

Assuring Functional Safety in Automotive
Software Through Pattern-based Require-
ments Development

Authors:
Ganesh J. Pai
Andreas Roeser

IESE-Report No. 013.10/E
Version 1.0
April 2010

A publication by Fraunhofer IESE

Fraunhofer IESE is an institute of the Fraun-
hofer Gesellschaft.
The institute transfers innovative software
development techniques, methods and
tools into industrial practice, assists compa-
nies in building software competencies
customized to their needs, and helps them
to establish a competitive market position.

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach (Executive Director)
Prof. Dr. Peter Liggesmeyer (Director)
Fraunhofer-Platz 1
67663 Kaiserslautern

Introduction

Copyright © Fraunhofer IESE 2010 v

Abstract

An emerging standard for functional safety in road vehicles, the ISO 26262, is
expected to impose greater stringency on the practice of automotive systems
and software engineering. In particular, a need exists for increased rigor during
requirements development not only to be compliant with some key parts of the
standard, but also to obtain early assurance of functional safety. In this paper,
we present pattern-based requirements development, using patterns of timed
automata and property specifications, as a feasible, rigorous and model-based
method to address this need. As preliminary validation, we apply it to verify
functional safety requirements for a simple but non-trivial real example of an
embedded car-window controller.

Introduction

Copyright © Fraunhofer IESE 2010 vii

Table of Contents

1 Introduction 1

2 Pattern-based Requirements Development 3

3 Specification Mechanisms 5
3.1 Networks of Timed Automata 5
3.2 Timed Automata Patterns 6
3.3 Property Specification Patterns 7

4 Evaluation Example and Approach 9
4.1 Car Window Movement Controller 9
4.2 Approach 10

5 RESULTS AND FINDINGS 12
5.1 Controller Specification 12
5.2 Environment Specification 15
5.3 Specification of System Properties 16
5.4 Findings 18

6 Discussion 20
6.1 Suitability for Industrial Usage 20
6.2 Related Work 21

7 Conclusion 23

REFERENCES 24

Introduction

Copyright © Fraunhofer IESE 2010 1

1 Introduction

The modern road vehicle contains an appreciably large number of embedded
software-based systems: a premium car, for instance, contains around 100 elec-
tronic control units with approximately 1GB of software [1]. An increasing
amount of the functionality controlled by this software is safety-related or
safety-critical e.g., adaptive cruise control or electronic stability control. It is vital
to assure, early during development, that such software will function as re-
quired; early identification of errors provides the greatest opportunity for risk
mitigation [2].
The ISO 26262 [3] is an emerging standard for functional safety in road vehi-
cles, complying with which is intended to provide the required assurance at the
systems level. When published, it is expected to be applied to all new road-
vehicle development; it is also expected to impose more stringent constraints
on the practice of automotive systems and software engineering. The draft in-
ternational standard suggests, for instance:

• 26262-4.6: Demonstration via analysis that technical safety requirements are
consistent with functional safety requirements.1

• 26262-8.9: Usage of formal verification (or an appropriate combination of
formal and informal verification) for software functionality that is assigned a
certain automotive safety integrity level (ASIL)2 to show that the goal is actu-
ally achieved.

To demonstrate compliance to such constraints, some modifications are fore-
seen to how requirements development (especially specification and associated
quality assurance) will be instantiated in practice. Indeed, the standard itself
implies a need for greater rigor during requirements development, especially for
automotive systems software.
In practice, requirements for automotive systems are largely first specified in
natural language; then within the paradigm of model-based development
(MBD), they are re-specified using ‘semi-formal’ (graphical) models e.g., SysML.
The rationale is that such models can be not only more easily validated with
customers, but also informally verified e.g., via inspection, and subsequently
used for automatic code generation.

1 Summarily, technical safety requirements refer to how a service is provided; functional safety requirements

relate to what services a system architecture provides.
2 An ASIL is assigned based on a hazard analysis; it represents a classification of the technical risk reduction

measures used to achieve acceptable residual risk.

Introduction

Copyright © Fraunhofer IESE 2010 2

In this paper, we present pattern-based requirements development using timed
automata (TA) patterns and property specification patterns as a feasible and
rigorous alternative that is both compatible with MBD and compliant with the
guidelines from the ISO 26262 standard.
Although the usage of patterns in software engineering is not new, to the best
of our knowledge, our work is the first to apply TA patterns and property speci-
fication patterns together to provide early assurance of (1) functional safety for
automotive software and (2) compliance with key requirements from the corre-
sponding standard.
The basic approach for pattern-based requirements development is given in
section II. Then, in section III, we provide an overview of the formalisms and
patterns used. As a preliminary validation of our approach, in section IV, we
apply it to specify and analyze functional safety for a simple but real example
system: an embedded controller regulating the movement of a car window.
Section V discusses the individual specifications and findings resulting from ap-
plying pattern-based requirements development to the evaluation example. In
section VI, we discuss our contribution with respect to compatibility with indus-
trial practice and related work in the literature. Section VII concludes the paper.

Figure 1: Pattern-based requirements development

Pattern-based Requirements
Development

Copyright © Fraunhofer IESE 2010 3

2 Pattern-based Requirements Development

We iteratively apply pattern-based requirements development (Fig. 1) on natu-
ral language (NL) requirements specifications; starting with system boundary
definition, we identify monitored and controlled variables at the machine-
environment boundary.
In practice, the NL specifications (assumed to be available from traditional elici-
tation techniques) have been observed to contain a mixture of constraints from
the environment, descriptions of, and/or requirements on operational behavior,
and properties of the system under development. Based on domain knowledge,
the specifications undergo partitioning along these dimension.
The safety engineering process recommended by the ISO 26262 occurs in paral-
lel with the systems engineering process: the outcome of hazard analysis and
risk assessment (using techniques such as preliminary hazard analysis (PHA),
failure modes and effects analysis (FMEA), fault tree analysis (FTA), etc.) yield
functional safety requirements which are also considered as part of the re-
quirements pool.
Subsequently, the requirements on operational behavior undergo functional
partitioning, where abstract behaviors are identified or defined. In principle, this
is a lightweight and restricted application of functional analysis [4], where the
defined abstract behaviors are the functions that will achieve the operational
requirements. At this stage, rather than undertaking a complete functional
analysis and allocation e.g., as in [5], it suffices to create a functional break-
down structure (FBS) and allocate, say, preliminary timing requirements to the
identified functions.
Thereafter, we formally specify each abstract behavior by picking an appropri-
ate TA pattern or a composition of TA patterns from a pattern library. Presently,
we pick patterns based on the correspondence between the semantics of a pat-
tern and the behavior to be specified. We envision a semiautomatic approach
to guide the choice of the patterns using domain models3. The formal specifica-
tion of the overall operational behavior is created by composing the TA patterns
specifying the constituent abstract behaviors.
In parallel, we use the library of property specification patterns to formally spec-
ify both the identified system properties and the functional safety requirements,
using an appropriate temporal logic (TL). In our case, we used a subset of timed
computational tree logic (TCTL) [6]. The constraints imposed by the environ-
ment on the system are also specified using TA.
The result is a formal specification of (1) the required system behavior and the
environment modeled as a network of communicating TA, and (2) the system
properties to be fulfilled as TL statements. We check the validity of the opera-

3 An avenue of future work, very briefly discussed in section VI.

Pattern-based Requirements
Development

Copyright © Fraunhofer IESE 2010 4

tional specification and the model of the environment, in part, by simulation or
execution of the TA model.
We achieve a clean partition between technical safety requirements and func-
tional safety requirements by noting that during the early phases, a technical
safety requirement i.e., how a service is provided, is contained in part by the
requirements on expected operational behavior; whereas a functional safety re-
quirement i.e., what service is to be provided, is a property to be exhibited by
the system.
Thus, providing assurance that the technical safety requirements are consistent
with the functional safety requirements amounts to demonstrating that the op-
erational specification satisfies the appropriate system properties e.g., using a
formal verification technique such as model-checking. As a consequence, both
the constraints imposed by the standard i.e., on the product and the process,
are met.

Specification Mechanisms

Copyright © Fraunhofer IESE 2010 5

3 Specification Mechanisms

3.1 Networks of Timed Automata

In this section, we provide a brief overview of networks of communicating TA.
We chose TA for formal specification, primarily since their semantics and exten-
sions permit specifying real-time behavior; additionally, it affords a common
formalism to model the operational behavior of the system, and its environ-
ment.
TA are finite state machines (FSM) equipped with real-valued clock variables [7].
Graphically, they are represented as directed graphs with edges and locations.
The clock variables C permit the specification and measurement of elapsed time
between events. Timing constraints such as propagation delays, execution and
response times are specified as predicates on the values of C. Formally, we have
[8]:
Definition 3.1: A timed automaton T is a tuple (IEAClL ,,,,, 0), where L is a

finite set of locations and Ll ∈0 is the initial location; C is a finite set of

clocks; A is an alphabet of actions;)(: CBLI → assigns invariants to loca-

tions; and xLxAxCLxBE C2)(⊆ is the finite set of edges:

Elragle ∈〉〈= ',,,, . Another notation for e is ',, ll rag⎯⎯ →⎯ .

Here, l and 'l are locations, g is the set of clock constraints guarding ae, is the

action of e , r is the set of clocks that is reset by e ; B(C) is the set of clock
constraints over C, i.e., the set of Boolean combinations of atomic constraints
of the form c ⊗ x, where c ∈ C ∈x x and ⊗∈ {<, ≤, =, ≥,>}.
A labeled transition system (LTS) defines the semantics of TA, where a state
comprises a current location and a clock valuation, while a transition between
states is either a delay or an action. Formally, we have [8]:
Definition 3.2: A clock valuation function u : C → is a function from the set
of clocks C to non-negative real numbers and Cxu ∈∀= ,00 .

Definition 3.3: For a TA T , a state (or configuration) of T is a pair

Lxul ∈),(where u is the clock valuation function and l is the current lo-

cation. The semantics of T is defined as the LTS (→,, 0sS), where LxS ⊆

is the set of states and is the set of all clock valuations;),(00 ulso = is the

initial state; the transition relation is }{ xSARSx ∪→⊆ ≥0)(.

The transition relation → is composed of (1) Action tran sitions:
)','(),(ulul a⎯→⎯ iff Elragle ∈=∃ ',,,, such that

Specification Mechanisms

Copyright © Fraunhofer IESE 2010 6

[])'('0', lIuurugu ∈∧→=∈ ; and (2) Delay transitions:),(),(dulul d +⎯→⎯

iff)(''0:' lIduddd ∈+⇒≤≤∀ . For duRd +∈ ≥ ,)(0 maps each

clock Cx∈ to the value dcu +)(. The clock valuation that maps each clock in

r to 0 and agrees with u over C \ r is []ur 0→ .
The above definitions can be used to define guards and invariants as sets of
clock valuations with)(lIu∈ . When a delay transition is taken, all clocks are
increased by the same delay value, the system is delayed in the current location,
and location invariants during a delay must not be violated. Alternatively, an ac-
tion transition follows an outgoing enabled edge only if the current clock valua-
tion satisfies the edge guard.
Parallel composition of n TA, creates a network of communicating TA

T={ } (){ }ii
o
iii IEAClLT ;,,,,= where (ni ≤≤1), having a common set of ac-

tions and clocks. Such networks, augmented with communication channels and
global variables permit the modeling of concurrent and/ or cooperative behav-
iors.
The TA can transmit on channel ()!aa , or receive on channel ()?aa . If A is the

set of channel names, the set of actions { } { } { }τ∪∈∪∈= AaaAaA !? repre-

sents synchronization actions performed via channels for inter-process commu-
nication, and internal synchronization independent actions ()τ respectively. In

addition, a set AU ∈ represents urgent channels, which model synchronization
without delay. Edges containing a synchronization action on an urgent channel
therefore do not contain clock guards.

3.2 Timed Automata Patterns

Recurring types of operational behavior e.g., behaviors triggered by external
events, timeouts, etc., are applicable to real-time embedded systems. We use
TA patterns [9] to abstract and specify such generalized and recurring high-level
behavior in operational requirements specifications.
Graphically, a TA pattern is shown as a triangle with a circle attached at one of
the vertices (see Fig. 3). The triangle is an abstract representation of the
automaton while the circle represents its initial states. The edge of the triangle
opposite the vertex with the attached circle, represents the set of final states.
Depending on the pattern to be used, one or more locations (shown as circles),
corresponding transitions to these locations (shown as directed arcs) also ap-
pear in the graphical representation, and they may be annotated with the rele-
vant transition guards. In [9], a set of 13 TA patterns are formally defined. Here,
we briefly summarize those patterns which we applied to the evaluation exam-
ple:

Specification Mechanisms

Copyright © Fraunhofer IESE 2010 7

1) Event prefixing: Specifies the precedence of an event before an action in the
TA.

2) External choice: Specifies the resolution of a choice by the first action of the
available alternative automata.

3) Deadline: Specifies the behavior that the automaton execution completes at,
or before, a specified time.

4) Delay: Specifies that the execution of the automaton is delayed by exactly t
time units.

5) Recursion: Recursive invocation of the automaton in one of its states, used to
specify non-terminating reactive systems.

6) Timed interrupt: Preemptive interruption of behavior in an automaton by any
other automaton after a time lapse.

7) Event interrupt: Similar to the Timed interrupt pattern, where automaton
execution is interrupted by an event.

8) Wait-until: Parallel composition of a given automaton and the Delay pattern,
constraining the automaton behavior by forcing its execution to finish no
earlier than a defined time.

9) Time out: Composition of the External choice and Delay patterns, modeling
the behavior of a time lapse and an alternative execution.

10) Periodic repeat: Composition of the Deadline, Wait-until and Recursion pat-
terns, modeling the repetitive behavior of an automaton which must termi-
nate before time t.

3.3 Property Specification Patterns

Property specification patterns are a generalized description of the permissible
state or event sequences in a system modeled as an FSM [10]. They provide a
systematic approach to classify, structure and formalize requirements describing
system properties.
In use, they are effectively templates with which recurring requirements types
can be formally stated in a declarative form using an appropriate TL. Property
specification patterns are useful not only because of their formal foundations,
but also because of the structured grammar that accompanies them; conse-
quently, they can be applied for precisely (re)stating natural language require-
ments.
We found the patterns developed in [10] and [11] to be the most applicable for

Specification Mechanisms

Copyright © Fraunhofer IESE 2010 8

the evaluation example, especially in formalizing those system properties con-
taining timing constraints. As an example, the globally scoped real-time
bounded invariance specification pattern is given in TCTL as A� (⇒P)
A� QT≤). Here, if P and Q are propositions, and T is a timing deadline, then

this pattern specifies that whenever P holds, Q also holds for at least T time
units. A comprehensive list of property-specification patterns including patterns
for real-time constraints and probabilistic constraints is available in [10], [11]
and [12].

Evaluation Example and
Approach

Copyright © Fraunhofer IESE 2010 9

4 Evaluation Example and Approach

4.1 Car Window Movement Controller

Now, we present the example system used to evaluate our method: a simple,
real, but non-trivial example of a car-window movement controller (Fig. 2). As
shown in the figure, the window-movement controller represents software
functionality embedded in a door-control device (TSG)4. The TSG also contains
other embedded functionality such as lighting control, seat adjustment, etc.
The TSG interfaces with the external environment via three connectors, the first
of which connects it to all the sensors and actuators within the door i.e., (1) a
motor that physically moves the window, and (2) a set of sensors that indicate
window movement and whether the window is completely open (closed). All
relevant sensors and actuators that are not located inside the door are attached
to the TSG via the second connector. The third connector interfaces the TSG to
the controller area network (CAN) bus and the power supply.
We mainly considered the controller that regulates the driver-side window
movement (TSG_VL). Consequently, only a subset of the inputs and outputs
from the original requirements document were necessary for specification, and
the most relevant connector for our purposes was the first.

Figure 2: Car-window movement controller system

4 TSG abbreviates Türsteuergerät: door-control device in German

Evaluation Example and
Approach

Copyright © Fraunhofer IESE 2010 10

Using the window movement buttons on the door, the driver controls window
movement by selecting a movement direction (Up, Down) and a movement
mode (Manual, Automatic). In the Automatic movement mode, the movement
process ends only when the window is completely open (closed). Additionally,
the window can be controlled by messages sent over the CAN bus e.g., from
other electronic systems in the car such as an automatic door-locking mecha-
nism.
Based on the sensor input and the chosen window movement mode, TSG_VL is
required to react within a specified deadline by sending the appropriate control
signal to the window motor, which then moves the window to the desired po-
sition. Window movement persists as long as (1) the appropriate stimulus exists,
(2) the window is neither fully opened nor fully closed, and (3) an error has not
occurred. When errors are detected, the controller initiates error-handler rou-
tines.
A special error-handling routine (which imposes a safety requirement on the
system) is jam protection i.e., when an obstacle is detected during upward win-
dow movement, the movement is immediately stopped and the window is re-
tracted automatically until it is completely open.

4.2 Approach

The original requirements [13] for this system were documented in natural lan-
guage (NL) and contained a mixture of required operational behavior and sys-
tem properties. They were constructed, in part, by an experienced systems en-
gineer from a large auto manufacturer. Therefore, the writing style and com-
plexity of the requirements was considered to be representative of require-
ments that systems engineers in the domain would address in practice.
Applying our method (as described in section II), we systematically constructed
the formal requirements specification of the car-window movement controller,
comprising:

1) The TA model specifying the requirements on the controller operational
behavior (TSG_VL).

2) The environment model comprising 3 TA i.e. for the window sensors
(win_sensor), the window motor (win_motor) and the user-environment
(env_user). Since the only communication over the CAN bus relevant for
the controller was a signal from the door locking mechanism we decided
not to model the CAN bus in its entirety; rather we modeled only the sig-
nal of interest as part of the stimuli from the user environment.

3) The system properties formalized using property specification patterns and
TCTL.

Evaluation Example and
Approach

Copyright © Fraunhofer IESE 2010 11

We used the UPPAAL tool [14] for specification since it offered an intuitive GUI
for modeling, together with tightly integrated simulation and verification capa-
bilities. The choice of the tool, however, necessitated the use of a subset of
TCTL as the temporal logic for specification. Since it mainly allows checking
reachability properties, temporal logic operators cannot be nested, resulting in a
restriction on the variety of properties that can be specified (and checked). In
general, the tool allows the use of (1) path formulae for universality (A) and ex-
istence (E), and (2) state formulae for global (�) and eventual (◊) states. In addi-
tion to these, the usual Boolean operators (AND, OR, NOT) and the special op-
erators leads to (-->), and imply (⇒)) are available.
To validate that the correct operational behavior was specified, we used the
simulator available in the tool. The simulator executes the specification either in
interaction with the user, or by randomly picking execution paths; then it ani-
mates the execution by generating sequence charts which show the interactions
among the communicating TA, and generates execution traces that can be in-
spected. Subsequently, we verified whether the operational specification satis-
fies the system properties by using the model-checker available in the tool.

Results and Findings

Copyright © Fraunhofer IESE 2010 12

5 Results and Findings

This section documents the outcome of applying patternbased requirements
development to the evaluation example: we present the TA specification of the
controller operational behavior in detail, and only briefly describe the environ-
ment model5. Then we present the specification of the functional safety re-
quirements, followed by our findings.

5.1 Controller Specification

By functional partitioning of the controller operational behavior requirements,
we first identified constituent abstract behaviors: controller active and waiting
for input, window movement (upward/ downward), mode choice, mode
switching, sensor polling, error handling and controller reset. Then, based on
TA pattern semantics, the abstract behaviors were (manually) mapped to the
following patterns: Event prefixing, External choice, Deadline, Periodic repeat,
Event interrupt, and Timed interrupt.
To model the operational specification of TSG_VL as a TA pattern (Fig. 3), we
compose the TA patterns of the individual abstract behaviors. The flat TA model
encapsulated by the composed TA pattern model is shown in Fig. 4. In creating
this flat model we also define the appropriate internal locations and transitions,
channel names, state variables, global variables, clocks and guards.

As shown in Fig. 4, initially the controller is active and waiting for input. Recall
that TSG VL is connected to the sensors, the window motor and the movement
input via the first connector. Hence all channels or global variables of the form
connector1SignalX model a corresponding port inthe physical connector over
which the respective signal is sent.

5 A more comprehensive description of the environment model is available in [15].

Results and Findings

Copyright © Fraunhofer IESE 2010 13

Figure 3: Timed automata pattern model of TSG_VL

Results and Findings

Copyright © Fraunhofer IESE 2010 14

Figure 4: Timed automata model of TSG_VL

When an input mode is selected by the driver, the env_user TA) automaton
synchronizes with TSG_VL via the channel connector1Signal2. This is modeled
as an urgent channel i.e., no time elapses and the user input is communicated
to the controller as and when it occurs. Based on the selected movement mode
(Manual, Automatic) and direction (Up, Down) the TSG_VL automaton moves
the window upwards (the location win_mov_up) or downwards(the location
win_mov_down).
The clocks processExecutionTime and windowMotion- SensorAliveClock are
used to specify timing deadlines on the movement process, and the periodic
polling duration for the sensors respectively. As per the requirements, the for-
mer was 3s (300 time units), and the latter was 0.2s (20 time units).
Mode switching initiated from the user-environment is modeled by the loca-
tions switch_mode_to_up and switch_mode_to_down. When these locations
are reached, the clocks for window-movement process execution and sensor
polling are reset, the window-movement in the current direction is halted and

Results and Findings

Copyright © Fraunhofer IESE 2010 15

restarted in the chosen movement direction. The location motor_deact models
motor deactivation, with which window movement is stopped. Violation of the
timing requirements results in an error, causing the automaton to transition to
the win mov error location. Additionally, this error state is reached for combina-
tions of sensor values that indicate illegal window positions (clarified in section
V-B1). Thus, at the level of the operational specification, the error state is an
abstraction encapsulating different error types e.g., those resulting from timing
constraint violations, faults in the sensors, and faults occurring during window
movement.
A special safety requirement applicable during upward window movement is
that of jam protection. When the TSG_VL detects from the sensors, after an
upward window movement process has been initiated, that the window is nei-
ther moving nor completely closed, then a local variable crushProtectionMode is
set to TRUE, and the window is forced to automatically open completely. This
specifies, to an extent, the technical safety requirement for the window move-
ment controller.

5.2 Environment Specification

1) Window Sensor Model: The win_sensor TA models the changes occurring in
the window position, rather than the individual sensors and their state changes.
A need to manage the complexity of the overall system model motivated this
abstraction, and it allowed us to realize one sensor model rather than three
separate ones.
To arrive at this model, we enumerated the different combinations of sensor
states, and reduced it to legal or illegal values of a window_position state vari-
able. For example, the combination of sensor values given by { not_moving,

opened, not_closed } is equivalent to the window position { opened };

whereas the combination { moving, opened, closed } is assigned to the win-

dow position { illegal }. In fact, such illegal combinations of sensor values in-
dicate faults either in the window, the motor or in the sensors, and it must trig-
ger an appropriate error handling routine from TSG_VL.
During this process of defining the variable values for window_position, we un-
covered missing requirements: e.g., the responses of the window controller was
undefined for illegal combinations of sensor values.

2) Window Motor Model: The win_motor automaton models the motor states
and its corresponding state changes. State changes occur after TSG_VL com-
municates the appropriate (starting or stopping) signal, over the communica-
tion channels (between TSG_VL and win_motor). We assumed no motor start-
ing and stopping latency; this information was not available in the original re-
quirements document either.

Results and Findings

Copyright © Fraunhofer IESE 2010 16

3) User Environment Model: The env_user TA models the choice of window
movement modes and its execution is asynchronous to that of TSG_VL. A spe-
cial user input observer automaton was also created to implement the urgent
edge pattern [16]. This pattern allows such asynchronous input to be processed
as quickly as possible, without blocking the env_user TA.
We introduced some additional timing constraints in the env_user model,
rather than in TSG_VL model, to deal with the following scenarios:

i) Physical constraints on the window-movement mode choice: E.g., the re-
quirements indicated that when the automatic window-movement mode is se-
lected, the stimulus persists for a maximum of 0.5 seconds due to device phys-
ics. Thus, even if the user were to initiate a mode switch from the automatic
mode to the manual mode instantaneously after selecting the automatic mode,
the corresponding signal would not be recognized for up to 0.5 seconds.

ii) The window-movement mode choices are abused: The requirements for this
case were ambiguous or missing from the NL requirements. Therefore, we in-
troduced timing constraints that enforce a minimum duration between the
choice of window-mode changes, preventing the driver from instantaneously
and repetitively switching between different window-movement modes.

5.3 Specification of System Properties

Here, we mainly discuss the formalization of the jam protection safety require-
ment6. In the NL requirements document, this requirement was given as:

 “Jam protection: If a jammed object is recognized, the current upward move-
ment of the window is stopped immediately (within 20 ms), and the window is
moved downward into the down position.”

We formalized this statement using TCTL and real-time property specification
patterns [11] as the following 4 properties:

1) SR1: It is never the case that sensor polling time is greater than 20ms
during window movement. This is formalized using the safety pattern,
with TCTL as:

A� NOT((TSG_VL.win_mov_down OR
 TSG_VL.win_mov_up) AND

TSG_VL.windowMotionSensorAliveClock > 20)

6 Ref. [15] provides a comprehensive set of system properties that werespecified.

Results and Findings

Copyright © Fraunhofer IESE 2010 17

2) SR2: Whenever a jammed object is recognized the controller
switches to the jam protection mode. In specifying this property, we
used the globally scoped bounded response real-time pattern. UPPAAL,
however, does not permit nesting of the temporal logic operators, instead
providing a special leads to (-->) operator whose semantics imply bounded
response. For this particular requirement, the initialization of jam-protection
had no deadline, resulting in an un-timed instantiation of the pattern. We
specify this property in TCTL as shown:

((TSG_VL.windowMotionSensorAliveClock = 20) AND
 (TSG_VL.win_mov_up) AND

(Win_Sensor.sensorclock < 19) AND
(connector1Signal6 = FALSE) AND

(connector1Signal17 = FALSE))
--> ((TSG_VL.switch_mode_to_down) AND

(TSG_VL.crushprotectionMode = TRUE))

3) SR3: The jam protection mode leads to the upward window move-
ment stopping within 20ms.
In contrast to SR2, this property requires a response within a specified time
bound, and also uses the real-time bounded response pattern. To specify
this property, we introduced a local clock movementStopTime, which only
measures the time until upward movement is stopped, without affecting
the functional or timing behavior of the system. As mentioned earlier, we
did not model the timing latency arising from the physics of the motor. The
formal specification of the property is given as:

((TSG_VL.switch mode to down) AND
(TSG_VL.movementStopTime = 0) AND

(TSG_VL.crushprotectionMode = TRUE) AND
(Win_Motor.motor moving up direction)) -->

((Win Motor.motor is off) AND
(TSG_VL.movementStopTime < 20) AND

(TSG_VL.manualWindowMovementMode = FALSE))

4) SR4: It is never the case that downward window movement is inter-
rupted until the window is completely open. This property is used to
verify that the user cannot abort the downward movement process once
started (during jam-protection). Once again, we introduce a special local
variable userInterruption whose initial value is FALSE, and does not affect
the functional or timing behavior. The variable is set to TRUE, if the user
chooses (via the env_user automaton), a mode that would normally inter-
rupt downward movement e.g., Close Window Manually. To state SR4, we

Results and Findings

Copyright © Fraunhofer IESE 2010 18

specify that it is never the case that this variable is TRUE during jam-
protection. That is,

A� NOT((TSG_VL.crushprotectionMode = TRUE)
AND (TSG_VL.userInterruption = TRUE))

Further, we state that when the jam-protection mode is enabled, then only
the error state or the motor deactivated states are reachable. This is in-
tended to prevent mode switches between different movement modes
when the hazard occurs and jam-protection is initiated. Thus:

((TSG_VL.win mov down) AND
(TSG_VL.crushprotectionMode = TRUE))

--> ((TSG_VL.motor deact) OR
(TSG_VL.win_moving_err)

These TCTL properties comprise the functional safety requirement of the
window-control system i.e., they specify, to an extent, what services the
system should provide.

5.4 Findings

The original requirements document for the evaluation example contained 6
pages with approximately 60 distinct statements in NL. Of these, 13 were sys-
tem properties including the functional safety requirement, all of which we
formalized using property specification patterns. The remainder contained a
mixture of operational behavior requirements and statements about the system
boundary. Although the NL requirements were reasonably detailed and well
documented, the formalization process helped to identify a total of 29 defects.
These were classified as:

• 17 undocumented assumptions: 10 of these assumptions were made
through the course of formal modeling, while the remaining 7 were
discovered during the formalization procedure, and needed explicit
documentation.

• 8 missing requirements: All 8 were discovered during the process of
building the pattern-based TA model of the system; 2 of these con-
cerned timing criteria; 1 dealt with the problem of determining process
priorities. The remaining 5 were found during the definition of the sys-
tem boundary, even before formalization of the system requirements
had begun. These 5 defects pertained to unspecified behavior for illegal
combinations of sensor values.

Results and Findings

Copyright © Fraunhofer IESE 2010 19

• 3 incorrect requirements: All three were cases of non-determinism,
which were detected through model-checking. Although we also simu-
lated the system to validate its behavior, these cases reflected subtleties
which may not have been found via inspection or simulation, unless the
system were simulated enough times to exercise the defects.

• 1 ambiguous requirement: This dealt with an unclear delineation of the
system boundary.

Although we were unable to validate with the original developers of the
requirements, the assumptions made to correct the defects, the UPPAAL
model-checker successfully verified that the operational behavior specifica-
tion satisfies the safety requirement.
Verification times for the properties derived from the toplevel requirements
ranged from a few seconds to two hours, using an Intel dual-core 2GHz
processor with 2GB of RAM. Table 1 shows the resources used in verifying
the safety property of the window-movement controller system.

Discussion

Copyright © Fraunhofer IESE 2010 20

6 Discussion

6.1 Suitability for Industrial Usage

Based on the findings presented in section V-D, we assert the preliminary valid-
ity of our approach: in particular, pattern-based requirements development
provides a means for obtaining early assurance that technical safety require-
ments are consistent with functional safety requirements, thus complying with
some key constraints imposed by the ISO 26262 standard.
Although we evaluated our approach on a real system from the domain, we
claim with restriction the feasibility of our approach in industrial practice: we
did not attempt a detailed quantitative measurement of costs and effort in-
volved, nor did we perform a full-fledged assessment of feasibility for use in an
actual industrial development process. Such an assessment would be necessary
to gauge the scalability of applying our method e.g., in terms of state-space
explosion, when developing larger, more complex automotive systems.
Nevertheless, our approach is compatible with existing practices7 e.g., after
functional analysis, requirements are modeled using MATLAB Simulink/
Stateflow models which are validated by simulation. Formality may be then in-
troduced in this process by translating the models to formal specifications, and
applying model checking to verify system properties [17].
In principle, our approach deviates from this practice by systematically creating
a model-based formal specification earlier in the requirements development
process i.e., immediately after functional analysis. Iterative formal specification
at this stage assists in clarifying ambiguous requirements and identifying miss-
ing, derived and/ or incorrect requirements. Indeed, formal requirements mod-
eling has been empirically demonstrated to be valuable not only for identifying
design errors early [18] but also for improving the quality of natural language
requirements themselves [19].
Using TA patterns to specify operational behavior not only assists in hierarchi-
cally structuring and composing requirements specifications, but also supports
downstream engineering activities: (1) During architecture design, TA patterns
are directly available as formal specifications of component behavior since they
are mapped to abstract behaviors after functional partitioning; (2) Since there is
early assurance (during requirements development) of consistency between the
technical and functional safety requirements, to assure that an architecture and
its components meet the functional safety requirements, it suffices to (1) verify
that the components realizing an abstract behavior meet the TA pattern specifi-
cation of that behavior and (2) verify that the composed architecture meets the

7 Based on a requirements development process description provided by a large international automotive sys-

tems supplier.

Discussion

Copyright © Fraunhofer IESE 2010 21

corresponding composed TA specification of the overall operational behavior.
In this paper, we have not reported on how a requirements engineer may pick
an appropriate TA and/or property specification pattern from the corresponding
pattern library. This is a promising avenue of future work, where we anticipate
connecting the pattern libraries to interconnected domain models e.g., ontolo-
gies of domain specific concepts, standards and systems engineering concepts.
The idea is to guide the choice of the appropriate patterns by applying infer-
ence on such domain models [20] and by using structured natural language
having underlying formal semantics.
We performed neither hazard analysis to identify additional safety requirements
nor ASIL assignment: this process is out of the scope of the work presented
here. In practice, a parallel safety engineering process involves these activities,
the results of which, in conjunction with the ISO 26262 standard, will dictate
the process measures to be employed for risk mitigation e.g., whether informal
verification would suffice instead of formal verification.
Although the standard does not strictly mandate a formally-based approach,
we advocate it: the idea is that when a strong safety claim requires justification
e.g., Safe automobile behavior in the presence of uncovered failures, an ap-
proach such as ours guarantees that a sub-claim in the argument chain holds
e.g., verified compliance to the functional safety requirement.
Nonetheless, some barriers exist to adopting formally techniques in practice;
namely, (1) a lack of well-integrated tool chains that support the introduction
of our approach into the critical path of existing industrial processes (2) limita-
tions from the existing tools in terms of the flexibility of expressing and verify-
ing properties (3) the relatively high learning curve in acquiring familiarity with
TA and temporal logic, and consequently (4) the perception of reduced com-
prehensibility and accessibility of formal methods. Addressing these barriers are
potential avenues for future work.

6.2 Related Work

Our usage of specification patterns and timed automata is, by itself, not new:
requirements patterns [21], object analysis patterns [22], timed automata [23],
timed automata patterns [9], design patterns [24], and variations on property
specification patterns [10] such as those supporting realtime properties [11],
probabilistic properties [12] or safety specific properties [25], have all been used
individually to model a variety of real-time embedded systems, including auto-
motive systems.
However, our usage of TA patterns together with property specification pat-
terns in a systematic way to specify requirements, such that there is (1) early as-
surance of compliance with key constraints imposed by the automotive safety
standard ISO 26262, and (2) validation of compatibility with,and feasibility for
use during, requirements development inthe automotive systems domain is
new.
The work in [22] is the closest counterpart to ours, where requirements are

Discussion

Copyright © Fraunhofer IESE 2010 22

formalized using object analysis patterns: here, after functional analysis, struc-
tural patterns (using UML class diagrams) specify the functional architecture,
and behavioral patterns (using timing extended UML statecharts) specify the
behavior that the functional architecture should exhibit. Then, the UML models
are converted to a suitable formal representation, after which they undergo
modelchecking against system properties of interest (which are themselves
formally stated using real-time property specification patterns).
Our approach is similar to the work in [22], in adopting a pattern-based ap-
proach to requirements development, and identifying functional partitioning as
the point at which patterns can be applied for specification. Furthermore, our
approach is compatible with theirs since the formal model for behavioral speci-
fications in both are effectively time augmented FSM.
The use of UML class diagrams to specify the functional architecture, and state-
chart diagrams for behavioral specification, as in [22], is analogous to industrial
practice, where MATLAB Simulink and Stateflow models respectively, are used
instead. Both are informal in their semantics, and both have to be converted to
a formal representation for automatic verification. Our approach differs firstly in
providing an earlier stage of formal modeling. Secondly, in [22], the environ-
ment is modeled as equivalence classes of the input space, whereas we explic-
itly model the environment as a TA. Although this is restrictive when modeling
a continuous environment and also increases the state-space to be explored
during verification, it provides an intuitive way to specify synchronous or coop-
erative behaviors, characteristic of real-time automotive embedded systems.

Conclusion

Copyright © Fraunhofer IESE 2010 23

7 Conclusion

The main contribution of this paper is a rigorous approach, sing pattern-based
requirements development, to provide arly assurance of (1) functional safety in
automotive software nd (2) compliance to key constraints imposed the ISO
6262 standard.
To validate our approach, we applied it to a simple but non-trivial and real
evaluation example: a car-window movement controller. In particular, we for-
mally specified the requirements using timed automata patterns and property
specification patterns; then using a combination of simulation, execution and
formal verification (using modelchecking), we verified that the expected opera-
tional behavior of the evaluation example (containing the technical safety re-
quirement) is consistent with its functional safety requirements. Through the
process of constructing the specification and subsequently via verification, we
uncovered an appreciable number of requirements defects, some of which
were subtle and may not have been detectable otherwise.
We believe that the industrial acceptance of an approach such as ours is hinged
mainly on how automated the implied process steps are, and less significantly
on how comprehensible formally specified requirements are, in comparison
with natural language requirements.
To the best of our knowledge, our approach is the first to show the feasibility
of using timed automata patterns together with property specification patterns
in the context of an upcoming safety standard (ISO 26262) that sets stronger
constraints on the practice of automotive systems and software engineering.

References

Copyright © Fraunhofer IESE 2010 24

References

[1] C. Ebert and C. Jones, “Embedded Software: Facts, Figures and Future,”
IEEE Computer, vol. 42, no. 4, pp. 42–52, April 2009.

[2] B. Boehm, Soft. Eng. Economics. Prentice Hall, 1981.

[3] ISO/DIS 26262 Road Vehicles - Functional Safety, International Organization
for Standardization, 2009.

[4] I. C. on Systems Engineering (INCOSE), INCOSE Syst. Eng. Handbook v3.1,
2007.

[5] M. Eriksson, K. Borg, and J. Boerstler, “The FAR approach - functional analy-
sis/ allocation and requirements flowdown using use case analysis,” in Proc. of
the 16th Intl. Symp. Of INCOSE, Jul. 2006.

[6] R. Alur, C. Couroubetis, and D. Dill., “Model-checking for real-time sys-
tems,” in Proc. 7th IEEE Symp. Logic in Comp. Sci., 1990, pp. 414–425.

[7] R. Alur and D. Dill, “A theory of timed automata,” Theor. Comp. Sci., vol.
126, no. 2, pp. 183–235, 1994.

[8] U. Sorensen and C. Thrane, “Slicing for UPPAAL,” Master’s thesis, Aalborg
University, Dept. of Comp. Sci., June 2007.

[9] J. Dong, P. Hao, S. Qin, J. Sun, and W. Yi, “Timed automata patterns,” IEEE
Trans. Soft. Eng., vol. 34, no. 6, pp. 844–859, November/December 2008.

[10] M. Dwyer, G. Avrunin, and J. Corbett, “Property specification patterns for
finite-state verification,” in Proc. 2nd Workshop on Formal Methods in Soft.
Practice, 1998, pp. 7–15.

[11] S. Konrad and B. Cheng, “Real-time specification patterns,” in Proc. ICSE,
2005, pp. 372–381.

[12] L. Grunske, “Specification patterns for probabilistic quality properties,” in
Proc. ICSE, 2008, pp. 31–40.

[13] F. Houdek and B. Paech, “Das Türsteuergerät - eine Beispielspezifikation”
Fraunhofer IESE, Technical Report, in German 2002.02/D, January 2002.

References

Copyright © Fraunhofer IESE 2010 25

[14] K. Larsen, J. Bengtsson, F. Larsson, P. Pettersson, and W. Yi, “UPPAAL - a
tool suite for automatic verification of realtime systems,” in Hybrid Systems III,
LNCS 1066. Springer-Verlag, 1995, pp. 232–243.

[15] A. Roeser and G. Pai, “Rigorous model-driven requirements engineering: A
case study with timed automata,” Fraunhofer IESE, Technical Report, May
2009.

[16] G. Behrmann, A. David, and K. Larsen, “A tutorial on UPPAAL,” LNCS, no.
3185, pp. 200–236, 2004.

[17] S. Miller, M. Whalen, and D. Cofer, “Software model checking takes off,”
Comm. of the ACM, vol. 53, no. 2, pp. 58–64, 2010.

[18] R. Lutz, “Analyzing software requirements errors in safetycritical embed-
ded systems,” in Proc. IEEE Intl. Symp. Requirements Engineering, Jan. 1993.

[19] S. Easterbrook et al., “Experiences using lightweight formal methods for
requirements modeling,” IEEE Trans. Software Eng., vol. 24, no. 1, pp. 4–14,
Jan. 1998.

[20] T. Breaux, A. Ant´on, and J. Doyle, “Semantic parameterization: A process
for modeling domain descriptions,” ACM Trans. Softw. Eng. Methodol., vol.
18, no. 2, 2008.

[21] S. Konrad and B. Cheng, “Requirements patterns for embedded systems,”
in Proc. of the IEEE Intl. Req. Eng. Conf. (RE), 2002.

[22] S. Konrad, B. Cheng, and L. Campbell, “Object analysis atterns for embed-
ded systems,” IEEE Trans. Soft. Eng., vol. 30, no. 12, pp. 970–992, Dec. 2004.

[23] M. Lindahl, P. Pettersson, and W. Yi, “Formal design and nalysis of a gear-
box controller,” Springer Intl. Jnl. of Soft. ools for Tech. Transfer, vol. 3, no. 3,
pp. 353–368, 2001. 24] B. Douglass, Real-time Design Patterns. Addison-
Wesley, 003.

[25] F. Bitsch, “Safety-patterns - the key to formal specification of safety-
requirements,” in Proc. COMPSAC, LNCS 2187, 2001, p. 176–190.

.

Document Information

Copyright 2010 Fraunhofer IESE.
All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means including,
without limitation, photocopying, recording, or
otherwise, without the prior written permission of
the publisher. Written permission is not needed if
this publication is distributed for non-commercial
purposes.

Title: Assuring Functional Safety
in Automotive Software
Through Pattern-based Re-
quire-ments Development

Date: April 2010
Report: IESE-013.10/E
Status: Final
Distribution: Public

