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Abstract—We present a methodology for Bayesian analysis of software quality. We cast our research in the broader context of

constructing a causal framework that can include process, product, and other diverse sources of information regarding fault introduction

during the software development process. In this paper, we discuss the aspect of relating internal product metrics to external quality

metrics. Specifically, we build a Bayesian network (BN) model to relate object-oriented software metrics to software fault content and fault

proneness. Assuming that the relationship can be described as a generalized linear model, we derive parametric functional forms for the

target node conditional distributions in the BN. These functional forms are shown to be able to represent linear, Poisson, and binomial

logistic regression. The models are empirically evaluated using a public domain data set from a software subsystem. The results show

that our approach produces statistically significant estimations and that our overall modeling method performs no worse than existing

techniques.

Index Terms—Bayesian analysis, Bayesian networks, defects, fault proneness, metrics, object-oriented, regression, software quality.
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1 INTRODUCTION

THE notion of a good quality software product, from the

developer’s viewpoint, is usually associated with the

external quality metrics of 1) fault (or defect) content, i.e., the

number of errors in a software artifact, 2) fault density, i.e.,

fault content per thousand lines of code, or 3) fault proneness,

i.e., the probability that an artifact contains a fault. To guide
the software verification and testing effort, several measures

of software structural quality have been developed, e.g., the

Chidamber-Kemerer (C-K) suite of metrics [1], [2]. These

internal product metrics have been used in numerous models

which relate them to the external quality metrics [3], [4], [5],

[6], [7], [8], [9]. Owing to the belief that a high quality software

process will produce a high quality software product [10],

there are also some models in the literature which relate
certain process measures to fault content [11], [12], [13]. The

main idea in many of these existing approaches is to build a

statistical model that relates the product or process metrics to

the quality metrics.
Although one intuitively expects a high quality software

development process to yield a high quality product, there is

very little empirical evidence to support this belief. There is

also sufficient variation in the development process so that

faults enter the software from diverse sources. Many of these

sources do not yet have established measures to support their

inclusion in existing models for quality assessment, so they

are subjectively qualified, e.g., conformance of the executed

process to a process specification, quality of the development

team, quality of the verification process. Consequently, the

existing software quality assessment methods are insufficient

for including such sources. Furthermore, there does not yet

seem to be a standardized set of process measures that have

been empirically validated as significant for software quality

assessment. Besides these issues, Fenton et al. have identified

various shortcomings with existing approaches and indi-

cated the need for a causal model for quality assessment [14],

[15], [16], [17].
Thus, there is a need for both 1) empirically validating

the relationship of process measures with external quality

metrics and 2) building a repertoire of statistical models

which can incorporate existing product and process metrics,

as well as other sources of evidence that may have been

subjectively qualified.
Now, we briefly provide the context which motivates the

work described in this paper. One of the broad goals of this

work is to build a framework for quality assessment where we

use not only the available process and product measure-

ments, but also the evidence available from the diverse

sources influencing fault introduction. Elsewhere [18], we

have developed such a framework using Bayesian networks

(BN) [19], as shown in Fig. 1. In short, our idea is to

1. separately consider product measurements as one set
of factors that influence software quality,

2. separately consider the available process measure-
ments and subjectively qualifiable process properties
as another set of factors influencing quality,

3. redefine quality as the likelihood of observing proper-
ties of the software product, e.g., fault content, fault
proneness, reliability, and

4. build a model capable of relating all the input
variables to software quality.
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In this paper, we mainly describe how Bayesian methods

can be used for assessing quality (shown by the dotted box in

Fig. 1). Specifically, we consider the C-K suite of metrics

among the set of input variables and build a BN to relate them

with both fault content and fault proneness. Assuming that

the relationship can be modeled using a general linear model,

we derive the structural and numeric specification for the

BN. Our model can be thought of as a generalization of

existing techniques for assessing software quality. Our model

produces 1) a probability distribution of the estimated fault

content per class in the system and 2) the conditional

probability that a class contains a fault. Then, we empirically

test our model using a data set from a real software

subsystem. The results also show that our model produces

these estimations at a statistically significant level.
We make the following contributions through this paper:

First, we use a BN which relates software product metrics to

fault content and fault proneness. Although there is some

existing work in the literature that describes BN-based

methods for defect content prediction [16], [17], [20], we

believe that this is the first instance where a BN has been

used for assessing defect proneness. Second, we assume

that a general linear model relates the product metrics to

quality; under certain assumptions, we show how multiple

linear regression, Poisson regression, and logistic regression

can be represented as a BN. This is the underlying

functional form used to numerically specify the BN. Third,

we use an entirely Bayesian approach for data analysis:

Specifically, we use both Bayesian linear regression and

Bayesian Poisson regression in fault content analysis. We

find, surprisingly, that the linear model is better at

describing the data than the Poisson model. However, since

our analysis is based on only one data set, we believe that

the study should be replicated on different sets of data to

generalize our findings. Fourth, we add to the body of

empirical knowledge about the relationship between certain

measures for object-oriented software and fault content.

Acronyms and terminology. A list of the terminology
and acronyms used in this paper is given below:

. r.v.: Random/uncertain variable

. i.i.d.: Independent and identically distributed

. BN: Bayesian network(s)

. pdf: Probability density function

. CPD: Conditional probability distribution(s)

. GLM: General linear model

. BLR: Bayesian linear regression

. BPR: Bayesian Poisson regression

. OLS: Ordinary least squares

. C-K: Chidamber-Kemerer

. X;Y; Z; . . . : r.v., or their corresponding nodes in a BN

. X ¼ x: r.v. X assumes state/value x

. X: Set of r.v., i.e., X ¼ fXig

. pðxjyÞ: Probability that ðX ¼ xÞ given that ðY ¼ yÞ

. iðA;BjCÞ: A is probabilistically independent of B
given C

. PaA: Parents of node A

. DesA: Descendants of node A

. NDA: Nondescendants of node A

The rest of this paper is organized as follows: In Section 2,
we introduce Bayesian networks and describe our motivation
for their use. Section 3 describes our research method,
including model construction, model evaluation criteria,
and the data set with which we empirically test our approach.
The experimental results of the validation exercise are
discussed in Section 4, while the associated threats to validity
are discussed in Section 5. Section 6 presents related work in
the literature. We conclude with directions for future work in
Section 7.

2 BAYESIAN NETWORKS

A Bayesian network is a concise representation of a joint
probability distribution on a set of statistical variables,
encoded as an acyclic graph of nodes and directed edges
[19]. Consider a finite set of random variables (r.v.)
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Fig. 1. Quality assessment framework.



X ¼ fX1; X2 . . . ; Xng. Each Xi can be discrete or contin-
uous; X can also contain a mixture of discrete and
continuous r.v. The set of states fxig of each r.v. Xi are
mutually exclusive. Formally,

Definition 2.1. A probabilistic network N ¼ ðG;SÞ over X
consists of:

. A directed acyclic graph G ¼ ðV; EÞ; V is the set of
nodes in the graph and there is a one-one correspon-
dence between V and X. E � V � V are the set of
directed edges, representing conditional independence
assumptions, i.e., for each Xi 2 X, iðXi;NDXi

jPaXi
Þ

and NDXi
¼ X n ðfXig [DesXi

Þ.
. A set S, of (prior) conditional probability distributions,

that specifies pðXiÞjðPaXi
Þ for each Xi 2 X, where

PaXi
represents the set of immediate parents of Xi.

Once a network is specified over a set of r.v., we can
compute their marginal and joint probabilities.1 Given a BN
structure, the joint probability distribution over X is
encoded as

pðXÞ ¼
Yn
i¼1

pðXijPaXi
Þ: ð1Þ

Given this joint probability, the marginal probability of an
r.v. Xi is computed as

pðXiÞ ¼
Xn

Xj ; j 6¼i ; j¼1

pðXÞ: ð2Þ

Bayes’ theorem is used to compute posterior probabil-
ities for the r.v. when evidence2 is available. The usage of
Bayes’ theorem is the reason why the network is termed as a
Bayesian network. This characterisation of a BN does not
include the notion of causality; however, BN are practically
applied to model causal influences, where the entities of a
system are modeled as the nodes of a BN, while the edges
represent the cause-effect relationships between the entities.
The qualitative part of a BN is encoded in the structure of
the digraph, while the conditional probability distributions
for the nodes encode the quantitative portion.

We are motivated to use BN as our (causal) model form
since they can easily handle data which are both quantita-
tive and qualitative. They are also are well suited to
specifying variable relationships which may be either
probabilistic or deterministic. Additionally, once a BN has
been specified, the underlying mathematics permit evi-
dence propagation in either direction in the network. Thus,
in our context, using a BN to model the relationship
between product metrics and quality permits us to explore
the drivers of observed good quality; the results can be used
to benchmark subsequent development.

3 RESEARCH METHOD

Our research approach is straightforward: We use a BN to
model the relationships between the measurable structural

properties of a software product, and its quality. This
amounts to 1) identifying the observable parameters, which
will form the nodes of the BN, 2) formulating a BN structure
that captures the conditional independence relationships
between the domain variables, and 3) specifying the condi-
tional prior probabilities for the nodes in the BN. Once the BN
model has been constructed, we test it empirically.

3.1 Model Parameters

In this paper, the main independent variables are a suite of
metrics measuring the structural quality of object-oriented
code and design; specifically, we consider the (C-K) suite.
Additionally, we include a metric which measures class
size. We chose these measures because they are adopted in
industrial software development, especially within NASA,
which sponsored part of this research. Additionally, there is
a large body of empirical evidence which supports their
correlation with measures of software quality [2], [4].

1. Weighted methods per class (WMC): The number of
methods implemented in a given class.

2. Depth of inheritance tree (DIT): The length of the
longest path from a given class to the root class in
the inheritance hierarchy.

3. Response for class (RFC): Number of methods
implemented within a class plus the number of
methods accessible to an object class due to
inheritance. Traditionally, it represents the number
of methods that an object of a given class can execute
in response to a received message.

4. Number of children (NOC): The number of classes
that directly inherit from a given class.

5. Coupling between object classes (CBO): The number
of distinct noninheritance related classes to which a
given class is coupled, i.e., when a given class uses
the methods or attributes of the coupled class.

6. Lackofcohesioninmethods(LCOM):Ameasureofthe
degree to which a class represents single or multiple
abstractions. There are varying definitions for LCOM;
however, in this paper it is measured as suggested by
Rosenberg and Hyatt [21], i.e., by computing the
average percentage of methods in a given class using
each attribute of that class, and then subtracting that
percentage from 100 percent.

7. Source lines of code (SLOC): This is measured as the
total lines of source code in the class and serves as a
measure of class size.3

The dependent variables, which serve as surrogate metrics
of software quality, are:

1. Fault content (FC): We define fault content as the
number of faults per class. The estimation of our
model is a (marginal) conditional probability of
observing a certain number of faults per class, given
the metrics for that class.

2. Fault proneness (FP): The conditional probability that
a class contains a fault, given the metrics for that class.
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1. We have assumed discrete r.v. in X; continuous r.v. are discretized in
our approach.

2. (Hard) evidence refers to the state of an r.v. being known with
certainty, i.e., pðX ¼ xÞ ¼ 1.

3. Function points are a more preferred measure of artifact size since
SLOC varies with the programming language used. However, the data set
that we used for empirical analysis provided neither the measurement of
function points nor the source code to extract them.



3.2 Model Construction

Traditionally, the BN (structure and conditional probability

distributions) is constructed using a mixture of 1) domain

experts, who can provide both a structural model of the

independence relationships between the variables of inter-

est, and their corresponding distributions, and 2) mining

the available data for relationships, typically using learning

algorithms [22]. In our approach, however, we assume that

a general linear model (GLM) relates the dependent and

independent r.v. and construct a BN structure which

represents the GLM.
This assumption is motivated by several factors: The

GLM is versatile enough to be able to represent existing

linear relationships or, through transformations, a variety of

nonlinear relationships. Linear models also provide a

relatively simple and parameterized approach to compre-

hending the dependencies between domain variables.

Additionally, despite the (valid) criticisms [14] of using

linear models in fault content estimation, there is a large

body of existing empirical research [4], [5], [6], [8], [23] to

support using linear models and their transformations in

software quality assessment.
Consider that a response variable Y varies as some

function of a set X ¼ fX1; X2; . . . ; Xkg of independent
predictor variables; in the general linear model, we have

EðYÞ ¼ �� ¼ g�1ðX��Þ; ð3Þ

where Y is the set of observations with expected value

EðYÞ ¼ ��. X�� is the linear predictor with coefficients �� and

g is the link function determined by the distribution of Y

(typically, the exponential family). Since X and �� are

independent r.v., we can express the joint distribution of the

r.v. in the GLM as

pðY ;X; ��Þ ¼ pðXÞ pð��ÞpðY jX; ��Þ: ð4Þ

This results in the BN structure of Fig. 2, where pð��Þ is a

(prior) distribution over the regression parameters, pðXÞ is

the distribution of the regressor variables, andpðY jX; ��Þ is the

conditional probability density (CPD) representing the like-

lihood of the linear predictor. For discrete r.v., the CPD is

represented as a node probability table, representing all

possible values that the r.v. can take, given the states of the

parents. It is convenient to specify the CPD as a parameter-

ized deterministic (or probabilistic) relationship between the

child and the parent nodes if the distribution of the child node

is known. Now, we derive the functional form for the CPD

when Y models fault content, and fault proneness.

3.2.1 CPD for Fault Content

Linear regression. If we assume in (3) that Y follows a
Normal distribution, i.e., Y � Nð��; �2Þ, and has an identity
link function, then we have the functional form of multiple
linear regression. In matrix notation,

y ¼ X�� þ ��: ð5Þ

Here, y is an n� 1 matrix of observations of Y ;X is an

n� ðkþ 1Þ matrix of predictor values (representing n data

points for the k independent variables and a column vector of

ones for the intercept), and �� is an ðkþ 1Þ � 1 vector of

unknown regression coefficients. The error process is

captured by ��, which is ann� 1 vector of errors. If we assume

i.i.d. Gaussian noise, i.e., �� �iid Nð0; �2Þ, then the conditional

distribution ðY jX; ��; �2Þ is also Gaussian [24]. Thus,

Y jX; ��; �2 � NðX��; �2IÞ; ð6Þ

where �2 models noise variance and I is the n� n identity

matrix.

Hence, in Fig. 2, if we assume that Y is a Gaussian r.v.,

then the conditional distribution for Y is Gaussian, with

parameters ð��; �Þ, and the CPD for Y is given as in (5), i.e.,

multiple linear regression.4

Poisson regression. Now, if we assume that (3) has a log-

link function and that Y follows a Poisson distribution, i.e.,

Y � Pð��Þ, we have the functional form of Poisson regression

ln EðY Þð Þ ¼ lnð��Þ ¼ X�� þ ��; ð7Þ

where X�� is as defined as in (5), but �� is Poisson distributed.

As a consequence, the conditional distribution ðY jX; ��Þ is

also Poisson distributed. Thus,

Y jX; �� � PðeX��Þ: ð8Þ

Hence, in Fig. 2, if we assume that Y is a Poisson r.v.,

then the CPD for Y is given as in (7), i.e., Poisson regression.

3.2.2 CPD for Fault Proneness

Consider the general functional form of binomial univariate

logistic regression for a binary response r.v. Y which varies

as a function of a set X ¼ fX1; X2; . . . ; Xkg of independent

predictor variables. We have,

pðY ¼ 1jX; ��Þ ¼ 1

1þ e�X��
: ð9Þ

Now, we assume that, in (3), Y follows a Bernoulli

distribution, with outcomes Y ¼ f0; 1g; also assume that the

link function is the logit or log-odds function. Hence,

ðY jX; ��Þ � Bð��Þ ) pðY ¼ 1jX; ��Þ ¼ ��; ð10Þ

Logitð��Þ ¼ X�� ) ln
��

1� ��

� �
¼ X��; ð11Þ

�� ¼ 1

1þ e�X��
: ð12Þ
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4. As a consequence, the parameters can be estimated using the so-called
least-squares technique [24]; a completely Bayesian approach, on the other
hand, places a conjugate prior on the parameter [25].

Fig. 2. BN representation of a general linear model.



Hence,

pðY ¼ 1jX; ��Þ ¼ 1

1þ e�X��
: ð13Þ

From (9) and (13), it follows that the BN of Fig. 2 can be
used to represent binomial logistic regression, if we assume
that Y is a Bernoulli r.v.

3.3 Our Model

We have derived both the BN structure and the numerical
specification for our model. Since the parent nodes
representing the independent r.v. in the BN are observable,
the prior distribution on these nodes is directly specified
from available data. Fig. 3 shows our model for fault
content and fault proneness assessment using the relevant
metrics and dependent r.v. The parent nodes ðXÞ in the
model are the suite of metrics, while the child nodes ðYÞ
include the r.v. for fault content and fault proneness

Since the CPD of each of the child nodes is a regression

equation, we use traditional correlational analysis to

determine which of all of the independent r.v. remain in

the model. Linear and Poisson regression are applicable for

fault content estimation, whereas logistic regression is

useful for fault proneness estimation. The latter is especially

useful since classes with faults can be categorized as fault-

prone, whereas those without faults are considered to be

non-fault-prone. To further reduce the size of the network,

the nodes for the regression parameters are collapsed into

the functional form of the CPD of the child nodes. All nodes

are discretized when the model is solved.

We use the Netica Tool5 and its underlying Bayesian

propagation algorithm to compute the marginal distribution

of the child nodes in our model. To derive the exact functional

form of the CPD for each child node, we use a completely

Bayesian approach for multiple linear regression, Poisson

regression, and binomial logistic regression using the BayesX

tool.6 The tool allows the user to choose the family of

distributions for the dependent r.v., and assumes diffuse

priors7 for the regression parameters. In the case of fault

content assessment, we also apply the traditionally used

method of ordinary least-squares (OLS) regression and

compare it with the corresponding Bayesian solution.
We note that, by applying learning algorithms, the CPD

for the child nodes can be automatically constructed, as
opposed to solving the regression models independently, as
we have done here. However, the application of learning
algorithms to solve BN is left as an aspect of future work.

3.4 Model Evaluation and Data Description

Using a public domain data set,8 we empirically evaluate
three aspects of our modeling method:

1. Which underlying multiple regression model is a
better candidate for specifying the CPD for the DC
node in the BN? Alberg diagrams [5] are a simple
mechanism to compare the underlying multiple
regression models, i.e., the Bayesian approach, with
OLS. To construct an Alberg diagram, first order the
data and the model estimations in descending order,
then plot the cumulative percentage of each to
evaluate the usefulness of the models. The best model
is the one which most closely follows the data.

2. After choosing the appropriate regression model,
how does the BN model perform in describing the
relationship between fault content and the product
metrics? To compare the model estimates with the
actual data, we use the Kolmogorov-Smirnov (K-S)
test for significant difference between the data
distribution and the estimated distribution.

3. Which underlying logistic regression model is a better
candidate for specifying the CPD of the dependent r.v.
in the BN? To evaluate the fault proneness estimation
capability, we compute sensitivity (the proportion of
correctly classified fault-prone modules), Specificity
(the proportion of correctly classified non-fault-prone
modules), Precision (the probability of correct classi-
fication), as well as the rates for false positive and false
negative classification.

The data set KC1 (Table 1) is obtained from an object-
oriented software subsystem implemented in C++ and is
comprised of 2,107 methods implemented in 145 classes,
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Fig. 3. BN model for defect content and defect proneness analysis.

TABLE 1
KC1 Data Description

5. Available at http://www.norsys.com/.
6. Available at http://www.stat.uni-muenchen.de/~bayesx/.

7. A diffuse prior is usually an appropriate noninformative prior [26].
8. Available from the NASA Metrics Data Program: http://mdp.ivv.

nasa.gov/.



resulting in over 43KLOC. The data set is organized so as to

include

. class to method relationship,

. relationships between methods, faults, and fault
priority,

. relationships between faults, fault type and fault
location,

. ten measures at the class level (including the C-K
suite), and

. metric information at the method level.

We are primarily interested in the metrics available at the

class level. The data set also contains both static and

dynamic fault information; the former reflecting fault

content over the entire life-cycle of the project and the

latter reflecting the history of the fault. Of the two, we are

concerned with the static fault information: 1,001 faults

were reported, of which only 640 were attributed to errors

in either the source code or design of the KC1 system. Only

these faults were considered in our analysis.
The remainder were either errors in configuration, errors

in the operating system or supporting COTS software, not

bugs, or were not reproducible. Using the relationships

between classes and methods, methods and faults, we

compiled a data subset which contains the number of faults

identified per class (both source code faults per class and

design faults per class), metric information per class, and

size of the class. All classes with design faults also had

source code faults and all classes which reported at least

one fault, were considered to be fault prone.
Table 2 provides the summary statistics for the metrics

used to evaluate fault proneness and fault content.

4 EXPERIMENTAL RESULTS

In this section, we evaluate our approach empirically using
the metrics from the KC1 data set. First, we examine the
association between the dependent and independent r.v.
using correlational analysis. Then, in Section 4.1, we describe
the results of multiple regression using 1) OLS, 2) Bayesian
linear regression (BLR), and 3) Bayesian Poisson regression
(BPR). In Section 4.2, we perform Bayesian logistic regression.

Table 3 shows the Spearman correlation coefficients
quantifying the strength of the interactions between the
different metrics in KC1. The bold-face values represent
significant (p < 0:0001 at � ¼ 0:05 significance level) corre-
lation between the variables. There appears to be a
moderate level of correlation between the variables, imply-
ing that they are not completely independent. All of the
metrics of the C-K suite except NOC and LCOM appear to
be significantly correlated with class size, whereas only the
metrics CBO, RFC, WMC, and SLOC are significantly
correlated with fault content.

4.1 Defect Content Analysis

Using the correlational analysis as a starting point and
using a backward search, we select those variables which
are significantly correlated with fault content as the first
linear predictor in the multiple regression analysis. Then,
we add additional r.v. into the model and create a second
linear predictor to examine whether the performance of the
baseline model is improved. Specifically,

�1 ¼ ðCBO;WMC;RFC; SLOCÞ

and

�2 ¼ ðCBO;WMC;RFC; SLOC;LCOMÞ:

680 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 10, OCTOBER 2007

TABLE 2
KC1 Data Summary Statistics

TABLE 3
Correlational Analysis of KC1 Metrics



With �1 and �2, we perform three sets of multiple
regression analysis, i.e., OLS, BLR, and BPR. The better
predictor from each set of analyses is now a possible
candidate functional form for the BN model. We use 10-fold
cross validation to construct the regression models; the data
set is divided into 10 equal parts and regression is
performed 10 times. Each time one part is chosen as the
test set and the remaining nine parts are used to build the
model. Table 4 summarizes the regression form, the
predictor combination, and the statistic used to discriminate
between the predictor combinations.

For the OLS method, the adjusted coefficient of determi-
nation (Adj. R2Þ statistic compares the relative predictive
power of the model, accounting for the sample size and
difference in the number of variables; a larger R2 implies
that a larger proportion of variation is explained and is
therefore preferred. The deviance information criterion
(DIC) used to compare the Bayesian regression models is
a natural way to compare models using the trade-off
between the goodness-of-fit and the inherent model com-
plexity [27]; a smaller DIC reflects a better model.

From Table 4, it appears that the 4-parameter linear
predictor is better than the 5-parameter predictor when OLS
and BLR are used; however, the 5-parameter predictor
appears to be better in the case of Bayesian Poisson regression.
Table 5 shows the models chosen using the goodness-of-fit
criteria. These represent the set of candidate functional forms
that will be used to build the CPD for the fault content node in
our BN model (Fig. 3). From Table 5, it is immediately
apparent that the BLR and OLS are very nearly the same. This
is not surprising because BLR is equivalent to OLS if we
assume diffuse priors for the regression coefficients and that
the dependent r.v. has a Gaussian distribution.

Alberg diagrams, which plot the cumulative percentage of
faults versus the cumulative percentage of classes, are a
convenient graphical mechanism to compare the perfor-
mance of these candidates. As mentioned earlier, to build an
Alberg diagram, we sort the model estimations in descending
order. Then, we plot the cumulative percentage of estimated
faults against the percentage of modules having them. The
better model will more closely follow the data.

Fig. 4 shows the Alberg diagram, which compares both
models and yields some interesting observations. First, we
notice that the Pareto principle, i.e., the 80-20 rule, holds for
the data and that more than 80 percent of the faults are found
in 20 percent of the modules. The BLR and BPR model

perform almost equally for the first 20 percent of the modules
(both estimating approx 60 percent of the cumulative fault
content), with the BPR model initially overestimating the
fault content. After this point, the BLR model follows the data
more closely and indicates a better fit to the data. We found
this result surprising as the initial expectation was that
Poisson regression would better describe a defect arrival
process. We cannot generalize this result beyond this
experiment; more analysis is required to evaluate the
usefulness of Poisson regression versus linear regression.

The Alberg diagram is useful, not only in comparing the
models, but also in guiding the effort to be invested in
corrective actions, i.e., planning inspections or further testing.
For example, if the available resources permit inspection or
testing of about 30 percent of the software, then, by choosing
the first 30 percent of the modules, i.e., those modules
arranged in decreasing order of estimated defect content, we
expect to find approximately 70 percent of the defects.

We use the BLR model to specify the CPD for the fault

content node in our BN model, which is built in the Netica
tool. Fig. 5 shows the results of this analysis. The distributions

for the parent nodes are specified directly from data. The

model estimation is a distribution of the expected fault
content per module, over all the modules. For example, the

model estimates that the probability of observing zero to six
faults per module is 77.1 percent (Fig. 5).

The result of the K-S test ðp ¼ 0:787 at � ¼ 0:05 level of

significance) is accepting the null hypothesis, i.e., the

estimated distribution of fault content over the classes in
KC1 are not significantly different from the data distribution.

4.2 Fault Proneness Analysis

For fault proneness assessment as well, we choose the two

linear predictors �1 and �2. We build the models using
Bayesian binomial logistic regression with 10-fold cross

validation; again, the DIC of the models is used to evaluate
their goodness-of-fit. Then, we compute their specificity,

sensitivity, and precision to compare their results. The
classification threshold for the models is � ¼ 0:5, i.e., if

� � 0:5, then the class is considered to be fault prone.
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TABLE 4
Model Comparison for Predictors

TABLE 5
Multiple Regression Models (Linear)

Fig. 4. Alberg diagram comparing BLR with BPR.



Table 6 shows the model parameters, Table 7 shows the
confusion matrices obtained from applying the two regres-
sion models, and Table 8 shows the results of evaluating
model specificity, sensitivity, precision, and the correspond-
ing rates for false positives and false negatives. From
Table 6, we find that �2 has a lower DIC than �1. Also from
Tables 7 and 8, �2 is more sensitive to finding fault prone
modules, achieves greater precision while having smaller
rates of false positive and false negative classification.

Thus, the functional form of the CPD for the fault
proneness node in our BN model uses �2 as the linear
predictor. Fig. 6 shows the BN model for fault proneness
analysis using this chosen functional form. The estimation
of the model is the marginal probability of observing a fault
over all the modules. Essentially, this means that we should
expect a 37.2 percent chance of finding at least one fault in a
class picked at random from the KC1 software system.

4.3 Discussion of Results

One of the goals of this paper is to experimentally evaluate
how Bayesian methods can be used for assessing software
fault content and fault proneness.

Given the results of performing multiple regression, we
find that the metrics WMC, CBO, RFC, and SLOC are very
significant for assessing both fault content and fault
proneness. Gyimóthy et al. [23] have found that this specific
set of predictors is very significant for assessing fault
content and fault proneness in large open source software
systems. Additionally, their study also finds LCOM and
DIT to be very significant for linear regression and NOC to
be the most insignificant for both analyses. Our results
indicate that neither DIT nor NOC are significant, but
LCOM seems to be useful when performing Poisson
regression; however, the linear model not containing LCOM
was better than the Poisson model containing it. Therefore,
depending on the underlying model used to relate the
metrics to fault content, LCOM is significant.

We did not have data related to the change in metrics for
subsequent releases of the KC1 system. Consequently, we
performed 10-fold cross validation to build a BN model that
estimates fault content at a statistically significant level. We
also used the K-S test to confirm the hypothesis that the
estimated distribution of fault content per module is not
significantly different from the data. Given these findings,
we believe that, once a BN model containing WMC, CBO,
RFC, and SLOC measures is built on a given release of a
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Fig. 5. Defect content estimation from the BN model.

TABLE 6
Multiple Regression Models (Logistic)

TABLE 7
Confusion Matrices



system, it would be useful in providing early estimates of
fault content in subsequent releases of the same system. To
generalize these findings across systems, more empirical
validation is required. However, we believe that a BN
model, together with the assumption of a general linear
model that relates product metrics to defect content, is
applicable across software systems.

There is existing work in the literature by Zhou and Leung
[9] which empirically validates the use of the same metrics
suite that we have used in this paper, for assessing fault
proneness. Consequently, we have not repeated univariate
analyses on these metrics. As before, their study also finds
WMC, CBO, RFC, LCOM, and SLOC to be very significant for
fault proneness analysis, whereas DIT is not sufficiently
significant. In the case of NOC, however, their results were
inconclusive. In our analysis, adding the LCOM metric added
to the performance of the logistic regression model; it had
better sensitivity and precision as compared to the model that
did not have it. Then, using the BN model, we computed the
(marginal) probability that a class is fault prone, i.e., it
contains at least one fault. As in the BN model for assessing
fault content, we performed a 10-fold cross validation to
construct the functional form of the CPD for fault proneness.

Zhou and Leung also applied logistic regression to
compute the fault-proneness of the KC1 data set which we
used in this paper; however, their predictor had a different
subset of metrics from the C-K suite than we chose. The
resulting model (Model I’ from reference [9]) had greater
sensitivity and precision than ours. To improve the
performance of our own approach, we simply replaced �2

in our BN model with the parameters from Model I’. This

updated model performance and the associated probability

of finding a fault increased to 49 percent (from 37.2 percent).

The main point of this exercise is to demonstrate the

flexibility of our approach in 1) including existing models

that meet our assumptions and 2) in refining model

estimates with the included information.
Since the BN model is parametric, model refinement

when new evidence (in the form of raw data or functional

forms) is available is straightforward. Once the CPD of the

BN variables is known, the BN can answer any probabilistic

query on the nodes; this is useful as it quickly shows the

variables that could be modified to reduce this probability.

Given the broad context of our research goals (discussed in

Section 1), we have built an analysis model based on

Bayesian methods, i.e., Bayesian networks, Bayesian linear

and logistic regression which performs no worse than

existing methods. On the other hand, it provides a

mechanism with which diverse sources of information can

be easily included for model refinement.

5 THREATS TO VALIDITY

As identified by Briand et al. [2], we identify three threats to

validity in this experimental analysis:

1. Construct validity. This refers to the degree to which
the dependent and independent variables in the
study measure what they claim to measure.
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TABLE 8
Model Performance

Fig. 6. BN model for fault proneness analysis.



Since one of the goals in our work is to examine how
Bayesian methods can be used for quality assessment
using a suite of product metrics, establishing construct
validity is not in the scope of this work. Furthermore,
since the independent variables in our work, the
C-K suite of metrics, have been empirically validated
to an acceptable degree in the literature, these
variables can be claimed to be satisfactory.

The dependent variables in our study are measures
of software quality, i.e., fault content and fault
proneness. The former is measured as the number of
faults found per class and the latter is defined as the
probability of finding a fault during the activities in
the verification process, e.g., acceptance testing.
Assuming that these activities were properly per-
formed, the dependent variables are also satisfactory.

2. Internal validity. This is the degree to which we can
draw conclusions on the causal relationship between
the independent and dependent variables.

In our study, we have assumed conditional
independence among the independent domain vari-
ables and that the independent and dependent r.v. are
related by a general linear model. To explore the
validity of these assumptions, we performed correla-
tional analysis between the variables. Some of the
independent r.v. have been found to have a statisti-
cally significant relationship, both among themselves
and with the dependent r.v. The former implies that
there is some redundant information between the
metrics and possible collinearity, while the latter
shows some evidence of a causal relationship.

Thus, the assumption of conditional independence
among the independent r.v. is under threat. Indeed, by
using BN-structure learning algorithms [22], it would
be possible to find a BN structure which would violate
our assumption. From the assumption of the general
linear model and the assumption of sampling from a
Gaussian distribution, we have shown that the
estimated fault content per class is not significantly
different from the data distribution. Consequently,
the threat to internal validity between the indepen-
dent and dependent r.v. is reduced. We also found
that linear regression performed better than Poisson
regression in this case. However, this result cannot be
generalized to other systems and more empirical
analysis is required.

3. External validity. This refers to the degree to which
experimental results can be generalized to other
research settings, and within the population being
studied.

Since we have performed our empirical analysis on
one data set, the external validity of our work is
threatened. Specifically, we cannot generalize the
results of using the specific set of predictors which we
selected (both in fault content and fault proneness
analysis), to other systems. However, through the use
of k-fold cross validation (k ¼ 10 in our experiment),
we can be confident that the model results are
statistically significant; therefore, the modeling ap-
proach would be applicable when dealing with
subsequent versions of the same system.

We have shown that the BN model can represent
multiple linear and logistic regressions. It is worth-
while to note that, by applying BN parameter learning
algorithms, it is possible to estimate the regression
parameters �� and, consequently, the conditional
distribution of the child nodes pðY jXÞ. By doing so,
we can modify our research approach so that CPD for
the child node would be automatically generated
rather than being computed from OLS, BLR, or BPR, as
we have done here. Thus, with the underlying
assumption of a general linear model, the BN
subsumes existing methods in fault content and fault
proneness assessment. Since these techniques have
been applied in many empirical studies in the
literature [8], the BN methodology with the Bayesian
approach is applicable across systems.

6 RELATED WORK

The empirical analysis of object-oriented metrics and their
suitability for assessing fault proneness has been performed
by numerous researchers, e.g., refer to [2], [4], [7], [8] and
the references contained therein. To summarize the results
for these studies, the C-K suite has been found to be
significant for fault proneness for different systems; never-
theless, the specific subset of predictors from the suite
which seem to show a significant relationship to fault
proneness differs from system to system. Their significance
for assessing both fault proneness and fault content in large
open source software systems has been discussed in [23].
Ohlsson and Alberg [5] have used Alberg diagrams and
other software product metrics in assessing software defect
content using multiple linear regression, while Graves et al.
[28] have used general linear models in predicting the
distribution of faults incidences using measurements from
software change history.

Fenton et al. [14], [15], [16], [17] have extensively
advocated adopting a causal approach to software quality
assessment and have built associated BN models. Their
approach relies on specifying the functional form of the
CPD in the BN as a parameterized probability density
function; the common approach seems to be to use a
truncated normal distribution whose parameters are the
weighted sum of the parent nodes. A variety of other
distributions can be used if specified using expert opinion
or by tuning the model using data. Their approach seems to
be most closely related to our work. If we perform
regression with a zero intercept, it is possible to interpret
the functional form of multiple linear regression in our
work as equivalent to their usage of a weighted sum of
parent nodes, i.e., the weights in their approach correspond
to the parameter vector �� in ours.

Gras and Minana [29], [30] also use BN in an industrial
context at Motorola to predict fault injection levels in different
software development phases. This work is also closely
related to ours in using linear regression and principal
components analysis as one possible approach to relate the
BN nodes. Our approach represents an extension of a part of
their work: We consider the general linear model, which is
flexible in modeling linear regression, logistic regression, and
Poisson regression. However, to the best of our knowledge,
our approach is the first to use a BN for fault proneness
assessment.
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Zhou and Leung [9] use the same data set as ours to
evaluate fault proneness models for classifying faults
ranked by severity. Our approach differs from theirs in
using a Bayesian approach toward fault proneness and fault
content analysis.

7 CONCLUSIONS AND FUTURE WORK

The broad goal of our research is to build an extensible
framework for software quality assessment, one in which
we can include available product and/or process metrics
and diverse sources of evidence related to fault introduction
during software development. Our approach is to sepa-
rately consider the process and the product in their
relationships to software quality and combine them in the
unified framework. Bayesian networks provide a robust
mechanism to build such a framework.

In this paper, we empirically examined one portion of this
framework, i.e., using Bayesian methods for relating software
product metrics to fault content and fault proneness. In
particular, we constructed a BN model whose underlying
representation is the generalized linear model. We derived
the functional forms for the BN to represent different
instantiations of the GLM: More specifically, we used
functional forms of linear, Poisson, and logistic regression
to specify the CPD for the nodes in the BN. A completely
Bayesian approach is used to solve these models, after which
the model was tested on a public domain data set; the results
from the BN model are 1) an estimated distribution over the
fault content per class and 2) the probability of finding a fault
in a class. We found that the model estimations do not differ
significantly from the data at a statistically significant level.
Since our approach represents a generalization of some
existing techniques in software quality assessment, the model
performs no worse than existing methods. Through the
resulting correlational and regression analyses, we contribute
to the body of empirical knowledge about the relationship
between the C-K metrics and fault content.

The BN models built in this paper were solved using
MCMC simulation techniques; thus, approximations in
results present a potential problem. One avenue for future
work is exploring the use of BN with exact inference
algorithms. Another potential problem with the BN model
is its scalability when the number of parameters in the model
grows. Since BN represent a class of models with state-space
explosion problems, another avenue for future work is
exploring the use of abstraction and pruning mechanisms in
solving the models. There are a few potential solutions: First,
partial least squares regression [31] and principal compo-
nents regression provide a statistical technique to reduce the
number of parameters. Second, if sufficient data is available,
the BN model can be learned automatically and then
optimized using domain knowledge.

A natural extension to fault proneness analysis is fault
severity classification using multinomial logistic regression
techniques and BN models. Similarly, a natural extension to
fault content analysis is exploring how the independent
variables can be combined in our model to represent non-
linear relationships.

Finally, as indicated earlier, there have been several
empirical studies that have examined the relationship of
product metrics, fault content, and fault proneness, but few

that have empirically examined the relationship of process
data to software quality. The BN framework provides a
robust mechanism to include diverse sources of data into
the analysis; thus, the second portion of this framework, i.e.,
the inclusion of process factors in the BN, presents an
interesting and, we believe, useful area for future work.
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