Worst case reliability
prediction based on a prior estimate of residual de-
fects,” in Proceedings of the 13th IEEE International
Symposium on Software Reliability Engineering, Nov.
2002.

[7] H. Xu and J.B. Dugan, “Combining dynamic fault
trees and event trees for probabilistic risk assessment,”
in Proceedings of the Annual Reliability and Maintain-
ability Symposium, 2004.

[8] G.J. Pai, Probabilistic software quality assessment,
Ph.D. thesis, University of Virginia, Dept. of Electrical
and Computer Engineering, Feb. 2007.

[9] G.J. Pai and J.B. Dugan, “Empirical analysis of soft-
ware fault content and fault proneness using Bayesian
methods,” IEEE Transactions on Software Engineer-
ing, vol. 33, no. 10, Oct. 2007.

254254254254254254

[10] W.R. Dunn, Practical design of safety-critical com-
puter systems, Reliability Press, 2002.

[11] H. Xu, “Combining dynamic fault trees and event trees
for probabilistic risk assessment,” M.S. thesis, Univer-
sity of Virginia, Dept. of ECE, May 2004.

[12] J.B. Dugan, S.J. Bavuso, and M.A. Boyd, “Dynamic
fault tree models for fault tolerant computer systems,”
IEEE Transactions on Reliability, vol. 41, no. 3, pp.
363–373, Sept. 1992.

[13] F.V. Jensen, An Introduction to Bayesian Networks,
Springer, 1996.

[14] J.O. Berger, Statistical Decision Theory and Bayesian
Analysis, Springer-Verlag, 2nd edition, 1993.

[15] S. Fredrickson et al., “NASA Johnson Space Cen-
tre’s miniature autonomous extravehicular robotic
camera,” Technical summary document, NASA
Johnson Space Centre, 2002, Accessible at
http://aercam.jsc.nasa.gov/.

[16] M.C. Paulk, B. Curtis, M.B. Chrissis, and C.V. We-
ber, “Capability maturity model, version 1.1,” IEEE
Software, vol. 10, no. 4, pp. 18–27, July 1993.

[17] P.G. Bishop and R.E. Bloomfield, “Using a log-normal
failure rate distribution for worst case bound reliability
prediction,” in Proceedings of the International Sym-
posium on Software Reliability Engineering (ISSRE),
Nov. 2003, pp. 237–245.

[18] H. Xu, DEFT: Dynamic Event Fault Trees for Prob-
abilistic Risk Assessment of Computer-Based systems,
Ph.D. thesis, University of Virginia, Dept. of ECE.,
Jan. 2008.

[19] J.D. Andrews and S.J. Dunnett, “Event tree analysis
using binary decision diagrams,” IEEE Transactions
on Reliability, vol. 49, pp. 230–238, June 2000.

[20] G.J. Pai and J.B. Dugan, “Automatic synthesis of dy-
namic fault trees from UML system models,” in Pro-
ceedings of the 13th IEEE International Symposium on
Software Reliability Engineering, Nov. 2002.

[21] B. Li, M. Li, S. Ghose, and C. Smidts, “Integrating
software into PRA,” in Proceedings of the 14th Interna-
tional Symposium on Software Reliability Engineering,
Nov. 2003.

[22] M. Neil and N.E. Fenton, “Predicting software quality
using Bayesian belief networks,” in Proceedings of the
21st Annual Software Engineering Workshop, NASA-
Goddard Space Flight Center, Dec. 1996.

[23] N.E. Fenton et al., “Software quality prediction us-
ing Bayesian networks,” in Software Engineering with
Computational Intelligence, T.M. Khoshgoftaar, Ed.
Kluwer Academic Publishers, 2003.

[24] N.E. Fenton, M. Neil, P. Hearty, W. Marsh, P. Krause,
and R. Mishra, “Predicting software defects in varying
development lifecycles using bayesian nets,” Informa-
tion and Software Technology, vol. 49, pp. 32–43, Jan.
2007.

[25] J. Gras, “End-to-end defect modeling,” IEEE Soft-
ware, vol. 21, no. 5, pp. 98–100, Sept./Oct. 2004.

[26] E.P. Minana and J. Gras, “Improving fault prediction
using bayesian networks for the development of embed-
ded software applications,” Software Testing, Verifica-
tion and Reliability, vol. 16, no. 3, pp. 157–174, 2006.

255255255255255255

