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Abstract 

An emerging standard for functional safety in road vehicles, the ISO 26262, is 
expected to impose greater stringency on the practice of automotive systems 
and software engineering. In particular, a need exists for increased rigor during 
requirements development not only to be compliant with some key parts of the 
standard, but also to obtain early assurance of functional safety. In this paper, 
we present pattern-based requirements development, using patterns of timed 
automata and property specifications, as a feasible, rigorous and model-based 
method to address this need. As preliminary validation, we apply it to verify 
functional safety requirements for a simple but non-trivial real example of an 
embedded car-window controller. 
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1 Introduction  

The modern road vehicle contains an appreciably large number of embedded 
software-based systems: a premium car, for instance, contains around 100 elec-
tronic control units with approximately 1GB of software [1]. An increasing 
amount of the functionality controlled by this software is safety-related or 
safety-critical e.g., adaptive cruise control or electronic stability control. It is vital 
to assure, early during development, that such software will function as re-
quired; early identification of errors provides the greatest opportunity for risk 
mitigation [2]. 
The ISO 26262 [3] is an emerging standard for functional safety in road vehi-
cles, complying with which is intended to provide the required assurance at the 
systems level. When published, it is expected to be applied to all new road-
vehicle development; it is also expected to impose more stringent constraints 
on the practice of automotive systems and software engineering. The draft in-
ternational standard suggests, for instance: 

•  26262-4.6: Demonstration via analysis that technical safety requirements are 
consistent with functional safety requirements.1 

•  26262-8.9: Usage of formal verification (or an appropriate combination of 
formal and informal verification) for software functionality that is assigned a 
certain automotive safety integrity level (ASIL)2 to show that the goal is actu-
ally achieved. 

To demonstrate compliance to such constraints, some modifications are fore-
seen to how requirements development (especially specification and associated 
quality assurance) will be instantiated in practice. Indeed, the standard itself 
implies a need for greater rigor during requirements development, especially for 
automotive systems software. 
In practice, requirements for automotive systems are largely first specified in 
natural language; then within the paradigm of model-based development 
(MBD), they are re-specified using ‘semi-formal’ (graphical) models e.g., SysML. 
The rationale is that such models can be not only more easily validated with 
customers, but also informally verified e.g., via inspection, and subsequently 
used for automatic code generation. 

 

                                                 
1 Summarily, technical safety requirements refer to how a service is provided; functional safety requirements 

relate to what services a system architecture provides. 
2 An ASIL is assigned based on a hazard analysis; it represents a classification of the technical risk reduction 

measures used to achieve acceptable residual risk. 
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In this paper, we present pattern-based requirements development using timed 
automata (TA) patterns and property specification patterns as a feasible and 
rigorous alternative that is both compatible with MBD and compliant with the 
guidelines from the ISO 26262 standard. 
Although the usage of patterns in software engineering is not new, to the best 
of our knowledge, our work is the first to apply TA patterns and property speci-
fication patterns together to provide early assurance of (1) functional safety for 
automotive software and (2) compliance with key requirements from the corre-
sponding standard. 
The basic approach for pattern-based requirements development is given in 
section II. Then, in section III, we provide an overview of the formalisms and 
patterns used. As a preliminary validation of our approach, in section IV, we 
apply it to specify and analyze functional safety for a simple but real example 
system: an embedded controller regulating the movement of a car window. 
Section V discusses the individual specifications and findings resulting from ap-
plying pattern-based requirements development to the evaluation example. In 
section VI, we discuss our contribution with respect to compatibility with indus-
trial practice and related work in the literature. Section VII concludes the paper. 

 

Figure 1: Pattern-based requirements development 
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2 Pattern-based Requirements Development 

We iteratively apply pattern-based requirements development (Fig. 1) on natu-
ral language (NL) requirements specifications; starting with system boundary 
definition, we identify monitored and controlled variables at the machine-
environment boundary. 
In practice, the NL specifications (assumed to be available from traditional elici-
tation techniques) have been observed to contain a mixture of constraints from 
the environment, descriptions of, and/or requirements on operational behavior, 
and properties of the system under development. Based on domain knowledge, 
the specifications undergo partitioning along these dimension. 
The safety engineering process recommended by the ISO 26262 occurs in paral-
lel with the systems engineering process: the outcome of hazard analysis and 
risk assessment (using techniques such as preliminary hazard analysis (PHA), 
failure modes and effects analysis (FMEA), fault tree analysis (FTA), etc.) yield 
functional safety requirements which are also considered as part of the re-
quirements pool. 
Subsequently, the requirements on operational behavior undergo functional 
partitioning, where abstract behaviors are identified or defined. In principle, this 
is a lightweight and restricted application of functional analysis [4], where the 
defined abstract behaviors are the functions that will achieve the operational 
requirements. At this stage, rather than undertaking a complete functional 
analysis and allocation e.g., as in [5], it suffices to create a functional break-
down structure (FBS) and allocate, say, preliminary timing requirements to the 
identified functions. 
Thereafter, we formally specify each abstract behavior by picking an appropri-
ate TA pattern or a composition of TA patterns from a pattern library. Presently, 
we pick patterns based on the correspondence between the semantics of a pat-
tern and the behavior to be specified. We envision a semiautomatic approach 
to guide the choice of the patterns using domain models3. The formal specifica-
tion of the overall operational behavior is created by composing the TA patterns 
specifying the constituent abstract behaviors. 
In parallel, we use the library of property specification patterns to formally spec-
ify both the identified system properties and the functional safety requirements, 
using an appropriate temporal logic (TL). In our case, we used a subset of timed 
computational tree logic (TCTL) [6]. The constraints imposed by the environ-
ment on the system are also specified using TA. 
The result is a formal specification of (1) the required system behavior and the 
environment modeled as a network of communicating TA, and (2) the system 
properties to be fulfilled as TL statements. We check the validity of the opera-

                                                 
3 An avenue of future work, very briefly discussed in section VI. 
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tional specification and the model of the environment, in part, by simulation or 
execution of the TA model. 
We achieve a clean partition between technical safety requirements and func-
tional safety requirements by noting that during the early phases, a technical 
safety requirement i.e., how a service is provided, is contained in part by the 
requirements on expected operational behavior; whereas a functional safety re-
quirement i.e., what service is to be provided, is a property to be exhibited by 
the system. 
Thus, providing assurance that the technical safety requirements are consistent 
with the functional safety requirements amounts to demonstrating that the op-
erational specification satisfies the appropriate system properties e.g., using a 
formal verification technique such as model-checking. As a consequence, both 
the constraints imposed by the standard i.e., on the product and the process, 
are met. 
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3 Specification Mechanisms 

3.1 Networks of Timed Automata  

In this section, we provide a brief overview of networks of communicating TA. 
We chose TA for formal specification, primarily since their semantics and exten-
sions permit specifying real-time behavior; additionally, it affords a common 
formalism to model the operational behavior of the system, and its environ-
ment. 
TA are finite state machines (FSM) equipped with real-valued clock variables [7]. 
Graphically, they are represented as directed graphs with edges and locations. 
The clock variables C permit the specification and measurement of elapsed time 
between events. Timing constraints such as propagation delays, execution and 
response times are specified as predicates on the values of C. Formally, we have 
[8]: 
Definition 3.1: A timed automaton T is a tuple ( IEAClL ,,,,, 0 ), where L  is a 

finite set of locations and Ll ∈0  is the initial location; C  is a finite set of 

clocks; A  is an alphabet of actions; )(: CBLI → assigns invariants to loca-

tions; and xLxAxCLxBE C2)(⊆  is the finite set of edges: 

Elragle ∈〉〈= ',,,, . Another notation for e is ',, ll rag⎯⎯ →⎯ .  

Here, l  and 'l  are locations, g is the set of clock constraints guarding ae, is the 

action of e , r is the set of clocks that is reset by e ; B(C ) is the set of clock 
constraints over C, i.e., the set of Boolean combinations of atomic constraints 
of the form c ⊗ x, where c ∈ C  ∈x  x  and ⊗∈ {<, ≤, =, ≥,>}. 
A labeled transition system (LTS) defines the semantics of TA, where a state 
comprises a current location and a clock valuation, while a transition between 
states is either a delay or an action. Formally, we have [8]: 
Definition 3.2: A clock valuation function u : C →  is a function from the set 
of clocks C  to non-negative real numbers and Cxu ∈∀= ,00 . 

Definition 3.3: For a TA T  , a state (or configuration) of T  is a pair 

Lxul ∈),(  where u  is the clock valuation function and l  is the current lo-

cation. The semantics of T  is defined as the LTS ( →,, 0sS ), where LxS ⊆  

is the set of states and  is the set of all clock valuations; ),( 00 ulso =  is the 

initial state; the transition relation is }{ xSARSx ∪→⊆ ≥0)( .  

The transition relation → is composed of (1) Action tran sitions: 
)','(),( ulul a⎯→⎯  iff Elragle ∈=∃ ',,,, such that 
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[ ] )'('0', lIuurugu ∈∧→=∈ ; and (2) Delay transitions: ),(),( dulul d +⎯→⎯  

iff )(''0:' lIduddd ∈+⇒≤≤∀ . For duRd +∈ ≥ ,)( 0 maps each 

clock Cx∈ to the value dcu +)( . The clock valuation that maps each clock in 

r  to 0 and agrees with u  over C \ r is [ ]ur 0→ . 
The above definitions can be used to define guards and invariants as sets of 
clock valuations with )(lIu∈ . When a delay transition is taken, all clocks are 
increased by the same delay value, the system is delayed in the current location, 
and location invariants during a delay must not be violated. Alternatively, an ac-
tion transition follows an outgoing enabled edge only if the current clock valua-
tion satisfies the edge guard. 
Parallel composition of n  TA, creates a network of communicating TA 

T={ } ( ){ }ii
o
iii IEAClLT ;,,,,=  where ( ni ≤≤1 ), having a common set of ac-

tions and clocks. Such networks, augmented with communication channels and 
global variables permit the modeling of concurrent and/ or cooperative behav-
iors. 
The TA can transmit on channel ( )!aa , or receive on channel ( )?aa . If A is the 

set of channel names, the set of actions { } { } { }τ∪∈∪∈= AaaAaA !?  repre-

sents synchronization actions performed via channels for inter-process commu-
nication, and internal synchronization independent actions ( )τ  respectively. In 

addition, a set AU ∈ represents urgent channels, which model synchronization 
without delay. Edges containing a synchronization action on an urgent channel 
therefore do not contain clock guards. 

3.2 Timed Automata Patterns 

Recurring types of operational behavior e.g., behaviors triggered by external 
events, timeouts, etc., are applicable to real-time embedded systems. We use 
TA patterns [9] to abstract and specify such generalized and recurring high-level 
behavior in operational requirements specifications. 
Graphically, a TA pattern is shown as a triangle with a circle attached at one of 
the vertices (see Fig. 3). The triangle is an abstract representation of the 
automaton while the circle represents its initial states. The edge of the triangle 
opposite the vertex with the attached circle, represents the set of final states. 
Depending on the pattern to be used, one or more locations (shown as circles), 
corresponding transitions to these locations (shown as directed arcs) also ap-
pear in the graphical representation, and they may be annotated with the rele-
vant transition guards. In [9], a set of 13 TA patterns are formally defined. Here, 
we briefly summarize those patterns which we applied to the evaluation exam-
ple: 



Specification Mechanisms 

Copyright © Fraunhofer IESE 2010 7

1) Event prefixing: Specifies the precedence of an event before an action in the 
TA.  

2) External choice: Specifies the resolution of a choice by the first action of the 
available alternative automata. 

3) Deadline: Specifies the behavior that the automaton execution completes at, 
or before, a specified time.  

4) Delay: Specifies that the execution of the automaton is delayed by exactly t 
time units. 

5) Recursion: Recursive invocation of the automaton in one of its states, used to 
specify non-terminating reactive systems. 

6) Timed interrupt: Preemptive interruption of behavior in an automaton by any 
other automaton after a time lapse. 

7) Event interrupt: Similar to the Timed interrupt pattern, where automaton 
execution is interrupted by an event. 

8) Wait-until: Parallel composition of a given automaton and the Delay pattern, 
constraining the automaton behavior by forcing its execution to finish no 
earlier than a defined time. 

9) Time out: Composition of the External choice and Delay patterns, modeling 
the behavior of a time lapse and an alternative execution. 

10) Periodic repeat: Composition of the Deadline, Wait-until and Recursion pat-
terns, modeling the repetitive behavior of an automaton which must termi-
nate before time t. 

3.3 Property Specification Patterns 

Property specification patterns are a generalized description of the permissible 
state or event sequences in a system modeled as an FSM [10]. They provide a 
systematic approach to classify, structure and formalize requirements describing 
system properties. 
In use, they are effectively templates with which recurring requirements types 
can be formally stated in a declarative form using an appropriate TL. Property 
specification patterns are useful not only because of their formal foundations, 
but also because of the structured grammar that accompanies them; conse-
quently, they can be applied for precisely (re)stating natural language require-
ments.  
We found the patterns developed in [10] and [11] to be the most applicable for 
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the evaluation example, especially in formalizing those system properties con-
taining timing constraints. As an example, the globally scoped real-time 
bounded invariance specification pattern is given in TCTL as A� ( ⇒P ) 
A� QT≤ ). Here, if P  and Q  are propositions, and T  is a timing deadline, then 

this pattern specifies that whenever P  holds, Q  also holds for at least T  time 
units. A comprehensive list of property-specification patterns including patterns 
for real-time constraints and probabilistic constraints is available in [10], [11] 
and [12]. 
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4 Evaluation Example and Approach 

4.1 Car Window Movement Controller 

Now, we present the example system used to evaluate our method: a simple, 
real, but non-trivial example of a car-window movement controller (Fig. 2). As 
shown in the figure, the window-movement controller represents software 
functionality embedded in a door-control device (TSG)4. The TSG also contains 
other embedded functionality such as lighting control, seat adjustment, etc. 
The TSG interfaces with the external environment via three connectors, the first 
of which connects it to all the sensors and actuators within the door i.e., (1) a 
motor that physically moves the window, and (2) a set of sensors that indicate 
window movement and whether the window is completely open (closed). All 
relevant sensors and actuators that are not located inside the door are attached 
to the TSG via the second connector. The third connector interfaces the TSG to 
the controller area network (CAN) bus and the power supply. 
We mainly considered the controller that regulates the driver-side window 
movement (TSG_VL). Consequently, only a subset of the inputs and outputs 
from the original requirements document were necessary for specification, and 
the most relevant connector for our purposes was the first. 

 

Figure 2: Car-window movement controller system 

                                                 
4 TSG abbreviates Türsteuergerät: door-control device in German 



Evaluation Example and 
Approach 

Copyright © Fraunhofer IESE 2010 10 

Using the window movement buttons on the door, the driver controls window 
movement by selecting a movement direction (Up, Down) and a movement 
mode (Manual, Automatic). In the Automatic movement mode, the movement 
process ends only when the window is completely open (closed). Additionally, 
the window can be controlled by messages sent over the CAN bus e.g., from 
other electronic systems in the car such as an automatic door-locking mecha-
nism. 
Based on the sensor input and the chosen window movement mode, TSG_VL is 
required to react within a specified deadline by sending the appropriate control 
signal to the window motor, which then moves the window to the desired po-
sition. Window movement persists as long as (1) the appropriate stimulus exists, 
(2) the window is neither fully opened nor fully closed, and (3) an error has not 
occurred. When errors are detected, the controller initiates error-handler rou-
tines. 
A special error-handling routine (which imposes a safety requirement on the 
system) is jam protection i.e., when an obstacle is detected during upward win-
dow movement, the movement is immediately stopped and the window is re-
tracted automatically until it is completely open. 

4.2 Approach 

The original requirements [13] for this system were documented in natural lan-
guage (NL) and contained a mixture of required operational behavior and sys-
tem properties. They were constructed, in part, by an experienced systems en-
gineer from a large auto manufacturer. Therefore, the writing style and com-
plexity of the requirements was considered to be representative of require-
ments that systems engineers in the domain would address in practice. 
Applying our method (as described in section II), we systematically constructed 
the formal requirements specification of the car-window movement controller, 
comprising:   

1)  The TA model specifying the requirements on the controller operational 
behavior (TSG_VL). 

2)  The environment model comprising 3 TA i.e. for the window sensors 
(win_sensor), the window motor (win_motor) and the user-environment 
(env_user). Since the only communication over the CAN bus relevant for 
the controller was a signal from the door locking mechanism we decided 
not to model the CAN bus in its entirety; rather we modeled only the sig-
nal of interest as part of the stimuli from the user environment. 

3)  The system properties formalized using property specification patterns and 
TCTL.  
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We used the UPPAAL tool [14] for specification since it offered an intuitive GUI 
for modeling, together with tightly integrated simulation and verification capa-
bilities. The choice of the tool, however, necessitated the use of a subset of 
TCTL as the temporal logic for specification. Since it mainly allows checking 
reachability properties, temporal logic operators cannot be nested, resulting in a 
restriction on the variety of properties that can be specified (and checked). In 
general, the tool allows the use of (1) path formulae for universality (A) and ex-
istence (E), and (2) state formulae for global (�) and eventual (◊) states. In addi-
tion to these, the usual Boolean operators (AND, OR, NOT) and the special op-
erators leads to (-->), and imply (⇒ )) are available.  
To validate that the correct operational behavior was specified, we used the 
simulator available in the tool. The simulator executes the specification either in 
interaction with the user, or by randomly picking execution paths; then it ani-
mates the execution by generating sequence charts which show the interactions 
among the communicating TA, and generates execution traces that can be in-
spected. Subsequently, we verified whether the operational specification satis-
fies the system properties by using the model-checker available in the tool. 
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5 Results and Findings 

This section documents the outcome of applying patternbased requirements 
development to the evaluation example: we present the TA specification of the 
controller operational behavior in detail, and only briefly describe the environ-
ment model5. Then we present the specification of the functional safety re-
quirements, followed by our findings. 

5.1 Controller Specification 

By functional partitioning of the controller operational behavior requirements, 
we first identified constituent abstract behaviors: controller active and waiting 
for input, window movement (upward/ downward), mode choice, mode 
switching, sensor polling, error handling and controller reset. Then, based on 
TA pattern semantics, the abstract behaviors were (manually) mapped to the 
following patterns: Event prefixing, External choice, Deadline, Periodic repeat, 
Event interrupt, and Timed interrupt.  
To model the operational specification of TSG_VL as a TA pattern (Fig. 3), we 
compose the TA patterns of the individual abstract behaviors. The flat TA model 
encapsulated by the composed TA pattern model is shown in Fig. 4. In creating 
this flat model we also define the appropriate internal locations and transitions, 
channel names, state variables, global variables, clocks and guards. 

As shown in Fig. 4, initially the controller is active and waiting for input. Recall 
that TSG VL is connected to the sensors, the window motor and the movement 
input via the first connector. Hence all channels or global variables of the form 
connector1SignalX model a corresponding port inthe physical connector over 
which the respective signal is sent. 

                                                 
5 A more comprehensive description of the environment model is available in [15]. 
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Figure 3: Timed automata pattern model of TSG_VL 
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Figure 4: Timed automata model of TSG_VL 

When an input mode is selected by the driver, the env_user TA) automaton 
synchronizes with TSG_VL via the channel connector1Signal2. This is modeled 
as an urgent channel i.e., no time elapses and the user input is communicated 
to the controller as and when it occurs. Based on the selected movement mode 
(Manual, Automatic) and direction (Up, Down) the TSG_VL automaton moves 
the window upwards (the location win_mov_up) or downwards( the location 
win_mov_down).  
The clocks processExecutionTime and windowMotion- SensorAliveClock are 
used to specify timing deadlines on the movement process, and the periodic 
polling duration for the sensors respectively. As per the requirements, the for-
mer was 3s (300 time units), and the latter was 0.2s (20 time units). 
Mode switching initiated from the user-environment is modeled by the loca-
tions switch_mode_to_up and switch_mode_to_down. When these locations 
are reached, the clocks for window-movement process execution and sensor 
polling are reset, the window-movement in the current direction is halted and 
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restarted in the chosen movement direction. The location motor_deact models 
motor deactivation, with which window movement is stopped. Violation of the 
timing requirements results in an error, causing the automaton to transition to 
the win mov error location. Additionally, this error state is reached for combina-
tions of sensor values that indicate illegal window positions (clarified in section 
V-B1). Thus, at the level of the operational specification, the error state is an 
abstraction encapsulating different error types e.g., those resulting from timing 
constraint violations, faults in the sensors, and faults occurring during window 
movement.  
A special safety requirement applicable during upward window movement is 
that of jam protection. When the TSG_VL detects from the sensors, after an 
upward window movement process has been initiated, that the window is nei-
ther moving nor completely closed, then a local variable crushProtectionMode is 
set to TRUE, and the window is forced to automatically open completely. This 
specifies, to an extent, the technical safety requirement for the window move-
ment controller. 

5.2 Environment Specification 

1) Window Sensor Model: The win_sensor TA models the changes occurring in 
the window position, rather than the individual sensors and their state changes. 
A need to manage the complexity of the overall system model motivated this 
abstraction, and it allowed us to realize one sensor model rather than three 
separate ones.  
To arrive at this model, we enumerated the different combinations of sensor 
states, and reduced it to legal or illegal values of a window_position state vari-
able. For example, the combination of sensor values given by { not_moving, 

opened, not_closed } is equivalent to the window position { opened }; 

whereas the combination { moving, opened, closed } is assigned to the win-

dow position { illegal }. In fact, such illegal combinations of sensor values in-
dicate faults either in the window, the motor or in the sensors, and it must trig-
ger an appropriate error handling routine from TSG_VL.  
During this process of defining the variable values for window_position, we un-
covered missing requirements: e.g., the responses of the window controller was 
undefined for illegal combinations of sensor values.  

2) Window Motor Model: The win_motor automaton models the motor states 
and its corresponding state changes. State changes occur after TSG_VL com-
municates the appropriate (starting or stopping) signal, over the communica-
tion channels (between TSG_VL and win_motor). We assumed no motor start-
ing and stopping latency; this information was not available in the original re-
quirements document either.  
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3) User Environment Model: The env_user TA models the choice of window 
movement modes and its execution is asynchronous to that of TSG_VL. A spe-
cial user input observer automaton was also created to implement the urgent 
edge pattern [16]. This pattern allows such asynchronous input to be processed 
as quickly as possible, without blocking the env_user TA.  
We introduced some additional timing constraints in the env_user model, 
rather than in TSG_VL model, to deal with the following scenarios:  

i) Physical constraints on the window-movement mode choice: E.g., the re-
quirements indicated that when the automatic window-movement mode is se-
lected, the stimulus persists for a maximum of 0.5 seconds due to device phys-
ics. Thus, even if the user were to initiate a mode switch from the automatic 
mode to the manual mode instantaneously after selecting the automatic mode, 
the corresponding signal would not be recognized for up to 0.5 seconds.  

ii) The window-movement mode choices are abused: The requirements for this 
case were ambiguous or missing from the NL requirements. Therefore, we in-
troduced timing constraints that enforce a minimum duration between the 
choice of window-mode changes, preventing the driver from instantaneously 
and repetitively switching between different window-movement modes. 

5.3 Specification of System Properties 

Here, we mainly discuss the formalization of the jam protection safety require-
ment6. In the NL requirements document, this requirement was given as: 

 “Jam protection: If a jammed object is recognized, the current upward move-
ment of the window is stopped immediately (within 20 ms), and the window is 
moved downward into the down position.”  

We formalized this statement using TCTL and real-time property specification 
patterns [11] as the following 4 properties:  

1) SR1: It is never the case that sensor polling time is greater than 20ms 
during window movement. This is formalized using the safety pattern, 
with TCTL as: 

A� NOT((TSG_VL.win_mov_down OR 
 TSG_VL.win_mov_up) AND  

TSG_VL.windowMotionSensorAliveClock > 20) 

 

                                                 
6 Ref. [15] provides a comprehensive set of system properties that werespecified. 



Results and Findings 

Copyright © Fraunhofer IESE 2010 17

2) SR2: Whenever a jammed object is recognized the controller 
switches to the jam protection mode. In specifying this property, we 
used the globally scoped bounded response real-time pattern. UPPAAL, 
however, does not permit nesting of the temporal logic operators, instead 
providing a special leads to (-->) operator whose semantics imply bounded 
response. For this particular requirement, the initialization of jam-protection 
had no deadline, resulting in an un-timed instantiation of the pattern. We 
specify this property in TCTL as shown:  

((TSG_VL.windowMotionSensorAliveClock = 20) AND 
 (TSG_VL.win_mov_up) AND  

(Win_Sensor.sensorclock < 19) AND  
(connector1Signal6 = FALSE) AND  

(connector1Signal17 = FALSE))   
--> ((TSG_VL.switch_mode_to_down) AND  

(TSG_VL.crushprotectionMode = TRUE)) 
 

3) SR3: The jam protection mode leads to the upward window move-
ment stopping within 20ms.  
In contrast to SR2, this property requires a response within a specified time 
bound, and also uses the real-time bounded response pattern. To specify 
this property, we introduced a local clock movementStopTime, which only 
measures the time until upward movement is stopped, without affecting 
the functional or timing behavior of the system. As mentioned earlier, we 
did not model the timing latency arising from the physics of the motor. The 
formal specification of the property is given as:  

((TSG_VL.switch mode to down) AND  
(TSG_VL.movementStopTime = 0) AND  

(TSG_VL.crushprotectionMode = TRUE) AND 
(Win_Motor.motor moving up direction)) --> 

((Win Motor.motor is off) AND  
(TSG_VL.movementStopTime < 20) AND  

(TSG_VL.manualWindowMovementMode = FALSE)) 

4) SR4: It is never the case that downward window movement is inter-
rupted until the window is completely open. This property is used to 
verify that the user cannot abort the downward movement process once 
started (during jam-protection). Once again, we introduce a special local 
variable userInterruption whose initial value is FALSE, and does not affect 
the functional or timing behavior. The variable is set to TRUE, if the user 
chooses (via the env_user automaton), a mode that would normally inter-
rupt downward movement e.g., Close Window Manually. To state SR4, we 
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specify that it is never the case that this variable is TRUE during jam-
protection. That is,  

A� NOT((TSG_VL.crushprotectionMode = TRUE)  
AND (TSG_VL.userInterruption = TRUE)) 

Further, we state that when the jam-protection mode is enabled, then only 
the error state or the motor deactivated states are reachable. This is in-
tended to prevent mode switches between different movement modes 
when the hazard occurs and jam-protection is initiated. Thus:  

((TSG_VL.win mov down) AND  
(TSG_VL.crushprotectionMode = TRUE))  

--> ((TSG_VL.motor deact) OR  
(TSG_VL.win_moving_err) 

These TCTL properties comprise the functional safety requirement of the 
window-control system i.e., they specify, to an extent, what services the 
system should provide. 

5.4 Findings 

The original requirements document for the evaluation example contained 6 
pages with approximately 60 distinct statements in NL. Of these, 13 were sys-
tem properties including the functional safety requirement, all of which we 
formalized using property specification patterns. The remainder contained a 
mixture of operational behavior requirements and statements about the system 
boundary. Although the NL requirements were reasonably detailed and well 
documented, the formalization process helped to identify a total of 29 defects. 
These were classified as: 

•  17 undocumented assumptions: 10 of these assumptions were made 
through the course of formal modeling, while the remaining 7 were 
discovered during the formalization procedure, and needed explicit 
documentation.  

•  8 missing requirements: All 8 were discovered during the process of 
building the pattern-based TA model of the system; 2 of these con-
cerned timing criteria; 1 dealt with the problem of determining process 
priorities. The remaining 5 were found during the definition of the sys-
tem boundary, even before formalization of the system requirements 
had begun. These 5 defects pertained to unspecified behavior for illegal 
combinations of sensor values.  
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•  3 incorrect requirements: All three were cases of non-determinism, 
which were detected through model-checking. Although we also simu-
lated the system to validate its behavior, these cases reflected subtleties 
which may not have been found via inspection or simulation, unless the 
system were simulated enough times to exercise the defects.  

•  1 ambiguous requirement: This dealt with an unclear delineation of the 
system boundary.  

Although we were unable to validate with the original developers of the 
requirements, the assumptions made to correct the defects, the UPPAAL 
model-checker successfully verified that the operational behavior specifica-
tion satisfies the safety requirement.  
Verification times for the properties derived from the toplevel requirements 
ranged from a few seconds to two hours, using an Intel dual-core 2GHz 
processor with 2GB of RAM. Table 1 shows the resources used in verifying 
the safety property of the window-movement controller system. 
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6 Discussion 

6.1 Suitability for Industrial Usage 

Based on the findings presented in section V-D, we assert the preliminary valid-
ity of our approach: in particular, pattern-based requirements development 
provides a means for obtaining early assurance that technical safety require-
ments are consistent with functional safety requirements, thus complying with 
some key constraints imposed by the ISO 26262 standard.  
Although we evaluated our approach on a real system from the domain, we 
claim with restriction the feasibility of our approach in industrial practice: we 
did not attempt a detailed quantitative measurement of costs and effort in-
volved, nor did we perform a full-fledged assessment of feasibility for use in an 
actual industrial development process. Such an assessment would be necessary 
to gauge the scalability of applying our method e.g., in terms of state-space 
explosion, when developing larger, more complex automotive systems. 
Nevertheless, our approach is compatible with existing practices7 e.g., after 
functional analysis, requirements are modeled using MATLAB Simulink/ 
Stateflow models which are validated by simulation. Formality may be then in-
troduced in this process by translating the models to formal specifications, and 
applying model checking to verify system properties [17].  
In principle, our approach deviates from this practice by systematically creating 
a model-based formal specification earlier in the requirements development 
process i.e., immediately after functional analysis. Iterative formal specification 
at this stage assists in clarifying ambiguous requirements and identifying miss-
ing, derived and/ or incorrect requirements. Indeed, formal requirements mod-
eling has been empirically demonstrated to be valuable not only for identifying 
design errors early [18] but also for improving the quality of natural language 
requirements themselves [19].  
Using TA patterns to specify operational behavior not only assists in hierarchi-
cally structuring and composing requirements specifications, but also supports 
downstream engineering activities: (1) During architecture design, TA patterns 
are directly available as formal specifications of component behavior since they 
are mapped to abstract behaviors after functional partitioning; (2) Since there is 
early assurance (during requirements development) of consistency between the 
technical and functional safety requirements, to assure that an architecture and 
its components meet the functional safety requirements, it suffices to (1) verify 
that the components realizing an abstract behavior meet the TA pattern specifi-
cation of that behavior and (2) verify that the composed architecture meets the 

                                                 
7 Based on a requirements development process description provided by a large international automotive sys-

tems supplier. 
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corresponding composed TA specification of the overall operational behavior.  
In this paper, we have not reported on how a requirements engineer may pick 
an appropriate TA and/or property specification pattern from the corresponding 
pattern library. This is a promising avenue of future work, where we anticipate 
connecting the pattern libraries to interconnected domain models e.g., ontolo-
gies of domain specific concepts, standards and systems engineering concepts. 
The idea is to guide the choice of the appropriate patterns by applying infer-
ence on such domain models [20] and by using structured natural language 
having underlying formal semantics.  
We performed neither hazard analysis to identify additional safety requirements 
nor ASIL assignment: this process is out of the scope of the work presented 
here. In practice, a parallel safety engineering process involves these activities, 
the results of which, in conjunction with the ISO 26262 standard, will dictate 
the process measures to be employed for risk mitigation e.g., whether informal 
verification would suffice instead of formal verification.  
Although the standard does not strictly mandate a formally-based approach, 
we advocate it: the idea is that when a strong safety claim requires justification 
e.g., Safe automobile behavior in the presence of uncovered failures, an ap-
proach such as ours guarantees that a sub-claim in the argument chain holds 
e.g., verified compliance to the functional safety requirement.  
Nonetheless, some barriers exist to adopting formally techniques in practice; 
namely, (1) a lack of well-integrated tool chains that support the introduction 
of our approach into the critical path of existing industrial processes (2) limita-
tions from the existing tools in terms of the flexibility of expressing and verify-
ing properties (3) the relatively high learning curve in acquiring familiarity with 
TA and temporal logic, and consequently (4) the perception of reduced com-
prehensibility and accessibility of formal methods. Addressing these barriers are 
potential avenues for future work. 

6.2 Related Work 

Our usage of specification patterns and timed automata is, by itself, not new: 
requirements patterns [21], object analysis patterns [22], timed automata [23], 
timed automata patterns [9], design patterns [24], and variations on property 
specification patterns [10] such as those supporting realtime properties [11], 
probabilistic properties [12] or safety specific properties [25], have all been used 
individually to model a variety of real-time embedded systems, including auto-
motive systems.  
However, our usage of TA patterns together with property specification pat-
terns in a systematic way to specify requirements, such that there is (1) early as-
surance of compliance with key constraints imposed by the automotive safety 
standard ISO 26262, and (2) validation of compatibility with,and feasibility for 
use during, requirements development inthe automotive systems domain is 
new.  
The work in [22] is the closest counterpart to ours, where requirements are 
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formalized using object analysis patterns: here, after functional analysis, struc-
tural patterns (using UML class diagrams) specify the functional architecture, 
and behavioral patterns (using timing extended UML statecharts) specify the 
behavior that the functional architecture should exhibit. Then, the UML models 
are converted to a suitable formal representation, after which they undergo 
modelchecking against system properties of interest (which are themselves 
formally stated using real-time property specification patterns).  
Our approach is similar to the work in [22], in adopting a pattern-based ap-
proach to requirements development, and identifying functional partitioning as 
the point at which patterns can be applied for specification. Furthermore, our 
approach is compatible with theirs since the formal model for behavioral speci-
fications in both are effectively time augmented FSM.  
The use of UML class diagrams to specify the functional architecture, and state-
chart diagrams for behavioral specification, as in [22], is analogous to industrial 
practice, where MATLAB Simulink and Stateflow models respectively, are used 
instead. Both are informal in their semantics, and both have to be converted to 
a formal representation for automatic verification. Our approach differs firstly in 
providing an earlier stage of formal modeling. Secondly, in [22], the environ-
ment is modeled as equivalence classes of the input space, whereas we explic-
itly model the environment as a TA. Although this is restrictive when modeling 
a continuous environment and also increases the state-space to be explored 
during verification, it provides an intuitive way to specify synchronous or coop-
erative behaviors, characteristic of real-time automotive embedded systems. 
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7 Conclusion 

The main contribution of this paper is a rigorous approach, sing pattern-based 
requirements development, to provide arly assurance of (1) functional safety in 
automotive software nd (2) compliance to key constraints imposed the ISO 
6262 standard.  
To validate our approach, we applied it to a simple but non-trivial and real 
evaluation example: a car-window movement controller. In particular, we for-
mally specified the requirements using timed automata patterns and property 
specification patterns; then using a combination of simulation, execution and 
formal verification (using modelchecking), we verified that the expected opera-
tional behavior of the evaluation example (containing the technical safety re-
quirement) is consistent with its functional safety requirements. Through the 
process of constructing the specification and subsequently via verification, we 
uncovered an appreciable number of requirements defects, some of which 
were subtle and may not have been detectable otherwise.  
We believe that the industrial acceptance of an approach such as ours is hinged 
mainly on how automated the implied process steps are, and less significantly 
on how comprehensible formally specified requirements are, in comparison 
with natural language requirements.  
To the best of our knowledge, our approach is the first to show the feasibility 
of using timed automata patterns together with property specification patterns 
in the context of an upcoming safety standard (ISO 26262) that sets stronger 
constraints on the practice of automotive systems and software engineering. 
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