
NASA/CR–2011–215983

Automating the Generation of
Heterogeneous Aviation Safety Cases

Ewen W. Denney
SGT, Inc.
Ames Research Center, Moffett Field, California

Ganesh J. Pai
SGT, Inc.
Ames Research Center, Moffett Field, California

Josef M. Pohl
SGT, Inc.
Ames Research Center, Moffett Field, California

August 2011

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA scientific and technical
information (STI) program plays a key part in
helping NASA maintain this important role.

The NASA STI Program operates under the
auspices of the Agency Chief Information
Officer. It collects, organizes, provides for
archiving, and disseminates NASA’s STI. The
NASA STI Program provides access to the
NASA Aeronautics and Space Database and its
public interface, the NASA Technical Report
Server, thus providing one of the largest
collection of aeronautical and space science STI
in the world. Results are published in both
non-NASA channels and by NASA in the NASA
STI Report Series, which includes the following
report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of
peer-reviewed formal professional papers, but
having less stringent limitations on manuscript
length and extent of graphic presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest, e.g.,
quick release reports, working papers, and
bibliographies that contain minimal
annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by
NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific and
technical material pertinent to NASA’s
mission.

Specialized services also include creating custom
thesauri, building customized databases, and
organizing and publishing research results.

For more information about the NASA STI
Program, see the following:

• Access the NASA STI program home page at
http://www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA STI Help
Desk at 443-757-5803

• Phone the NASA STI Help Desk at
443-757-5802

• Write to:
NASA STI Help Desk
NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076–1320

NASA/CR–2011–215983

Automating the Generation of
Heterogeneous Aviation Safety Cases

Ewen W. Denney
SGT, Inc.
Ames Research Center, Moffett Field, California

Ganesh J. Pai
SGT, Inc.
Ames Research Center, Moffett Field, California

Josef M. Pohl
SGT, Inc.
Ames Research Center, Moffett Field, California

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035-1000

August 2011

Acknowledgments

This work has been funded by NASA contract NNA10DE83C. We thank Corey Ippolito and Mark Sumich
for providing the necessary background information, Joe Wlad for his advice on FAA certification, Ibrahim
Habli for discussions on safety cases, and Tom Pressburger for giving comments on earlier drafts. Any
errors in this report are those of the authors.

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not constitute an
offical endorsement, either expressed or implied, of such products or manufacturers by the National Aeronautics and
Space Administration.

Available from:

NASA Center for AeroSpace Information
7115 Standard Drive

Hanover, MD 21076-1320
443-757-5802

Abstract

A safety case is a structured argument, supported by a body of evidence, which provides a
convincing and valid justification that a system is acceptably safe for a given application in
a given operating environment. This report describes the development of a fragment of a
preliminary safety case for the Swift Unmanned Aircraft System. The construction of the
safety case fragment consists of two parts: a manually constructed system-level case, and an
automatically constructed lower-level case, generated from formal proof of safety-relevant
correctness properties. We provide a detailed discussion of the safety considerations for
the target system, emphasizing the heterogeneity of sources of safety-relevant information,
and use a hazard analysis to derive safety requirements, including formal requirements. We
evaluate the safety case using three classes of metrics for measuring degrees of coverage,
automation, and understandability. We then present our preliminary conclusions and make
suggestions for future work.

1

Contents
1 Introduction 6

1.1 Context . 6
1.2 Specific Research Problem . 7
1.3 Relevant Terminology . 8
1.4 Safety Assurance Methodology . 8
1.5 Safety Cases and the Goal Structuring Notation . 10
1.6 Organization . 11

2 Target System: The Swift UAS 12
2.1 Description . 12

2.1.1 Operation of the Airborne System . 12
2.1.2 System Parameters . 14

2.2 Flight Software Architecture . 14
2.2.1 Execution Layers of the Reflection Framework . 15
2.2.2 Modules, Scripts, and the Reflection Virtual Machine 15
2.2.3 Autopilot Module . 17
2.2.4 Mission Configurations . 18

2.3 Flight Management System and Controller . 19
2.3.1 Control Modes . 19
2.3.2 Aileron High-level Control Sequence . 21
2.3.3 Mathematical Calculations for the Aileron . 23
2.3.4 Elevator High-level Control Sequence . 26

3 Safety Considerations for the Target System 26
3.1 Preliminaries . 26
3.2 Regulatory Framework . 27
3.3 Contingency Management . 28
3.4 System Requirements Relevant for Safety . 28

4 Heterogeneity in Safety Information 29

5 Safety Analysis of the Target System 33
5.1 Preliminary Hazard Analysis . 33

5.1.1 Hazard Identification . 33
5.1.2 Risk Analysis . 34

5.2 Safety Requirements . 39

6 System Safety Case Outline 42
6.1 Manually Created Safety Case Fragment . 42

6.1.1 Top-level Safety Case Fragment . 44
6.1.2 Linking the System and Software . 44
6.1.3 Linking the Software and the Autopilot Module . 44
6.1.4 Linking the Autopilot and the Controller Module . 49
6.1.5 Linking the Controller Module to aileron control . 49

6.2 Semi-automatically Generated Safety Case . 49

7 Transformation Methodology 55
7.1 Domain Theory . 55
7.2 Domain Theory Description . 55
7.3 From Formal Proofs to Safety Cases . 55

7.3.1 Formats . 62

2

7.3.2 Algorithm . 63
7.3.3 Validating the Transformation . 64

7.4 From Safety Cases to Formal Specifications . 65

8 Evaluation Metrics 66
8.1 Coverage . 66

8.1.1 Base Measures . 67
8.1.2 Measuring Coverage . 68
8.1.3 Coverage for the Swift UAS Safety Case Fragment . 68

8.2 Degree of Automation . 70
8.2.1 Base Measures . 70
8.2.2 Measuring Degree of Automation . 71

8.3 Understandability . 71
8.3.1 Challenges to Measuring Understandability . 71
8.3.2 Towards Measuring Understandability . 72

8.4 Confidence in the Safety Argument . 72
8.4.1 Illustrative Example . 73
8.4.2 Uncertainty in the Safety Argument . 74
8.4.3 Measuring Confidence . 75

9 Discussion 76
9.1 Approach . 76
9.2 Scope and Automation . 77
9.3 Trustworthiness . 77

10 Future Work 79

A Traceability 85

B Parameters and Variables 87

C Aircraft Design 91

D NASA Regulatory Requirements 92

E Software Certification Overview 93

3

List of Figures
1 Safety assurance methodology . 9
2 Software verification methodology . 10
3 Syntax of the GSN notation . 10
4 Ground station and UAV communication configuration with avionics 13
5 Ground station and UAV communication configuration without avionics 13
6 Execution layers of the Reflection system on a UAV. 15
7 Relationship between modules, scripts, and the Reflection Virtual Machine. 16
8 Updates and data flow in the autopilot module. 17
9 Example EAV mission configuration . 19
10 EAV commands and FMS modes . 20
11 Landing phases . 21
12 Computational dependencies in aileron control calculations . 22
13 Waypoint tracking and crosstrack . 25
14 Risk categorization . 37
15 Breakdown of autopilot functionality . 41
16 System safety case fragment . 42
17 Manually created safety-case fragment . 43
18 Top-level safety case fragment . 45
19 Safety argument linking the system and software . 46
20 Safety argument linking the software and the autopilot . 47
21 Safety argument fragment linking the autopilot and the AP module 48
22 Argument fragment linking AP and aileron control . 50
23 Safety argument fragment for aileron control . 51
24 Automatically generated safety case . 51
25 A step in the generated fragment of the safety case. 52
26 Proof of a VC by a Prover. 53
27 Inspection of a library function. 53
28 Fragment of a draft safety case narrative . 54
29 Math schemas. 56
30 Math schemas (continued). 57
31 Axioms . 58
32 Axioms (continued) . 59
33 Axioms (continued) . 60
34 Axioms (continued) . 61
35 Grammar of domain specific terms . 61
36 Grammar of AUTOCERT generated XML (fragment) . 62
37 Grammar of the intermediate XML document (fragment) . 63
38 Transformation architecture . 64
39 Safety argument fragment for correct angle of attack . 73
40 BN model for confidence measurement . 75
41 Aircraft design flow . 91
42 Reverse engineering activities . 94

4

List of Tables
1 Preliminary hazard list . 34
2 Fragment of additional hazard list . 35
3 Preliminary hazard analysis fragment . 36
4 Failure modes and effects analysis (FMEA) fragment . 38
5 Base measures (coverage) for the Swift UAS safety case. 69
6 Derived coverage measures for the Swift UAS safety case. 69
7 Base measures (degree of automation) for the Swift UAS safety case. 71
8 Mapping r.v. states to a unit interval . 75
9 Defined variables and their values (excerpt) . 78
10 Requirements traceability matrix . 86
11 Defined variables and their values . 88
12 PID controllers and initial settings in code . 89
13 PID controllers and initial settings in scripts . 89
14 Variables regulated by a defined value in PID loops. 89
15 Variable regulation . 90
16 Data from GS111M sensors . 90
17 Relevant data collected in the gs111m module . 90
18 Software certification levels . 93
19 Software certification activities . 94
20 Software certification evidence . 96

5

1 Introduction

1.1 Context
The development of a safety case has been a common practice1 for the certification of safety-critical systems
in the nuclear, defense and rail domains [9]. Recently, the requirement for a safety case has been considered
in emerging international standards [31], and national guidelines [22]. The move towards safety cases presents
a departure from highly prescriptive safety standards in which certification, particularly of software-intensive
systems, is often obtained by compliance with predefined objectives and processes. For example, a safety case
is required for compliance with the new automotive functional safety standard ISO 26262 [31]. It is also a
recommended practice in the US-FDA draft guidance on the production of infusion pump systems [22].

Indeed, the development and acceptance of a safety case is a key element of safety regulation in many safety-
critical sectors. However, safety cases are typically constructed manually, since most tools only provide basic
drawing support such as “boxes and arrows”. This is time consuming and expensive, especially when we are
dealing with large amounts of artifacts and iterative software development. There is a need, therefore, to integrate
automated formal analysis techniques with commercial safety case tools to automatically construct safety cases.

New approaches to the development of aviation software, such as model-based development and automated
code generation, offer significant potential to eliminate coding errors and reduce development costs and times.
Nevertheless, despite these advances significant barriers remain to raising the level of assurance of software-
intensive systems, which are particularly acute for the mathematical and safety-critical software typical in the
aviation domain.

Objectives

The principal objective of this research is to “enable improved comprehension by many participants in safety
assurance” (See NRA, Amendment 7, Appendix B.6, Section 3.1.3), by “integrating formal and informal reason-
ing”, and “ensuring that system level safety requirements allocated to software may be traced to the actual code”
(Section 3.1.4.4). The research presented supports approach 3.1.4.4.

The main outcome of this research will be a safety assurance approach and tool for the automated generation
of safety cases from formal verification and additional, informal, artifacts. In addition, this research supports
the investigation of the types of evidence, such as domain-specific knowledge from mathematics, physics, and
engineering, needed to support argument-based assurance of NextGen flight-critical systems (Approach 3.1.4.3),
particularly (c), “developing argument assurance methods . . . for complex software-intensive . . . systems”. An
outcome will be an openly available framework for the specification of safety-related artifacts.

The ultimate goal of this research is a safety assurance approach and tool for the automated generation of
safety cases from formal verification and additional informal artifacts. This will include an openly available
framework for the specification of such safety related artifacts.

Application of Interest

Our approach is applied to the Swift Unmanned Aircraft System (UAS).We picked the Swift UAS primarily due
to the ease of accessing the system and its developers, afforded by its development locally at NASA Ames. In
addition, there are practical and strategic advantages for conducting research in the construction and application
of a goals-based approach for safety argumentation to a UAS:

(a) There is significant interest within the FAA on how operational approval may be provided to UAS operat-
ing in the national airspace; in the identified interim guidance [13], safety cases have been considered as an “an
alternate method of compliance” to the requirements for operational approval. Consequently, research supporting
the creation of safety cases for UAS is a step towards potentially addressing the FAA requirements for operating
UAS.

(b) To determine the regulations needed for the safe operation of UAS (or whether existing regulations are
sufficient and/or how they ought to be augmented), safety analysis is imperative. For instance [29] identifies

1Particularly in the UK.

6

several hazards in UAS and their implications for regulation, while [11] and [12] identify the properties for
an effective framework for airworthiness certification for UAS as well as the challenges therein. Research on
the application of the state of the art in safety assurance, i.e., safety cases, thus affords the development of a
framework for assuring safety in tandem with the identification of UAS-relevant hazards.

1.2 Specific Research Problem
In order to address the challenges of complexity and diversity, formal approaches that encompass not just soft-
ware, but also domain-specific knowledge from mathematics, physics, and engineering are required. Moreover,
since it is humans who design, build, verify, and ultimately sign off on software, analysis tools need to sup-
port their activities by explaining their reasoning in a comprehensible and usable way, and not acting simply as
omniscient “black-boxes”.

Specifically, approaches to product-oriented certification should be developed so that software can be certified
by virtue of explicit evidence, rather than through following a standard development process; safety cases are a
good example of this. The key challenge therefore is to develop tools and techniques which support the automated
creation of evidence-based arguments in complex domains.

In general, however, constructing safety cases is difficult and the research proposed here needs to address a
variety of open problems:

Size Safety cases reasoning about software details will quickly grow very large; in particular, they may grow
super-linearly in the size of the underlying software due to the increased number of requirements the
software needs to satisfy. We need to develop querying and abstraction mechanisms such as views to keep
the cognitive load on the users tractable.

Heterogeneity of tools and artifacts The safety cases need to reconcile different artifacts such as unit tests,
simulation runs, or formal proofs from different classes of tools which provide different levels of assurance,
in order to allow a comprehensive safety assessment.

Informal and domain-specific artifacts The heterogeneity problem is compounded by the prevalence and im-
portance of informal (i.e., non-software) and domain-specific artifacts such as standards, engineering ta-
bles, or textbooks.

Tracing The safety cases need to trace all these artifacts to the code. We need to develop trace abstraction
mechanisms to keep the cognitive load on the users tractable.

Integration of domain-specific and project-specific information The core of the safety cases can be constructed
automatically, but we need to develop methods to integrate domain-specific and project-specific informa-
tion into this core; in particular, we need to provide user-accessible “hooks”.

Implicit assumptions Safety cases are designed to make implicit assumptions explicit; however, normally this
is a manual process that underpins the construction of a safety case. We need to develop methods to make
explicit the assumptions behind formal artifacts such as safety proofs.

Iterative development Traditionally, safety cases are static documents that are developed after software de-
velopment has finished. This reduces the benefits of their application as it fails to uncover potential risks
already during software development, and becomes entirely inadequate for iterative development styles.
While we can easily re-generate the safety cases, we need to develop methods to identify and highlight
changes in the different versions, and to maintain their consistency with any manually specified domain-
specific and project-specific information, resp. to identify and highlight inconsistencies.

Confidence Serious concerns exist about current safety case practices [27], highlighting the need for methods
to assess that sufficient confidence can be placed in safety cases. [28] proposes an assurance approach
in which a safety case comprises two complementary arguments: the safety argument documents the
reasoning supporting the claims concerning the safety of the system, while an interlinked, qualitative
confidence argument documents the reasoning as to why the confidence in that safety argument is sufficient.

7

Others have also recognized the need to consider uncertainties in the safety argument, albeit from the
perspective of quantification, e.g., in quantifying the epistemic uncertainty in dependability arguments
when assessing the confidence in claims about the probability of failure [8]; in evaluating the confidence
placed in safety arguments where claims address the achievement of a desired safety integrity level [10],
and the quantification of confidence in diverse argument legs to examine whether diversity in arguments
improves overall confidence in a safety claim [44].

1.3 Relevant Terminology
The terminology relevant to the discussion in this report is first given. Except where otherwise stated, the termi-
nology here is taken from [57].

1. Hazard: In practice, several notions exist for the concept of a hazard. For example, as per MIL-STD-
882D [57], a hazard is any real or potential condition that can cause a mishap, i.e., injury, illness, or
death to personnel; damage to or loss of a system, equipment or property; or damage to the environment.
The FAA defines a hazard as a “condition, event, or circumstance that could lead to or contribute to an
unplanned or undesired event” [20].

In the literature [43], a hazard is defined as “the state or a set of conditions of a system that, together with
other conditions in the environment of the system, will lead inevitably to an accident (loss event/ mishap)”.
For our purposes, both definitions are relevant, i.e., it is important to consider not only conditions in
the target system (Section 2) but also situations in the environment in which it operates, during hazard
identification. Our rationale is based on Reason’s model of accident causation [51], i.e., that mishaps
occur largely as a consequence of the interaction between one or more unmitigated hazards.

2. Risk: Risk (of a mishap) is expressed in terms of potential mishap severity and the probability of its
occurrence. This also corresponds to the notion of risk given in [53].

3. Safety: Safety is given as “freedom from those conditions that can cause death, injury, occupational illness,
damage to or loss of equipment or property, or damage to the environment”.

4. System Safety: System safety is given as “the application of engineering and management principles, cri-
teria, and techniques to achieve acceptable mishap risk, within the constraints of operational effectiveness
and suitability, time, and cost, throughout all phases of the system life cycle.”

The distinction between safety and system safety is noteworthy; the latter is a process and decision tool, such
that the former can be achieved within the context of an agreed upon definition of acceptable risk. Note also that
System Safety is not the same as “safety of the system”, where the latter refers to the notion that the system2 is
safe.

1.4 Safety Assurance Methodology
The main philosophy of our safety assurance approach3 is that the system safety process drives the safety argu-
mentation process, as shown in Figure 1.

The system safety process as shown in the figure is derived from the framework of a safety risk management
plan such as the one recommended in the Department of Defense (DoD) standard practice for system safety
(MIL-STD-882) [57], or the Federal Aviation Administration (FAA) system safety handbook4 [58].

This plan includes safety considerations into system design at an early stage, through the identification of
hazards, risk analysis and risk management. In brief, hazard identification and risk analysis involves respectively

2Here, the proverbial system refers not just to the Swift UAS, but the Swift UAS and its operating environment.
3Note that our approach, as shown in Figure 1, only shows an initial conceptualization of our safety assurance methodology. We intend

to refine this methodology, eventually, to show concrete links to the system development process. Both the system safety process and the
system development process influence the safety argumentation process, and vice-versa.

4The FAA System Safety Handbook builds on the recommendations from MIL-STD-882D; consequently there are several points of
overlap.

8

Hazard
Identification

Risk Analysis
Severity
Likelihood
Categorization
Prioritization

Hazards ►

Concept Documents ►
SWIFT UAS design documents ►

(System + Software)
Safety

Argumentation

Hazards with
unacceptable
risk ►EAV design documents ►

System Safety Process
(FAA / NASA / MIL STD 882D / ...)

Risk reduction/
Mitigation

Safety
Requirements ►

Concept Documents ►
SWIFT UAS design documents ►

EAV design documents ►
Other relevant documents ►

SWIFT UAS Safety Case ►

▼ Safety Requirements

Preliminary hazard list ►

Hazards with
unacceptable risk ▼

Uncertainty
AssessmentSources of Uncertainty ►

SWIFT UAS
Safety Case ▼

Uncertainty Measurements ►

Confidence in
SWIFT UAS Safety

Case ▼Safety Argumentation Process

LEGEND:
<Data> ► : Data flow
<Data> ▼ : Data flow

: Process
Process step

Figure 1: Our safety assurance methodology where the system safety process drives the safety argumentation
process.

(i) determining those situations or conditions relevant to the system which, if left uncontrolled, have the potential
to cause an undesirable event, and (ii) characterizing the consequences, severity and likelihood of such situations/
conditions. These principal steps are similar to the recommendations for probabilistic risk assessment (PRA),
as given within the PRA procedures guide for NASA managers and practitioners [53]. PRA requires explicit
quantification of likelihoods and consequences and can coexist with qualitative methods for risk analysis. Risk
management broadly uses the outcomes of risk analysis to prioritize and mitigate risks.

In Figure 1, these are exactly the process steps Hazard Identification, and Risk Analysis. As input to
these processes, we use the concept documentation for the target system - the Swift UAS, available design
documentation5, and a preliminary list of identified hazards. The outcome of hazard identification and risk
analysis is used in defining mitigation measures for those hazards considered as having unacceptable risk. The
outcome of this step (Risk reduction/mitigation) are, in part, requirements on system safety.6

The outcome of the system safety process, in effect, triggers the safety argumentation process, as shown in
Figure 1. In general, the idea is to use a structured safety argument, i.e., a safety case, to systematically build
a case that all identified hazards have been eliminated, or mitigated, such that mishap risks have been reduced
to acceptable levels, i.e., the system is safe. The safety argumentation process is applied starting at the level of
the system in the same way as the system safety process, and it is repeated at the software level. The main steps
in creating a software (and system) safety case is to (a) create safety claims, e.g., indicating the mitigation of
relevant hazards (b) link the evidence that supports the claims via a structured argument.

Our software verification methodology is used to create part of the software safety argument, in particular,
the lower levels, and it indicates connections to the wider system safety process (Figure 2). The methodology
we follow for verifying the flight software is to formally verify the implementation against a mathematical spec-
ification and to test low-level library functions against their specifications. In this report we will concentrate on
formal verification using AUTOCERT, and defer testing, and verification using other tools to future work. The
mathematical specification is given in a program logic, and corresponds to software requirements which, in turn,
are derived from system requirements during the safety analysis. The formal verification takes place in the con-
text of a logical domain theory (i.e., a set of axioms). Axioms can either be assumed to be correct, or they can be
inspected, or they can be tested against a computational model which, itself, is inspected.

Once a safety argument has been created, we assess the trustworthiness of this argument by characterizing the

5Typically, when a new system is being developed, design documentation is not available at the early stages and mainly concepts are to
be evaluated. In our case, we are applying our methodology to a system, the Swift UAS, which had already commenced development and
reuses design information from its predecessor system, the Exploration Aerial Vehicle (EAV). Therefore available design documentation is
also included in our hazard analysis.

6These requirements take several forms, including constraints on the design, guidelines and/or procedures for maintenance, operation,
etc.

9

Implementation
(Source Code)

Library Functions

Design
(Mathematical
Specification)

Software
Requirements

System
Requirements

Verify

Flight Software

Function
Specifications

Test

Domain Theory
(Axioms)

Test Mathematical
Model

Inspect

Inspect

Safety analysis
(System and Software)

Partially define

Hazards
Identify Mitigate

Figure 2: Software verification methodology

sources of uncertainty in the argument, and attempting to quantify the confidence (uncertainty) in the argument,
via uncertainty assessment. The goal, here, is to provide as objective a basis as reasonably possible, for decision
making, i.e., whether to accept or reject a safety argument.

1.5 Safety Cases and the Goal Structuring Notation

<Identifier> Model:

e.g. Hoare style program verification
using specific proof rules

<identifier>: Goal

e.g. the software satisfies all given
requirements

<Identifier> Strategy:

e.g. Argument based on
proof of partial correctness
wrt. the given requirements

<Identifier>: Context

e.g. The software consists of the
following modules 50hz.c, Att.c, VS.c

<Identifier> Constraint:

e.g. Certification works on Source
Level Representation Only

<Identifier>: Assumption

e.g. No requirement is used
as an Assumption

A

<Identifier> Justification:

e.g. SRS Inspection
J

Is solved by

In context of

<Identifier>:
Evidence:

e.g. Axiom
transpose_matrix

<Identifier> Undeveloped
Strategy:

e.g. Argument based on
testing software

<identifier>:
Undeveloped and

Uninstantiated
Goal

<identifier>:
Undeveloped Goal

e.g. Test software for
path coverage

<Identifier>:
Undeveloped

Evidence

e.g. Path Test
Coverage

Figure 3: Syntax of the GSN notation

A safety case [55] is “A structured argument, supported by a body of evidence that provides a compelling,
comprehensible and valid case that a system is safe for a given application in a given operating environment.”
Thus, it provides an explicit means for justifying the safety of a system through a reasoned argument and support-
ing evidence. A safety case, thus, comprises three main elements (i) a set of claims (ii) evidence supporting the

10

claims, and (iii) an comprehensive, comprehensible, and structured argument linking the evidence to the claims.
Safety cases are documented in a variety of ways, including text and graphical notations. For the safety

case fragments given in this report, we use the Goal Structuring Notation (GSN) [25] for documentation. The
elements of the GSN are shown in Figure 3. Each element represents a specific type of information that is
contained in the safety case. For example, a safety claim, i.e., a goal, is shown using a rectangle. The strategy
used to decompose this claim into sub-claims is represented using a parallelogram, while sub-claims are again
represented using rectangles. Assumptions, justifications and context information are documented in the GSN
using rounded rectangles and, respectively, they convey the assumptions made, e.g., in stating a claim or using a
strategy, the justifications, e.g., for using a particular strategy, and the context of relevance, e.g., when making a
claim. Evidence is represented using a circle.

Whenever these basic elements7 are either undeveloped, uninstantiated, or both, a diamond shape, a triangle
shape or a diamond shape with a horizontal line, are respectively appended to the relevant element shape as
shown in Figure 3. Undeveloped elements refer to elements which have been identified but not completely
developed, i.e., it is known to be incomplete. Uninstantiated elements refer to those elements which have not yet
been identified but are known or hypothesized to exist. Elements which are both undeveloped and uninstantiated
serve as placeholders for possible elements which can be added into the safety case.

1.6 Organization
Thus far, we have described the research context (Section 1.1), and the problems which motivate the work
presented in this report (Section 1.2). We have presented a high-level overview of our approach to address these
research problems (Section 1.4), whilst providing the terminological (Section 1.3) and notational (Section 1.5)
bases for documenting the outcomes of our work. In the subsequent sections of this report, we will describe our
approach in greater detail and illustrate it by application to a target system. Specifically, the rest of this report is
organized as follows:

• In Section 2, we present the target system, the Swift UAS, to which our methodology is applied. In this
section, we also describe the specifics of the flight software architecture (Section 2.2), which contains the
flight management system (FMS) and a controller for a specific flight control surface (Section 2.3), to
which we apply our safety assurance methodology.
• The safety considerations for the target system is presented in brief in Section 3, where we first discuss the

regulatory framework (Section 3.2) that constrains the development of the Swift UAS. Then, we present
the contingency management measures which have been considered by the team developing the Swift UAS
for ensuring the safe operation of the system (Section 3.3), and finally the system requirements relevant
for safety (Section 3.4).
• Subsequently, Section 4 discusses the heterogenous information that is to be considered when analyzing

the safety of the Swift UAS, and in creating a safety argument for the same.
• Thereafter, we present our safety analysis of the target system in greater detail (Section 5). In particular,

Section 5.1 documents the preliminary hazard analysis while Section 5.2, presents a small sample of the
resulting safety requirements. Of the requirements identified in this section, we mainly consider one high-
level requirement as the base-year target safety requirement and two additional low-level requirements
which are derived from the former.
• Section 6 documents an end-to-end slice of the Swift UAS safety case which we have developed after the

application of our methodology. In particular, a manually-created fragment describing the safety argument
starting from the system level and including the Swift UAS software is given in Section 6.1. Then we
document the semi-automatically created safety argument fragment for the aileron control of the Swift
UAS in Section 6.2.
• Then, in Section 7, we describe the approach we employ to enable the (semi-)automatic generation of the

safety argument using our software verification methodology (Figure 2). In particular, the domain theory
required for the mathematical specification of the software requirements is given in Section 7.1, followed
by the specifics of the generation and transformation steps (Section 7.3). Section 7.4 discusses how we

7Note that some of the syntactical elements have been recently updated in the GSN, e.g., the notation for the “Model” has been eliminated.

11

create the safety case arguments from the formal specifications created in the application of our software
verification methodology.
• We evaluate our overall work using four objective evaluation measures (Section 8). In particular, we define

and apply measures for coverage (Section 8.1), degree of automation (Section 8.2), the understandability
of (Section 8.3), and the uncertainty (confidence) in (Section 8.4) the safety argument respectively.
• We conclude the report with a subjective assessment and a discussion of the limitations of our work (Sec-

tion 9), and with avenues for further research (Section 10).
• Appendices A, B, C, D, and E, present respectively (a) traceability from the identified safety requirements

to the safety analysis and argument elements (b) parameters and variables in the Swift UAS considered in
our safety assurance methodology (c) an aircraft design flow, as we have surmised from discussion with the
Swift UAS developers (d) the sources of regulatory requirements which set the context for the application
and adoption of this work in a wider and practical context, and (e) an overview of the software certification
concerns as per the state of the practice for safety considerations in aviation software.

Traceability to Contractual Requirements

Deliverable 8, Final Base Year Report, states that we should Evaluate the research conducted during the Base
Year and present:

• An evaluation of the limitations of the Base Year safety case generation method (Section 9).
• Measures of

– the coverage of the generated safety case of the base-year target safety requirements (Section 8.1).
– the degree of automation achieved in generating the safety case (Section 8.2).
– the understandability of the generated safety case (Section 8.3).

• A discussion of the relative importance of formal and informal evidence within the generated safety case
(Section 9).
• Recommendations for future work, and an analysis of how well the work proposed for the option years

satisfies those recommendations (Section 10).

2 Target System: The Swift UAS

2.1 Description
Our target system is the Swift Unmanned Aircraft System from NASA Ames. In general, an Unmanned Aircraft
System (UAS)8 consists of some Ground Station Controllers (GSC), one or more unmanned aircraft, a control
link for communications, and possibly other support equipment. In our case, the UAS comprises a single UAV
(the Electric Swift UAS) plus two ground stations (a primary and a secondary) and control links (2.4 GHz for
direct commands from the pilot9 and 900 MHz for telemetry and commands from the GSC10). We will follow
convention and generally refer to the aircraft itself as an Unmanned Aerial Vehicle (UAV).

2.1.1 Operation of the Airborne System

The UAV can be controlled on the ground by a pilot, or fly autonomously by following a pre-programmed or
uploaded nominal flight plan (i.e., a mission). This consists of a sequence of commands (which will determine
a set of waypoints), from takeoff to landing, although a pilot might takeoff, land, or intercept at any time. The
off-nominal plan11 describes the actions of the Contingency Management System (CMS), the failsafe trajectory,
the procedures to be followed on the ground, and so on.

8UAS is the official FAA term, i.e., not UAV.
9They previously used 72 MHz for pilot control but this was more prone to interference.

10If the avionics is installed: there are two configurations — with and without the autopilot; for the initial pilot shakedown tests, the UAV
must be flown without the autopilot.

11Unlike the nominal plan, this is not defined as a single entity.

12

Typically, there is a team of several individuals who operate the UAS in a semi-autonomous manner, that is,
in both pilot in control (PIC) and computer in control (CIC) modes. The GSC is operated by a Ground Station
Operator (GSO) who calls out important state information (e.g., the true airspeed) to the pilot. There may also be
a secondary (or research) pilot, who controls the aircraft in the secondary pilot in control (SIC) mode. Commands
can be uploaded by the GSO from the GSC to the UAV. The pilot can control the UAV via a transmitter with
joystick and trim tab. A change of control is always instigated by the primary pilot via the safety switch. Figures
4 and 5 show the communication between the ground station pilots and the UAV in configurations with and
without avionics, respectively. Note that the control bit feedback loop is implemented in software and informs
the autopilot to disengage.

Ground Station and UAV Communication Configuration with Avionics

GSO/
Research
Pilot

Joystick

GSC

Radio Modem
TX/RX

(Transceiver)

Autopilot SS Motor

Primary
Pilot

TX

RX

UAV

Ground

Hardware

Software

Human

Two channels

2.4 GHz

900 MHz

CIC PIC

CIC = computer in control
PIC = pilot in control
GSO = Ground Station Operator
GSC = Ground Station Controllers
SS = Safety Switch

Control bit feedback loop (vehicleStatusByte)

GUI/
Waypoint

Figure 4: Ground station and UAV communication configuration with avionics
Ground Station and UAV Communication Configuration without Avionics

Secondary

Pilot

SS Motor

Primary

Pilot

RX

UAV

Ground

Hardware

Human

PIC = primary in control

SIC = secondary in control

SS = Safety Switch

SIC

PIC

RX

TXTX

Figure 5: Ground station and UAV communication configuration without avionics

13

2.1.2 System Parameters

The UAV has an autopilot which takes inputs from sensors (including uploaded commands), and sends them to
the Flight Management System (FMS), which updates the state and sends outputs to the actuators. The actuators
move the control surfaces.

A downlink sends the following state information back to the GSC:

• Indicated airspeed (IAS), V = (u, v, w), from the Pitot tube; they measure the magnitude and not the
vector components, used as the true airspeed

• Absolute velocity (GPS; the altitude w has lower precision because of the GPS), in feet per second with
north and east components

• Position (GPS), in feet from origin with north and east components

• Acceleration (only the y-component is needed; this is relevant to the sideslip angle)

• Angle of attack (alpha), sideslip angle (beta)

• Orientation in Euler angles; relative to the Earth’s magnetic field, in the LVLH frame (local vertical local
horizontal)

• Angular velocity, ω = (p, q, r), in body axes – taken straight from the gyros

• Pitch, Euler angle, in radians

• Roll, Euler angle, in radians

• Heading, true heading, in radians

• Vertical airspeed, in feet per second

• Battery voltage levels (filtered using a low-pass filter)

• Commands the vehicle is receiving from the pilot

• Health status from some units; e.g., the Athena INS/GPS unit

• Any payload sensors

Angle of attack (alpha) and side slip (beta) are measuerd and collected but are unused in the FMS or the
autopilot. They are measured using a 5-hole + 2 pitot tube. The 5 are for alpha, beta, and airspeed. The two are
both static holes. One is the static hole for airspeed. The other, inside the aircraft, is the pressure transducer to
measure altitude. All of this data is collected on a GS111M, which contains an Inertial Measurement Unit, an
Aircraft Data Computer, and a GPS.

2.2 Flight Software Architecture
We now describe the overall architecture and relationship of components within the flight software (FSW). It
has a layered architecture with several loosely-coupled modules implemented on the Reflection Virtual Machine
(RVM). Section 2.2.1 describes the relationship between the execution layers. Next, Section 2.2.2 describes the
high-level relationship between the virtual machine and the other components that make up a vehicle’s execution
platform. The internal data-flow within the Autopilot module is given in Section 2.2.3. Finally, an example
configuration of modules and scripts for one particular mission is provided in Section 2.2.4.

14

Execution Layers of the Reflection Framework on a UAV

UAV Modules and Commands Script Files

Reflection Virtual Machine

Operating System on Platform: Windows XP Embedded

CGL

Operating System on Platform: Windows XP Embedded

Figure 6: Execution layers of the Reflection system on a UAV.

2.2.1 Execution Layers of the Reflection Framework

The Reflection system refers to a multi-component, event-driven, configurable software package [36]. It is used
to provide support for ground and flight control systems on autonomous platforms such as UAVs, as well as
simulations of these platforms. It has a complex architecture with many different components. The architecture
consists of several layers of execution. When the Reflection system is loaded on a UAV each component has its
place in one of these layers. Figure 6 shows how these layers relate to each other in a bottom up fashion, each
layer running on top of the one below. The base layer is the Windows XP Embedded operating system running
on the hardware on the UAV. On top of this is the CGL, followed by the RVM.

The separation between the layers is not as simple as the diagram implies, but the Reflection system is defined
on top of CGL. The modules that interface with the hardware, such as the sensors and telemetry/modem systems,
and that define the virtual systems, such as the autopilot and failsafe modules of the UAV, are loaded on top of
the RVM. Finally, scripts are used to dynamically define connections between modules and which modules are
loaded into the virtual machine. The software running on the GSC consists of a similar setup. What follows is a
description of these components and their relationship to one another.

2.2.2 Modules, Scripts, and the Reflection Virtual Machine

The Reflection system is a framework for facilitating communication between different and distinct modules.
We see this relationship of the virtual machine and other subsystems in Figure 6. Each module represents a
subsystem in a UAV system. Each is an interface with a physical piece of hardware or is itself a virtual system.
For instance there are modules representing the autopilot, the modem interface, data-stores, and sensor and servo
interfaces. Figure 7 illustrates the relationship of these modules with the other components.

The Reflection system allows for modules to be defined which can be used in a plug-and-play fashion. Dif-
ferent scenarios, missions, and simulations can be run with differing sets of modules and different parameters
defined in those modules. Whereas the Reflection virtual machine provides the structure to facilitate communi-
cation, the modules and their data provide the content.

Modules are independent compilable sets of classes (defined in C++) which represent or model some aspect
of a UAV. They are a loosely-coupled package of classes which internally define much of their functionality
and data-flow within the module. Functionality that is not defined internally is derived through calls to the
CGL physics and math libraries or from standard C++ classes. These packages can be compiled into a shared
library (or DLL on win32 systems). Through hooks in the module code, the DLLs can be made to interact as
interoperable components in the RVM.

The Reflection Virtual Machine is made up of two static components. The first is the Reflection framework.
This is the code that provides event listeners and data routes between modules. The CGL is an independent but
related “Common Graphics Library”. It contains classes and code for a number of common calculations, trans-

15

Module

(e.g., autopilot)

DLL

Reflection

Virtual Machine

cgl_reflectionModuleInterface

cgl_reflectionSystem

Platform OS:

Windows XP Embedded

Interpreted by

VM

compiled

Loaded

by scripts

Parameters and
Scripts

(rfs and rfs)

CGL
Reflection

Framework

cgl_reflectionSystem

Compiled boundary

A script is loaded into the VM to define the initial state of the system. This includes

which DLL’s will be used and the data routing between the DLL and the UAV platform.

Map

(Terrain

database)

For simulations

and AGL altimeter

flights
compiled

Parameters and

commands

Figure 7: Relationship between modules, scripts, and the Reflection Virtual Machine.

formations, and operations. It supports both the Reflection framework as well as code defined in the modules.
In support of the former, CGL defines operations for timing events and loading DLLs, all of which are available
to the Reflection system. In support of the modules and module development we find resources more commonly
found in a graphics library such as a physics engine and mathematics library. These have specialized libraries for
doing navigation and aeronautical domain type calculations (again amongst many others).

The CGL and Reflection framework are brought together through the cgl reflectionSystem class.
Compiled together and running on the UAV system (the OS, such as Windows XP Embedded), these two frame-
works define the Reflection Virtual Machine. The DLLs created from modules are loaded into the virtual machine
through the cgl reflectionModuleInterface. This interface dynamically loads the modules and is in-
voked by a definition command in a script. For any mission there are many modules that need to be loaded into
the system. Once loaded each module exposes certain parameters and functions to the virtual machine. These ex-
posed pieces are used by the virtual machine to define communication routes and create the flow of data through
the system.

The data routing is user defined through a set of mission specific scripts. The scripts are written in a scripting
language defined in the Reflection framework. The scripting language allows a user to define what objects
(as DLLs) should be loaded into the virtual machine and what the relationship is between those objects. A
relationship can be defined between the output parameter (or variable) of one module and the input variable of
another, in effect creating an explicit data flow within the system. Each module defines what parameters and
functions are exposed and the script writer is free to use those as needed. The scripting language also has utilities
to define what data the mission should use. In the instance of a UAV mission a script can define the initial state of

16

the module and the sequence of commands (such as takeoff, fly to a waypoint, and land) the aircraft should follow.
It further defines the information passed between the ground station and the UAV and the methods by which the
ground station and the UAV interact, allowing for new commands to be inserted into the sequence or for complete
control to be taken over by the ground system. A script can have an extension .rfs (Reflection script) meaning
roughly that it defines a configuration of certain modules or state. A script can also be a static, reusable, function
in which case it has the extension .rff (Reflection function). Scripts sit outside of the compiled boundary but
are interpreted by the Reflection system.

The map data or terrain database can be loaded directly by the modules or through the scripts to provide
geographic information to the ground-station, the UAV, or in a simulation. If the UAV is flying in a mode which
uses an Above Ground Level altitude calculation the terrain data maps provide essential ground information.

2.2.3 Autopilot Module

Registered input
CGL

CPE PID

From the sensors
Updates and data flow in the Autopilot module.

Autopilot

variables
CPE_PID

Airplane data

FMS

Updates and
Uses

Is a
uses

Autopilot
SimulationUpdate()

Airplane data

FMS
updateCommandTransitions()

updateFMSLatMode()

AP Update()

U d pidTargets data
updateFMSLonMode()

Updates

Current command
calculates

pidTargets data

Current command

Waypoint data Output dataFrom
scripts

Registered Output
variables and stateTo be sent to actuators

Parameters and
Waypoints

Figure 8: Updates and data flow in the autopilot module.

Figure 8 describes the internal behavior and data flow in the Autopilot module. This module is inserted
(loaded) into the virtual machine and has relationships with a number of other modules. The Reflection Virtual
Machine is able to emulate and facilitate the communication loops between sensors, controllers, and actuators.
This figure represents the controller section which takes in data from the sensors and outputs data to the actuators.

As noted above, modules can register parameters and variables with the “outside” world through the scripts.
The registered input and output boxes represent this set of data blocks. Data comes in through the registered
input variables (as do commands for the system to evaluate). Data and state information is sent out of the system
through a similar set of parameters and variables. For instance the sensor data is routed in to an airplane data
structure which is mapped through the autopilot object defined in the scripts. The data is stored there for
use by the controller and the flight management system. These subsystems are described further below. The
registered input variables can also be used to engage or disengage any part of the autopilot or allow for the pilot
to send commands directly to the UAV via a “stick” on the ground and the UAS’s telemetry system. Further
calls will be sent via the Reflection Virtual Machine to one of the registered functions that the autopilot exposes.
This will cause that specific function to be evaluated. This is how the Reflection Event System interacts with the
autopilot.

17

The Autopilot code consists of three major classes. The first is the autopilot class itself. This is the code
that interfaces with the Reflection system and makes internal calls to the other two classes. The first three calls,
when the autopilot is engaged, are to the Flight Management System (FMS) implemented in the FMS class. The
next call is to the controller (AP) implemented in the AP class which actually sets the output variables for the
actuators which will be communicated through the virtual machine.

The Autopilot module runs in a loop. Each loop iteration is driven by the virtual machine event system.
At each loop, the timing of which is a configurable parameter via a script, the autopilot class initiates the
subsequent calls to the related systems (FMS and then AP). At a macro level the Autopilot drives the FMS to
check the status of the current command and then tells the AP system to react to any changes.

The FMS class updates the command status of the autopilot. It evaluates where the aircraft is with respect
to the completion of the current command or reaching the current waypoint. Further it determines if it needs
to transition to the next command, if in fact there is a next command. The FMS system also updates the lateral
and longitudinal mode settings. This is general state information which allows the autopilot controller (the AP
class) to determine what calculations need to be done in support of the aircraft meeting its goal (namely the
completion of the current command). The list of commands that the UAV will follow is stored in the FMS
system. Commands are represented by the class Waypoint. Waypoint contains information pertinent to the
heading, location, speed that the aircraft needs to attain.

The update commands in the FMS class set state data that is accessible by the AP system. This data is
a combination of PID controller information and mode information. The determination of what data should
be provided from the FMS forward to the AP system is calculated based on defined parameters, the current
command and modes being evaluated in the FMS, and the data store in the airplaneData structure. The
airplaneData struct defines the current state of the aircraft: position North and East of the origin; roll
angle; airspeed; vertical speed; pitch angle; heading; acceleration; and flight path angle. The PID controllers are
represented by a class within the CGL library physics engine, CPE PID. The PID variables represent a standard
feedback-loop controller that takes sensor data and calculates some gain value to pass on to the actuators. They
are stored as a block in the structure pidTargets. They will be updated again in the AP class.

The AP class iterates through different modes of operation: longitudinal, lateral, and speed. Each mode has
a specific set of aircraft surfaces and controls that it can effect. Each of these modes is independent of the others.
Depending on what command is currently under evaluation (via the FMS) and what phase that command is in,
different calculations are made (different sections of code are run). For instance if the command in the FMS is
currently COMMAND LAND, different code would be run in the AP system depending on what phase (approach,
glide, flare, taxistop) the UAV was currently undertaking. COMMAND LAND is the only command which has
multiple phases. The AP class updates the output variables. This data is then used by the Reflection system to
drive the actuators and any other uses it may serve. This sequence is the repeated.

2.2.4 Mission Configurations

Figure 9 shows the components required for a particular mission, in this case Flight 070801 SAAV of the EAV
aircraft using the avionics configuration and an autopilot. The Autopilot module defines the autopilot flight
management system and controller. The gs11m is the sensor interface which routes data from the sensors into
the autopilot. It also routes data to the ground station via the iavmodem interface and to the pcsfilter which
filters position and altitude data for navigation. The ap rcap module is an experimental rate controlled autopilot.
The ap failsafe module takes data from the modem and the autopilot and routes it to the sv203interface. The
sv203interface is the connection to the actuators. The datastore module is a logging utility storing data from the
sensors, commands, and outputs.

The components are combined together on the target platform, namely the virtual machine running on the
EAV. Each module is compiled into a DLL. Each DLL represents a physical or virtual entity necessary for the
operations of the mission. For any given mission there are any number of possible scripts, which define the
overall makeup of the system and its data flow. The scripts define the relationships between the modules and tell
the virtual machine which components are active in the system. In particular, the scripts define the frequency of
the loop event calls to the modules and what functions within the modules need to be called. For completeness
we also indicate the connection between the modules and the CGL libraries and physics engines, though this is

18

Modules
Autopilot pcsfilter

EAV flight system components (Mission 070801 SAAV)

p

FMS AP ap_failsafe

11 i d

sv203interface

d
DLL’s

Waypoint data

gs11m iavmodem ap_rcap datastore

Scripts (rfs and rff files)uses

CGL Reflection

Loads DLLs
and data
into VM

CGL and Reflection Virtual Machine

Figure 9: Example configuration of EAV flight system components: Mission 070801 SAAV.

unchanged between missions.

2.3 Flight Management System and Controller
We describe the calculation and dependency structure of the output value for aileron control12 under the landing
command in the autopilot module. We also briefly describe the calculation and dependency for the output value
for the elevator control. First, we describe the background of the autopilot module and put the aileron calculations
and the landing command in context.

2.3.1 Control Modes

The aileron calculation under a landing command is only one possible route through the code. The computation of
the aileron output is done in every command. Sometimes the computation is the same as we describe here. Other
times different modes are considered which will cause different cases to be evaluated along the computational
sequence. However, at each iteration of the call to the autopilot subsystem, the sequence of function calls is the
same.

The Autopilot class is the interface between the Reflection Virtual Machine and the additional classes
that compose the rest of the autopilot module, FMS and AP. The Autopilot class drives the calls to both the
FMS class and the AP class. The calculation of the aileron output is done completely within the context of the
AP class under the landing command. In other cases there are state updates made in the FMS class that affect the
aileron output.

The FMS class has the responsibility of transitioning between commands and then setting FMSLATMODE and
FMSLONMODE based on what command is currently under evaluation. The FMSLATMODE and FMSLONMODE

12The precise configuration of control surfaces depends on the aircraft. The code we have looked at here is specific to the EAV, but the
general principles are common to all autopilots.

19

COMMAND FMSLATMODE FMSLONMODE

STOP DISENGAGED DISENGAGED

FLYTODIRECT FLYTOWAYPOINT ALTITUDE ATTAIN

FLYTOTRACK TRACKTOWAYPOINT ALTITUDE HOLD

CIRCLE CIRCLE TO ACCEL2VROT

TAKEOFF TO ACCEL2VROT TO FULLCLIMB

APPROACH WINGSLEVEL GLIDE

LAND FLARE FLARE

INVALID TAXISTOP

Figure 10: Commands, FMS Lateral modes and FMS Longitudinal modes relevant to the EAV aircraft. The
heading is the prefix to each element in that column.

in turn will cause a specific APLATMODE and APLONMODE to be set, respectively. There is a correspondence
between these modes. A specific FMSLATMODE determines a specific APLATMODE. The case is similar for
FMSLONMODE and APLONMODE (and APSPDMODE, the speed mode which relates to the throttle control, but
we do not consider that here). In Figure 10 we see a listing of all the commands and modes, both lateral and
longitudinal, in the FMS system. The landing command only invokes a few of the lateral and longitudinal
commands. Only the lateral mode TRACKTOWAYPOINT will be considered with respect to the aileron output
control calculation.

The AP system is responsible for generating the values which are routed to the actuators that control the air-
craft control surfaces. Once a specific set of AP modes have been set, via the FMS class, the AP.Update com-
mand can be called. The Update command in the AP class is invoked from the function SimulationUpdate
in the Autopilot class. Update is called after all the mode and command transition functions in the FMS
class have finished. The Update command operates by progressing, linearly, through a series of PID “loops”.
These are feedback loops, not programming language control structures.

Each PID loop is a switch statement (case statement) evaluating the current APLATMODE, APLONMODE, or
APSPDMODE (speed mode), depending on what the PID loop is controlling: lateral, longitudinal, or throttle,
respectively. As such, each PID loop will affect either a lateral, longitudinal, or speed control surface. Each PID
loop will result in a value which will be output, or used in a calculation of the eventual output, to the actuator of
a single control surface of an aircraft. The specific calculations for lateral surfaces, given the current command
in question, was set up in the FMS class calculations. In other words a specific APLATMODE was set in FMS that
will now, in the AP system, be the case considered within each of the PID loops. Similarly longitudinal modes
invoke a specific APLONMODE. A PID loop that effects a lateral surface will only consider APLATMODEs. Again,
there is a similar situation for longitudinal surfaces and APLONMODEs.

The PID loops we will consider here will all affect the output to the aileron actuator. Hence they are all
lateral PID loops. This is based on the code for the EAV autopilot system. Specifically we will look at the
calculation of the aileron PID loop and the PID loops upon which it depends, namely the roll and heading PID
loop. There are no direct outputs (to the actuators or other modules) from the roll and heading PID loop. They
do not directly affect a control surface. However, the results from these PID loops will be used in the calculation
of the aileron output. The other control surfaces are elevator, rudder, and throttle13. Each is considered under
different PID loops. Each PID loop has a switch statement evaluating the corresponding modes. Figure 11 gives
a visual representation of the landing phases and its transitions. Each of the phases is marked by a set of transition
criteria. The transition criteria are defined in the code but make use of system parameters which are set via the
script files.

13There is additionally a flap control surface, however in the EAV system this is unused and initial values assigned to it are simply passed
through the code without modification.

20

f = Flare Angle
d = Descent Angle

ha = Approach Altitude (AGL)
hf = Flare Altitude (AGL)

Approach

Descent
(Glide Slope)

Flare Transition Phase

Rd = hf / TAN(f)
Rd

(f)

Top of
Descent

Flare

Landing Waypoint Altitude

ap.m_landingDescentRate_fps = -25.0;

ap.m_landingFlareMaxAlt_ftAGL = 100;

ap.m_landingFlareMinAlt_ftAGL = 50;

ap.m_landingWheelsDownAlt_ft_AGL = 2.0;

ap.m_landingFlareMaxDescentRate_fps = -25.0

ap.m_landingFlareMinDescentRate_fps = -0.1

LAT: Wings Level
LON: Taxi Stop

FMSLAT: FLARE
LAT: XTrackNFB

FMSLON: FLARE
LON: Vspeed
FixedThrottle

FMSLAT: TRACKTOWAYPOINT
AP LAT: XTRACK

FMSLON: FMSLONMODE_GLIDE
LON: Taxi Stop

Figure 11: The phases invoked during the COMMAND LAND command (from [33]).

2.3.2 Aileron High-level Control Sequence

We describe one particular sequence of calculations through the controller, which is executed under specific
mode and command conditions. This particular calculation is done in three of the four phases of a landing
command, namely Approach, Descent (or Glide), and Flare, but not Taxistop. These phases all fall under the
landing command, and are represented in the code as transitions between modes. There is no variable or global
structure to indicate that, for instance, we are in the Descent phase.

In order to initiate this calculation the following modes and command must be set:

• Command = COMMAND LAND and

• FMSLATMODE = TRACKTOWAYPOINT and

• APLATMODE = LATMODE CROSSTRACK or
APLATMODE = LATMODE CROSSTRACK NOFLYBACK

There are no preconditions, other than the setting of the APLATMODE, derived from the FMS system for aileron
calculations.

The variable m aileron m1p1 holds the value that will be routed to the aileron actuator through the Re-
flection framework. The result stored in that variable is dependent on the calculations of roll angle, heading,
and crosstrack and depends as well on a number of state and position variables (waypoints and current posi-
tion). The calculation of the value stored in m aileron m1p1 traces eventually back in to the FMS class and the
Autopilot class.

The dependencies of variables are seen in Figure 12.
The following is an outline of the steps necessary for the calculation of the aileron control variable within the

AP class.

• Calculate the desired heading from the source, destination, and current locations and adjusting this value
by the cross track calculation.

• Calculate the desired roll angle from the desired and current heading.

• Calculate the value sent to the aileron actuator from the desired and current roll angle.

Each is dependent on the previous. They correspond to the heading, roll, and aileron PID loops, respectively.
The calculations in the heading PID loop result in the computation of m pidTarget .m desiredHeading rad ,

which has the following properties:

21

Dependent Variable Hierarchy

Destination Waypoint
(dstWpPos)

Current Position
(C ACP)k

Source Waypoint
(srcWpPos)

(dstWpPos) (CurrACPos)

Line Slope for XTrack
(M)

Line Intercept For Xtrack
(B)

CrossTrack Error

(M)

Current to Destination Vector
(lineAC2Ds) (PID.m_currentXTrackErr_rad)

CrossTrack Delta Heading
(PID.m_xtracksignal_deltaheading)

(lineAC2Ds)

Source to Destination Vector
(lineSc2Ds)

Desired Heading
(PID.m_desiredHeading_rad)

C t H diCurrent Heading
(AD.m_heading_rad)

Desired Roll
(PID.m_desiredRoll_rad)Current Roll

(AD m roll rad)

Aileron output control
(m_aileron_m1p1)

(AD.m_roll_rad)
Key: (variable name)
PID = m_pidTarget
AD = AirplaneDataInput

variables
Computed
variables

Figure 12: Computational dependencies in the calculation of aileron control Variable m aileron m1p1 .

• It is the heading angle between the source and destination waypoints adjusted by the delta heading resulting
from the crosstrack error.

• The crosstrack error is the result of a PID update command (explained below): the sum of the P, I, and D
components based on the error derived from the distance the aircraft currently is to the line on which it is
supposed to be.

The result of the roll PID loop is stored in m pidTarget .m desiredRoll rad .

• It, too, is the result of a PID update command based on the error derived from the difference in the aircraft’s
current heading and the desired heading.

The aileron PID loop output is stored in m aileron m1p1 .

• It is a result of a PID update command based on the error which is the difference between the aircraft’s
current roll and the desired roll.

PID Update

The PID Update calculations, in general, have the following result form:

result = PGain ∗ Error + IGain ∗ IState + DGain ∗ (lastError − Error)

where

• PGain, IGain, DGain, are defined values specific to the actual PID controller.

22

and

IState =

 iMax if IState + Error > iMax
iMin if IState + Error < iMin
IState + Error otherwise

The initial value of IState and the values of iMax and iMin are defined parameters (different for each PID
controller). lastError is the previous Error value passed as a parameter to the calculation and is stored as part
of the state for the next calculation.

2.3.3 Mathematical Calculations for the Aileron

We describe the calculation of each of the preceding variables working back from output (the aileron control
variable) to input (the aircraft state and the flight plan). We show the calculation of each variable and then
describe the dependencies of that variable. The order is as follows:

• m aileron m1p1

• m pidTargets.m desiredRoll rad

• Geometric calculations based on position

• m pidTargets.m desiredHeading rad

• m pidTargets.m xtracksignal deltaheading

Each of these is now described.

Variable m aileron m1p1

The variable m aileron m1p1 is calculated in the following fashion.

m aileron m1p1 = (RollErr2Aileron.mPGain) ∗ Error
+(RollErr2Aileron.mIGain) ∗ (RollErr2Aileron.m IState)
+(RollErr2Aileron.mDGain) ∗ (lastError − Error)

where
Error = airplanedata.m roll rad −m pidTargets.m desiredRoll rad

m IState =

 m iMax (m Istate + Error) > mIMax
m iMin (m Istate + Error) > mIMin
(mIstate+ Error) Otherwise

Error becomes lastError in the next iteration.
The variable m aileron m1p1 is regulated to restrict the value to be between -1 and 1 via the function

REGULATE CAP.

Variable m pidTargets.m desiredRoll rad

The variable m aileron m1p1 initially depends on the calculation of the member variable
m pidTargets.m desiredRoll rad (m desiredRoll rad for short) which is calculated as follows:

m desiredRoll rad = (HeadingErr2Roll .mPGain) ∗ Error
+(HeadingErr2Roll .mIGain) ∗ (HeadingErr2Roll .mIState)
+(HeadingErr2Roll .mDGain) ∗ (lastError − Error)

where
Error = airplanedata.m heading rad −m pidTargets.m desiredHeading rad

and the other variables are calculated as above.
The variable m pidTargets.m desiredRoll rad is regulated to be between the value of plus or minus

m bankLimit rad , a defined parameter.

23

Geometric Calculations

The variable m desiredHeading rad is dependent on a number of other variables. In particular a number of
arrays and vectors indicating positions of interest.

currACPos[2] = {airplaneData.m pos north ft , airplaneData.m pos east ft}
dstWpPos[2] = {m waypointNorth ft ,m waypointEast ft}
srcWpPos[2] = {m prevwaypointNorth ft ,m prevwaypointEast ft}

lineAC2Ds = {dstWpPos[0]− currACPos[0], dstWpPos[1]− currACPos[1]}
lineSc2Ds = {dstWpPos[0]− srcWpPos[0], dstWpPos[1]− srcWpPos[1]}

where the content of the arrays and vectors above is

• airplaneData.m pos north ft and airplaneData.m pos east ft represent the aircraft’s current position.

• m waypointNorth ft and m waypointEast ft are the values of the destination waypoint.

• m prevwaypointNorth ft and m prevwaypointEast ft are the values of the source waypoint.

The vector lineSc2Ds is normalized and used to differentiate the source and destination waypoints. This is
done to avoid the possibility of two subsequent waypoints having the exact same location. If this were the case
the result would be a vector with 0 magnitude and possibly cause a division by zero condition.

Sc2Ds = cglVec Normalizev(Sc2Ds,Sc2Ds)

cglVec Normalizev is a vector normalization function that takes an array of reals as opposed to a vector object.
If the source and destination are essentially the same point then the source position is adjusted and lineSc2Ds is
recalculated.

if (fabs(Sc2Ds < .00000001))
srcWpPos[0] = m prevWaypointNorth ft + 1.0

lineSc2Ds = {dstWpPos[0]− srcWpPos[0],
dstWpPos[1]− srcWpPos[1]}

Sc2Ds = cglVec Normalizev(Sc2Ds,Sc2Ds)

Finally a couple of calculations are made on these values to be used in the calculation of
m xtracksignal deltaheading and m desiredHeading rad :

acrossb = cglVec Cross(lineAC2Ds, lineSc2Ds)
adotb = cglVec Dot(lineAC2Ds, lineSc2Ds)
angle = acos(cglVec Dot(lineAC2Ds, lineSc2Ds))

Variable m pidTargets.m desiredHeading rad

The variable m pidTargets.m desiredRoll rad depends on the calculation of member variable
m pidTargets.m desiredHeading rad (m desiredHeading rad for short).

The variable m desiredHeading rad is calculated as follows:

m desiredHeading rad =

cglGeom calculateHeadingAngle rad(dstWpPos, srcWpPos)
+m pidTargets.m xtracksignal deltaheading

fabs(angle) > PI/2.0 ∧
m latmode! =
CROSSTRACK
NOFLYBACK

cglGeom calculateHeadingAngle rad(srcWpPos, dstWpPos) otherwise
+m pidTargets.m xtracksignal deltaheading

24

Variable m pidTargets.m xtracksignal deltaheading

Figure 13 contains a visual representation of a track to waypoint lateral mode and the crosstrack heading ad-
justment. Track to waypoint adjusts the heading of the aircraft to fly the line defined between the previous and
current waypoint. If the aircraft has passed the current waypoint the heading is reversed. The crosstrack heading
adjustment is done in the case when the aircraft is not exactly on the heading defined by the previous and current
waypoint. The crosstrack error is a calculation done to direct the aircraft towards its next waypoint by correcting
its heading.

Switch to
Heading Hold

Active
Waypoint

Projected
Path

Previous
Waypoint

Next
Waypoint

com

Radius
Transition

Perpendicular
Axis Transition

Transition
To Next

Command

CrossTrack
Error

Figure 13: Depiction of tracking to a current waypoint and the crosstrack component of the heading calculation
(from [36]).

The variable m xtracksignal deltaheading is calculated in the following manner.

m xtracksignal deltaheading = fabs((CrossTrackErr2Heading .mPGain) ∗ Error
+(CrossTrackErr2Heading .mIGain)∗
(CrossTrackErr2Heading .m IState)

+(CrossTrackErr2Heading .mDGain)∗
(lastError − Error))

where the Gain variables are as above, CrossTrackErr2Heading is a pid controller variable, and the Error =
m currentXTrackErr which is calculated as follows:

m currentXTrackErr = cglGeom CalculateDistanceToLine(currACPos, lineM , lineB)

where lineM and lineB are pass-by-reference doubles computed in the following function:

cglGeom CalculateLineSlopeIntercept(&lineM ,&lineB , srcWpPos, dstWpPos)

The variable m xtracksignal deltaheading is regulated to be within between plus or minus
g XTrackMaxCorrectionAngle rad , a defined parameter. The variable m xtracksignal deltaheading is also
adjusted based on the calculated values of acrossb and adotb.

m xtracksignal deltaHeading =
{
−m xtracksignal deltaHeading if acrossb > 0

m xtracksignal deltaHeading =

 −m xtracksignal deltaHeading

if adotb < 0
m latmode! =
CROSSTRACK
NOFLYBACK

The variable m desiredHeading rad is regulated plus or minus π.

25

2.3.4 Elevator High-level Control Sequence

The elevator output value directly controls the elevator actuators. It is calculated from the state of the aircraft and
conditions set in the current (i.e. the destination) waypoint. The sequence of calculations is done in two steps.
The first involves calculation of the altitude error and hence the pitch of the aircraft. The second involves using
the pitch to calculate the adjustment to the elevator control surface.

The altitude error is calculated by subtracting from the current altitude, derived from the aircraft state, the
desired altitude at the destination waypoint.

altitudeError ft = airplaneData.m pos altitude ft −m desiredAltitude ft

The value m pidTargets → m desiredAltitude ft is set each time a new waypoint is loaded and represents the
value that must be obtained upon reaching that waypoint.

The altitude error value is then used to calculate the error in the current pitch of the aircraft. This is done via
a PID controller. The specific PID controller, m pid AltitudeErr2Pitch takes altitudeError ft as input. This
is assigned to the state variable m desiredpitch rad .

desiredpitch rad = m pid AltitudeErr2Pitch → Update(altitudeError ft)

The aircraft state additionally stores the current pitch of the aircraft. This is used in conjunction with the
desired pitch to calculate the error in the pitch.

pitchError rad = airplaneData.m pitch rad −m pidTargets → m desiredPitch rad

The pitch error is then used to calculate, using another PID controller, the elevator control output value.

m elevator m1p1 = m pid PitchErr2Elevator → Update(pitchError rad)

3 Safety Considerations for the Target System

3.1 Preliminaries
We consider the safety of two UASs — the EAV and the Swift. The Swift is still being developed (the EAV14

team has applied for a Certificate of Authorization (COA) from the FAA and originally expected to get this in
early 2011; however, this is on hold until they can provide an airworthiness statement). The Swift has recently
been modified15 by the manufacturer16, MLB, and the safety requirements will likely change (e.g., they had
originally planned to use a parachute as CMS, but following feedback from the AFSRB they will probably drop
this).

The EAV (a Cessna) has flown before, both at Crow’s Landing and Moffett Field. The two UAVs have much
in common, in particular:

• The Reflection architecture [36]

• Avionics, including most of the autopilot

• Development methodology: simulation and testing configurations, for both software and hardware, hard-
ware testing and component sizing methods

• Underlying theory

• Regulatory framework

14Note that EAV refers to both the name of the Code TI research group, and one specific UAS.
15The original aircraft was not designed to be a UAV. Also, the PI wanted double redundancy, and split control surfaces for distributed

control.
16Or rather the predecessor company, Brightstar.

26

They differ in the specifics of the range safety analysis, and the actual parameters and configuration. There-
fore we will concentrate for now on those common parts of the Swift and EAV.

• There are some safety issues which are specifically related to the Swift, however. The EAV control surfaces
are the aileron, elevator, rudder, and throttle, whereas the Swift has 8 distributed control surfaces which
will provide the functionality of elevons (combined elevators and ailerons) and flaps. They will also carry
out an experiment using a morphing wing.

• The Swift is electrically powered, with large and explosive battery packs (which requires temperature
sensors to be installed). Since it is a heavier aircraft it has high kinetic energy (mv2/2). Also, it is very
high performance, with a high glide ratio and lift/drag ratio. This means that if unpowered, in the worst
case, it will glide very far.

• The EAV (a Cessna) has a complex stiff structure, but the Swift is more flexible, is thin, and is made of
a uniform material, so has vibration modes (which is not the case for the EAV); however, it is anticipated
that flutter – interaction between the airstream and flexible (structural) modes – will not be an issue for the
Swift. However, close to VNE17 there might be structural failure (buckling of structure, and fatigue).

At this point there are several aspects of the UAS which we will not consider, such as the ground control
software, the communication link, operating procedures (at least not formally), and wider NAS system integration
issues.18

3.2 Regulatory Framework
The EAV group fly UAVs, first at the auxiliary site at Crow’s Landing for qualification testing, and then at Moffett
Field. Although the airspace at Moffett Field is controlled by NASA, they still need to apply to the FAA for a
COA.

In fact, any aircraft which flies in the NAS, including Moffett Field, must comply with FAA regulations.
However, since NASA can certify aircraft airworthiness and pilot qualifications, there is some latitude in certain
areas. Moreover, since at this time there are no plans to fly in the wider NAS, and since the exact status of FAA
regulations for UASs is under review, we do not consider FAA regulations to be directly applicable. 19

The approval procedure is to first present to the Airworthiness and Flight Safety Review Board (AFSRB,
Code Q), then get an airworthiness statement (stating that there is reasonable belief that the aircraft and its
systems will not fall to pieces). They then apply for an FAA COA. The COA does not require a safety or risk
analysis. Next, they present to the Flight Readiness Review Board (FRRB, Code JO), and then get a flight release
statement.

Therefore, although the overarching safety requirements stem from NASA NPR 7900.3C [47], these trace
down to the relevant requirements which apply at NASA Ames, specifically APR 1740.1 [48] (airworthiness)
which, in turn, is reflected in operational requirements at the divisional level (Code JO), namely JO-3 (Flight
Operations Manual Moffett Federal Airfield) [1].

Safety requirements can therefore be derived from:

• APR 1740.1

• JO-3

• COA guidance documents

• feedback from the review panels: AFSRB and FRRB

• range safety analysis

17VNE is the Never Exceed Speed. In general, there are many V-speeds which have a bearing on safety, but not all are relevant for small
aircraft, and many are left to the pilot’s discretion.

18Safety is ultimately a hierarchical concept, and we hope to explore these wider issues in future.
19Nevertheless, although not directly applicable to this target system, we do want to consider FAA regulations in our project.

27

All of these ultimately satisfy NPR 7900.3B.
In common with other NASA projects, procedural requirements such as NPR 7150.2A (software engineer-

ing) and NPR 7123.1A (system engineering) are also mandated. These NPRs reference corresponding NASA
standards, such as NASA-STD-8719.13 (NASA Software Safety Standard). The NASA regulatory requirements
are summarized in Appendix D.

3.3 Contingency Management
A true Flight Termination System (FTS) must be highly reliable20. Very few termination systems would qualify
with this level of reliability. Instead, the EAV team uses a Contingency Management System (CMS), which is
less reliable, but the use of two independent CMSs is almost as good. All that is required is to keep the aircraft
on range, and crash “inside the box”.

They use three CMSs which are usually applied in the following order of precedence:

1. If there is a failure of the primary pilot system, then go to the secondary system, which is redundant and
on a different channel

2. If that fails, engage the onboard autopilot

3. If that fails, force a spiral descent to impact

Before each flight the team determines the actual order of the CMSs, based on the particular experiment they
are carrying out.

3.4 System Requirements Relevant for Safety
We now discuss the high-level requirements which the EAV team have identified as being relevant for safety of
the Swift UAS, but first note several aspects of safety relevance:

(i) The team has not carried out a comprehensive hazard analysis or exhaustive safety analysis, since most
components are off-the-shelf21. Therefore they do “airworthiness-light” and rely more on range safety (and so
downplay software). The boards are satisfied for the COA if it can be shown that there is a low probability of a
crash out of range.

(ii) Another reason that the team is not detailed or comprehensive in the safety analysis is simply because
this is a low to mid-TRL research project, which does not justify that level of detail. Also, since the Swift UAS
builds on a heritage of other UASs, such as the EAV and XSCAV, there are requirements and implicit knowledge
which are not always documented.

It could be argued, therefore, that the safety case need only consider the range safety, since as the “last line
of defense”, it is this that ultimately ensures the safety of individuals on the ground.

However, we adopt a wider notion of safety and consider safety aspects of the vehicle as well, including
the software (which acknowledging its auxiliary status), even though the failsafe mechanisms are usually imple-
mented in hardware (which is simpler and therefore considered more trustworthy than software). Although the
autopilot itself is auxiliary, flight testing beyond line of sight would rely on the autopilot.

(iii) The failsafe mechanism is programmed into the receiver, which can be set to perform a simple action on
failure, e.g., on fail set low throttle and maintain a constant state for spiral descent. It can be tuned on the ground.
The autopilot does this in software, but that uses feedback to close the loop on the altitude to maintain a constant
roll angle and set a low throttle.

The following high-level requirements are relevant22 to safety:

R8 Hinge moments must be calculated to show margin of safety.

R10 Actuator response must be at least 4× fastest response mode, desire to be 10× fastest mode

20See http://kscsma.ksc.nasa.gov/Range_Safety/NASALinks.html for definitions.
21Risk analysis has been conducted for the EAV but not for the Swift UAS.
22In the absence of a hazard analysis, we do not claim these are comprehensive.

28

http://kscsma.ksc.nasa.gov/Range_Safety/NASALinks.html

R12 Actuators must not interfere or collide with existing structure.

R24 Allow direct control of the aircraft.

R25 Direct pilot control system must meet flight critical functions requirements

R26 Critical flight system must be dually redundant

R27 Must provide two separate, independent, redundant channels to the pilot

R28 Pilot must be able to switch between pilot in control (PIC) or computer in control (CIC)

R29 Direct pilot link must provide control for entire flight experiment (range of around 1 mile)

R39 Support fuselage functions.

R44 Power the direct pilot link.

R51 Provide independent CMS for flight termination.

R53 CMS23 must terminate the flight in a timely manner.

R54 CMS must not let the aircraft drift outside the range safety area.

R56 CMS must operate on a frequency separate from the rest of the system.

The requirements stated above only implicitly indicate the hazard(s) which are mitigated or eliminated. To
validate the relevance of these system requirements to safety, we intend to apply our safety methodology such
that the hazards which are addressed by the respective requirements are explicitly identified and documented.
However, this is not the primary scope of the safety analysis presented in this report and the specific aspect of
tracing the safety relevant system requirements to the relevant hazards is left as an aspect of future work.

Note that:
(i) R8 requires a margin of safety of 1.5, that is, the aircraft must be overdesigned to handle 1.5 the perfor-

mance envelope.
(ii) R39 is to make sure it can carry the load; they rely on the manufacturer to carry out the appropriate static

load tests.
(iii) R10 is to ensure that the elevators are faster than the oscillations — a property of the eigenvalues (which

are obtained by system ID), and characteristics of modes (frequency, amplitude, and damping).
(iv) R54 ensures range safety while turning during a spiral descent.
(v) R8 and R10 involve actuator sizings.
In the subsequent sections in this report, we will present safety requirements derived from the application of

our safety methodology to the target system.

4 Heterogeneity in Safety Information
In this section, we describe the external non-formal sources of information involved when considering safety of
the Swift UAS. Non-formal24 here refers to those sources of safety-relevant information which have not been
derived using formal methods. We consider external sources that provide assumptions, evidence and context.
Some of these are used to derive (i.e., justify) values, deflection angles, and throw ranges (servo ranges of
motion) that appear as parameters in the software (e.g., as PID gains).

Procedural, Safety and Development Standards NPR 7900.3B, APR 1740.1, AFSRB certificate (the aircraft
must not weigh more that 150 kg or fly faster than 170 kts.). See Appendix D.

23The actual requirement refers to a parachute.
24We prefer this to “informal” and its implications of lower standards, since rigorous engineering and mathematical analysis are still used.

29

Procedures As distinct from procedural standards, the UAS team’s procedures describe what they do on the
range, before, during, and after flights, including maintenance, as well as the roles played by the members
of the flight team.

Flight-day procedures: responsibilities of flight manager, primary and secondary pilots, ground station
operator, systems safety officer and safety observer; who knows what, who does what when; check-in,
pre-flight briefing, airfield systems set-up, pre-flight safety procedures and checklists, then the actual flight
tests (nominal flight plan), limited by range and other constraints, with refueling if necessary, followed by
shutdown procedures/checklists.

There are specific procedures/checklists for multiple flights.

Before each flight, they must rotate the vehicle to calibrate the heading because of hard iron effects in the
magnetometer. This is documented in the procedure manuals.

They prefer the pilot to bring her down “for safety” since it is not clear what the autopilot would do if there
was a sudden gust of wind. However, the landing is usually semi-automated with the autopilot making the
final ascent, lining up with the runway, and the pilot then taking over before the flare maneuver.

Mathematical derivations/theory The mathematical theory of aerodynamic stability and control is used to de-
rive certain parameters that govern the safe operation of aircraft. These numbers are incorporated into the
control law gains.

It is important to understand the assumptions on which these derivations rely. Some assumptions are used
for simplification.

We can distinguish the derivations themselves from the theorems which justify these derivations. Evidence
for the latter can be given by linking to actual formal proofs of these results, or by citing references to
papers and textbooks.

An example of a simplifying assumption is that most autopilots are designed with decoupled dynamics,
that is, linear independence of latitudinal and longitudinal models. This works if you assume small angles
(i.e., with big changes this assumption breaks down and the controller will not be stable).

For fixed wing aircraft, standard simplifying assumptions such as these are valid. Moreover, the pilots have
never noticed any non-linearities during flights at Crow’s Landing which would call these into question.

Modes and poles are derived to determine how the aircraft oscillates. We know that the Swift is governed
by standard equations25, so we can solve the appropriate linear dynamic system

ẋ(t) = A · x(t) +B · u(t)

where x(t) is the state vector at time t, A is the system matrix, B is the control matrix, u is the input
(control) vector, to give

x(t) = A1 · eλ1t +A2 · eλ2t + ...

where the Ai are the eigenvectors and the λi are the eigenvalues. We assume we can ignore the smaller
terms.

Note that this LTI is linearized for one specific trim condition, and it is assumed that this it is good for a
range of flight.

The eigenvalue solutions come in complex conjugate pairs λ = n± iω, and each corresponds to a natural
mode. If the eigenvalues cross the imaginary axis then the aircraft will be unstable.

Standard theory is also used to convert between various representation formats, such as Euler and wind
angles. Another example is the conversion from normalized coordinates (-1, +1) to deflection angles of
actuators. However, the angles themselves do not matter. Rather, it is their derivatives, in particular the
partial derivative ∂θACT /∂uNC , i.e., the rate of change of the actual angle of the actuator with respect to
the input signal u in normalized coordinates.

25Although not a traditional aircraft, it has been established that flying wings are characterized by the same theory.

30

Range Safety Calculations The expected casualty rate, EC , is calculated by the RSO, and is based on:

• probability of impact

• protection factor

• lethal area (approximately: wingspan + 2ft)

• population density in persons per nautical square mile

Typically a maximum population density is back-calculated from an EC of 1× 10−6 per flight hour.

Expert opinion One question in any safety case is what level of detail to present. This relates, in part, to the
question of who is reading the safety case; what is obvious and reasonable to a Subject Matter Expert
(SME), may be quite unclear and in need of justification to a non-expert.

Since a safety case is arguably primarily a means of communication we believe that revealing areas where
expert judgment is required is important, so we aim to make explicit opinions and their rationale as well
as any assumptions on which they rest.

Such decisions are rarely documented, and might not even be clear to other team members, even if they
appear reasonable.

Examples of expert judgment might be that a parameter is within safe bounds, that an error is within an
acceptable range, or that one subsystem is similar to another (and therefore has equivalent safety-related
properties). Coverage is also often a matter of judgment, e.g., that a component has been sufficiently
tested, or that sufficiently many flight maneuvers or simulation scenarios of the appropriate kinds have
been considered.

Also, correctness of testing scenarios is often a nebulous “know it when you see it” concept.

Vehicle Flight logs These have two purposes: logging flight hours to show the absence of mishaps for qualifi-
cation testing, and carrying out specific flight maneuvers for system identification.

Some logs are recorded on paper, some are electronic. Some are structured (e.g., using sheets from the
army), others not. Paper logs are recorded in the Flight Log Book in the EAV Lab.

During flight tests the data-feed from sensors is stored and then used for system identification.

Flight test maneuvers are designed to excite certain modes so they can do system ID. A flight test involves
taking an aircraft into a specific flight condition (e.g., a specified altitude, angle of attack, and Mach
number), trimming the controls, and then providing a particular input sequence. Common maneuvers
include the doublet, 2-1-1, and 3-2-1-1 [46]. These techniques are standard for fixed-wing aircraft

The 2-1-1 is known to generally be better (in the sense of exciting more modes) than the doublet. The EAV
team performs a 2-1-1 on the aileron, elevator, and rudder, and a doublet on the throttle. They carry out a
few of each, and iterate until they have enough data-points.

Typically there are predetermined manual inputs. They are trying to find the trim condition for a non-linear
system.

They assume Gaussian white noise, with zero mean.

Calibration experiments The Pitot tube is currently the only sensor calibrated by the EAV team [35], since it
is the only one they assembled themselves. They use the same calibration data for the EAV and the Swift.
Other components are calibrated by the manufacturers. Those data are reflected directly in the code.

However, determining deflection angles is a kind of calibration too, and the magnetometer is calibrated
before each flight.

Hardware Tests Static load tests make sure hinges (flange pieces) and actuators can handle loads. There are
ground tests (endurance, vibration/thermal) using various configurations and compliance criteria.

The actuators must be sized correctly to make sure they can withstand the loads. This uses both manufac-
turer data and their own calculations.

31

Aircraft models There are several interrelated aircraft models which are used for deriving parameters (e.g.,
airfoil stability derivatives such as CD), and for visualizing safety aspects of the avionics.

First, a geometric model of the aircraft is obtained using a robotic arm. This has a certain estimated error.
These errors are not propagated forward into the control model (which is determined directly during system
ID), but do propagate into the structural and CFD models.

The geometric model is used to derive structural models—CAD diagrams in SolidWorks which document
the control surfaces, etc. of the aircraft. These diagrams were sent to MLB to describe the modifications
they had to make.

The geometric model is also used to create CFD models, which are used to carry out airfoil analysis using
the vortex lattice technique. X-Foil is a 2D airfoil analysis program, which works together with LinAir.
The input is a geometric model of the airfoil, and the output consists of parameters like the lift coefficient.
The STAR software is used to do Navier-Stokes analysis on the CFD model. The results of the X-Foil and
Navier-Stokes analyses are stored in spreadsheets.

The CFD model itself is hard to verify, where “verified” means that it has been experimentally checked
in a wind tunnel. However, the LinAir/X-Foil analysis is used to validate the more expensive CFD. Also,
simulation verification checks parameters by putting them in a sim to see how the vehicle performs and to
get pilot feedback (i.e., Simulation Config. 1). See Appendix C for more details.

Avionics System Diagrams can be used to demonstrate pilot preemption, that is, that we can always go to
PIC. This is implemented in hardware (though there is an equivalent in the software). The pilot always has
direct control of the MUX A and MUX B channels.

Manufacturer Data-sheets Manufacturers of components provide datasheets that give important parameters,
such as hinge moments. If the hinge moments are inaccurate, you would exceed the motor limits.

This data is not directly cross-checked but is implicitly validated via ground tests, in particular the static
load tests.

(Heald, 1933) is an old paper with data from wind tunnel experiments and an equation that can be used to
cross-check with a CFD analysis, utilized to confirm what the hinge moments, Che, should be.

Simulations The system is tested in the lab using a sequence of configurations, progressively going from full
simulation (of hardware and associated software) to the actual system which is flown. In each configura-
tion, the UAS is tested with a set of scenarios — a specific set of inputs to the simulator, e.g., high winds,
start at 400ft, then have the engines cut out.

Config 1: Workstation Simulation Testing Everything is on the desktop and all components are simu-
lated. The actual controlled software is used though.

Config 2: Hardware in the Loop Testing But there is still no UAV hardware here (just the Ground Sta-
tions - the “pelican cases” communicate with models)
Communication is by wireless; actuators are simulated. Since there are now 3 computers, they need
communication components.

Config 3: Iron Bird Simulation Testing Move from desktop to flight computer. We connect to the ac-
tual actuators, but the sensors are simulated (simulation components of sensors run on the flight
computer).

Config 4: Flight Testing No simulation - real sensor in the loop. Same set-up on ground as in the air (so
it is considered a “flight test”). Of course, there is only so much you can test without actually flying.

Software model Models of sensors, actuators, commands, FMS etc.

Formal verification framework We consider assumptions about and inputs to the formal verification to also be
external sources of information.

1. justification of the formalization (the model)

32

2. justification of the verification framework itself (i.e.,AUTOCERT)

3. testing: library functions, domain theory (the axioms)

[6, 7] discuss three levels of justification for the AUTOCERT formal framework.

5 Safety Analysis of the Target System

5.1 Preliminary Hazard Analysis
To construct the safety case outline for the Swift UAS using our safety assurance methodology (Section 1.4), we
begin with hazard analysis.

A variety of techniques exist for hazard identification and analysis. Commonly used techniques include
hazards and operability (HAZOP) analysis [49], preliminary hazard analysis (PHA) [58], fault-tree analysis
(FTA) [18, 19], event-tree analysis (ETA), failure modes and effects analysis (FMEA) [56], and failure modes
effects and criticality analysis (FMECA) [56]. The details of how to utilize each of these in hazard identification
and analysis is not in the scope of this document; the interested reader may refer to the references above as well
as to the bibliographies contained therein.

In this section, we are mainly concerned with hazard identification and preliminary hazard analysis (PHA) of
the target system. This step serves as the foundation for identifying argument structures to assure that certain risks
have been managed. In particular, hazard analysis assists in creating fragments of the overall safety argument
(discussed in Section 6) that follows from risk management activities.

5.1.1 Hazard Identification

In this section, we present a fragment of the ongoing hazard analysis for the Swift UAS. We intend to apply PHA
along with FMEA and FTA26 for hazard identification and analysis. The motivation for choosing these techniques
is their systematic process in identifying hazards and in qualifying (or quantifying) their consequences, severity
and likelihood (i.e., risk). In practice, PHA is usually applied during the early stages of systems engineering,
i.e., during concept definition and design, creating the loop between engineering activities and system safety.
On the other hand, FMEA is typically applied when system details are sufficiently well known. This allows
reasoning about the causes and consequences of failures in system components, and in identifying mitigatory
measures. FTA allows a top-down reasoning from failure hazards to identify failing components in the system
that contribute to those hazards.

In addition, PHA forms one step in a chain of successively and continuously refined analyses and yields a
detailed evaluation of the safety risks for a given design (or a set thereof). Among the main outcomes from PHA
are:

1. Failure modes and relevant hazards.
2. Initiating and pivot events in an event chain leading to mishap(s).
3. A basis for risk categorization according to the acceptability of risk.
4. Evidence that there is compliance with the safety regulations and standards.
5. A preliminary set of (system) safety requirements and inputs for design specifications.

Thus, it facilitates the early identification of the appropriate mitigation measures so that system design includes
safety aspects.

This is not a comprehensive list of outcomes from PHA, but it represents some key outcomes of interest
for the scope of this document. PHA also forms the basis for subsequent and deeper hazard analyses such as
requirements hazard analysis (RHA), system and subsystem hazard analysis (SSA & SSHA respectively).

The input to PHA is a preliminary hazard list (PHL), and/ or the outcomes from concept hazard analysis
(CHA). The former may be obtained from several sources including, but not limited to, design and concept
documentation, known and relevant hazards, and brainstorming by the relevant stakeholders about other potential

26For the work presented in this report, we have mainly conducted PHA and FMEA, while FTA has been left for future work.

33

mishap scenarios. The latter is hazard analysis performed at the concept27 level and is used to identify major
hazards from previous generations of the system or from similar systems.

The preliminary hazard list (PHL) used here is based on the risk analysis performed for a previous UAS
system generation, namely, the Exploration Aerial Vehicle (EAV) [37]. The main justification for reuse of the list
of hazards is the commonality between the two systems, beyond the fact that both are unmanned aerial vehicles.
The PHL is shown in Table 1, and includes hazards identified on the aircraft and in the ground system.

Table 1: Preliminary hazard list

Subsystem Hazards
Aircraft (UAV)

Cable failure
Connector failure
Software/ firmware/ Avionics CPU errors
Loss of communication
Mechanical fastener failure
Stuck servo
Component failure
Overheating of critical flight system

Ground System
Avionics ground system failure
Ground pilot transceiver failure

In addition to these, additional hazards have been identified (by the authors) via brainstorming and through
examination of the Swift UAS concept documentation. A fragment of these additional hazards are given next.

The additional hazards identified in Table 2 refer primarily to failure hazards in the airborne system. These
list of hazards were presented to the subject matter expert28 (SME) who confirmed their validity beyond those
identified in the PHL (Table 1). The next step is to extend this hazard list with hazards from the ground system,
the communication infrastructure and the operating environment. This is performed through discussion with the
SME and the range safety officer, and facilitates reasoning about completeness of the hazard list.

5.1.2 Risk Analysis

Subsequent to hazard identification, we perform hazard risk analysis where the hazards are first individually char-
acterized by their potential consequences, consequence severity, likelihood and acceptability. This is followed
by mishap risk analysis, i.e., reasoning about combinations of identified hazards. For example, the hazards listed
in Table 2 largely refer to failure conditions in the airborne system which, by themselves, may not necessarily
result in a mishap. For example, a faulty sensor presents low mishap risk when the Swift UAS is in the landing
phase after completing its mission, whereas corrosion damage in the power system or battery packs presents a
mishap risk of its own accord, e.g., having the potential to explode. Consequently, hazards and their combination
are to be analyzed in the context of:

1. The UAS operating phases, i.e., Take-off, Climb, Cruise, Survey, Return Cruise, Descent and Landing
2. Assumptions about the operating environment and changes in the operational situation.

Additionally, it is also necessary to reason about hazards that may potentially exist from the intended oper-
ation of the system; in particular interactions the intended operation in a potentially unpredictable environment.
This requires more careful consideration of the design choices.

A snapshot of the risk analysis is shown in Table 3. It shows a subset of hazards which have been identified
for a given operating phase and sub-phase; in this case Descent and Approach respectively. It also illustrates
the approach towards risk analysis, i.e., characterizing risk based on the likelihood of hazard occurrence and its

27In this context, “concept” refers to the concept of operations (ConOps).
28Corey Ippolito, Code TI, NASA Ames.

34

35

Table 2: Fragment of additional hazard list

N
O

.
SY

ST
EM

SU

B
 S

YS
TE

M

C
O

M
PO

N
EN

T
/ L

O
C

A
TI

O
N

ST
A

TE
 /

SI
TU

A
TI

O
N

IS

H

A
ZA

R
D

?
R

A
TI

O
N

A
LE

1
A

IR
C

R
A

FT

1.
1

A

ct
ua

tio
n

Fa
ilu

re

Y
es

A

ct
ua

tio
n

fa
ilu

re
 m

ay
 re

su
lt

in
 a

n
ai

rc
ra

ft
w

hi
ch

 c
an

no
t b

e
pr

ed
ic

ta
bl

y
m

an
oe

uv
re

d

1.
1.

1

C
on

tro
l s

ur
fa

ce

ac
tu

at
or

s

Fa
ilu

re

Y
es

C

on
tro

l s
ur

fa
ce

 a
ct

ua
to

r f
ai

lu
re

s
ca

n
re

su
lt

in

an
 u

nm
an

oe
uv

ra
bl

e
ai

rc
ra

ft

1.
1.

1.
1

W
in

gl
et

 a
ct

ua
to

r (
L

&
 R

)
Fa

ilu
re

Y

es

1.

1.
1.

2

E

le
vo

n
ac

tu
at

or
 (L

 &
 R

)
Fa

ilu
re

Y

es

Fa
ilu

re
 o

f e
le

vo
n

ac
tu

at
or

 re
su

lts
 in

 fa
ilu

re
 to

co

nt
ro

l e
le

va
to

rs
 a

nd
 a

ile
ro

ns

1.
1.

1.
3

Fl
ap

 a
ct

ua
to

r (
L

&
 R

)
Fa

ilu
re

Y

es

Fa
ilu

re
 o

f f
la

p
ac

tu
at

or
 re

su
lts

 in
 fa

ilu
re

 to

co
nt

ro
l f

la
ps

1.

1.
2

S

te
er

in
g

ac
tu

at
or

s

Fa
ilu

re

Y
es

S

tre
er

in
g

ac
tu

at
or

 fa
ilu

re
 re

su
lts

 in
 a

n
ai

rc
ra

ft
th

at
 c

an
no

t b
e

st
ee

re
d

on
 th

e
gr

ou
nd

in

tro
du

ci
ng

 a
 p

ot
en

tia
l f

or
 ru

nw
ay

 in
cu

rs
io

n
/

ex
cu

rs
io

n
1.

1.
2.

1

Fr

on
t w

he
el

 s
te

er
in

g
ac

tu
at

or

Fa
ilu

re

Y
es

1.

2

Pr
op

ul
si

on

Fa
ilu

re

Y
es

P

ro
pu

ls
io

n
fa

ilu
re

 re
su

lts
 in

 lo
ss

 o
f l

ift
 a

nd
/ o

r
th

ru
st

1.

2.
1

E

le
ct

ric
 m

ot
or

sy

st
em

Fa
ilu

re

Y
es

1.
2.

1.
1

M
ot

or
 c

on
tro

lle
r

Fa
ilu

re

Y
es

1.
2.

1.
2

D
C

 m
ot

or

Fa
ilu

re

Y
es

1.

3

A
vi

on
ic

s
Fa

ilu
re

Y

es

A
vi

on
ic

s
fa

ilu
re

 re
su

lts
 in

 lo
ss

 o
f c

on
tro

l
1.

3.
1

A

vi
on

ic
s

ha
rd

w
ar

e

Fa
ilu

re

Y
es

A

vi
on

ic
s

ha
rd

w
ar

e
fa

ilu
re

 m
ay

 re
su

lt
in

 lo
ss

 o
f

co
nt

ro
l

1.
3.

1.
1

Fl
ig

ht
 s

en
so

rs

Fa
ilu

re

Y
es

S

en
so

r f
ai

lu
re

s
w

ill
 re

su
lt

in
 in

co
rre

ct

co
m

pu
ta

tio
n

of
 c

on
tro

l p
ar

am
et

er
s

1.
3.

1.
1.

1

IM

U
/G

P
S

 (R
oc

kw
el

l C
ol

lin
s

A
th

en
a

11
1m

)
Fa

ilu
re

Y

es

1.
3.

1.
1.

2

D

G
P

S
 (N

ov
at

el
 O

E
M

4-
G

2)

Fa
ilu

re

Y
es

1.
3.

1.
1.

3

A

ir
da

ta
 p

ro
be

Fa

ilu
re

Y

es

1.

3.
1.

1.
4

G
P

S
 a

nt
en

na

Fa
ilu

re

Y
es

1.
3.

1.
1.

5

D

G
P

S
 a

nt
en

na

Fa
ilu

re

Y
es

36

Table 3: Preliminary hazard analysis fragment
ID

H
A

ZA
R

D
 /

SC
EN

A
R

IO
 D

ES
C

R
IP

TI
O

N
PO

TE
N

TI
A

L
C

A
U

SE
S

EF
FE

C
T

O
N

 S
YS

TE
M

 /
C

O
N

SE
Q

U
EN

C
ES

LI
K

EL
IH

O
O

D
SE

VE
R

IT
Y

R
IS

K

C
A

TE
G

O
R

Y
M

IT
IG

A
TI

O
N

M

EA
SU

R
ES

C
O

R
R

EC
TI

VE
 A

C
TI

O
N

SA
FE

TY
 R

EQ
U

IR
EM

EN
T

O
PE

R
A

TI
N

G
 P

H
A

SE
D

es
ce

nt
 (D

E
)

SU
B

-P
H

A
SE

A
pp

ro
ac

h
(A

P
P

)

A
C

TU
A

TI
O

N

P
H

A
_D

E
.A

P
P

_A
C

T_
00

1
W

in
gl

et
 a

ct
ua

to
r f

ai
lu

re
(1

) I
nc

or
re

ct
 in

st
al

la
tio

n
(2

) I
nt

er
fe

re
nc

e
(3

) I
ns

uf
fic

ie
nt

 m
ai

nt
en

an
ce

(1
) L

os
s

of
 c

on
tro

l o
f f

lig
ht

 s
ur

fa
ce

co

nt
ro

lle
d

by
 w

in
gl

et
 a

ct
ua

to
r.

(2
) A

irc
ra

ft
st

al
l

R
em

ot
e

H
az

ar
do

us
2B

P
re

fli
gh

t i
ns

pe
ct

io
n

C
or

re
ct

 in
st

al
la

tio
n

[R
12

] A
ct

ua
to

rs
 m

us
t n

ot
 in

te
rfe

re
 o

r c
ol

lid
e

w
ith

ex

is
tin

g
st

ru
ct

ur
e

…

P
H

A
_D

E
.A

P
P

_A
C

T_
00

2
E

le
vo

n
ac

tu
at

or
 fa

ilu
re

(1
) I

nc
or

re
ct

 in
st

al
la

tio
n

(2
) I

nt
er

fe
re

nc
e

(3
) I

ns
uf

fic
ie

nt
 m

ai
nt

en
an

ce

(1
) L

os
s

of
 c

on
tro

l o
f f

lig
ht

 s
ur

fa
ce

co

nt
ro

lle
d

by
 E

le
vo

n
ac

tu
at

or
 (E

le
va

to
r +

A

ile
ro

n)

(2
) A

irc
ra

ft
st

al
l.

R
em

ot
e

H
az

ar
do

us
2B

P
re

fli
gh

t i
ns

pe
ct

io
n

C
or

re
ct

 in
st

al
la

tio
n

[R
12

] A
ct

ua
to

rs
 m

us
t n

ot
 in

te
rfe

re
 o

r c
ol

lid
e

w
ith

ex

is
tin

g
st

ru
ct

ur
e

…

P
H

A
_D

E
.A

P
P

_A
C

T_
00

3
Fl

ap
 a

ct
ua

to
r f

ai
lu

re
(1

) I
nc

or
re

ct
 in

st
al

la
tio

n
(2

) I
nt

er
fe

re
nc

e
(3

) I
ns

uf
fic

ie
nt

 m
ai

nt
en

an
ce

(1
) L

os
s

of
 c

on
tro

l o
f f

la
ps

(2
) A

irc
ra

ft
st

al
l

R
em

ot
e

H
az

ar
do

us
2B

P
re

fli
gh

t i
ns

pe
ct

io
n

C
or

re
ct

 in
st

al
la

tio
n

[R
12

] A
ct

ua
to

rs
 m

us
t n

ot
 in

te
rfe

re
 o

r c
ol

lid
e

w
ith

ex

is
tin

g
st

ru
ct

ur
e

…

P
H

A
_D

E
.A

P
P

_A
C

T_
00

4
Fr

on
t w

he
el

 s
te

er
in

g
ac

tu
at

or
 fa

ilu
re

(1
) I

nc
or

re
ct

 in
st

al
la

tio
n

(2
) I

nt
er

fe
re

nc
e

(3
) I

ns
uf

fic
ie

nt
 m

ai
nt

en
an

ce

N
o

kn
ow

n
co

ns
eq

ue
nc

e
du

rin
g

ap
pr

oa
ch

su

b-
ph

as
e

R
em

ot
e

H
az

ar
do

us
2B

P
re

fli
gh

t i
ns

pe
ct

io
n

C
or

re
ct

 in
st

al
la

tio
n

[R
12

] A
ct

ua
to

rs
 m

us
t n

ot
 in

te
rfe

re
 o

r c
ol

lid
e

w
ith

ex

is
tin

g
st

ru
ct

ur
e

…

A
VI

O
N

IC
S

H
A

R
D

W
A

R
E:

 S
EN

SO
R

S

P
H

A
_D

E
.A

P
P

_A
V

C
S

_0
01

IM
U

/G
P

S
 (R

oc
kw

el
l C

ol
lin

s
A

th
en

a
11

1m
)

Fa
ilu

re
E

xt
re

m
el

y
R

em
ot

e
M

aj
or

3C

P
H

A
_D

E
.A

P
P

_A
V

C
S

_0
02

D
G

P
S

 (N
ov

at
el

 O
E

M
4-

G
2)

 F
ai

lu
re

E
xt

re
m

el
y

R
em

ot
e

M
aj

or
3C

P
H

A
_D

E
.A

P
P

_A
V

C
S

_0
03

A
ir

da
ta

 p
ro

be
 F

ai
lu

re
(1

) I
nc

or
re

ct
 in

st
al

la
tio

n

(1
) I

nc
or

re
ct

 a
ird

at
a

su
pp

lie
d

to
 a

ut
op

ilo
t

(2
) O

ve
rs

pe
ed

(3
) A

irc
ra

ft
st

al
l

(4
) L

os
s

of
 fl

ig
ht

R
em

ot
e

H
az

ar
do

us
2B

[F
S

P
_A

V
C

S
_0

02
] I

t i
s

al
w

ay
s

th
e

ca
se

 th
at

w

he
ne

ve
r a

ird
at

a
pr

ob
e

fa
ilu

re
 is

 d
et

ec
te

d,
 fa

ils
af

e
au

to
pi

lo
t e

ve
nt

ua
lly

 fo
rc

es
 a

 c
on

tro
lle

d
sp

ira
l t

o
gr

ou
nd

P
H

A
_D

E
.A

P
P

_A
V

C
S

_0
04

G
P

S
 a

nt
en

na
 F

ai
lu

re
(1

) I
nc

or
re

ct
 in

st
al

la
tio

n
P

ro
ba

bl
e

M
aj

or
3A

P
H

A
_D

E
.A

P
P

_A
V

C
S

_0
05

D
G

P
S

 a
nt

en
na

 F
ai

lu
re

(1
) I

nc
or

re
ct

 in
st

al
la

tio
n

P
ro

ba
bl

e
M

aj
or

3A

P
H

A
_D

E
.A

P
P

_A
V

C
S

_0
06

90
0M

H
z

O
m

ni
 a

nt
en

na
 F

ai
lu

re
(1

) I
nc

or
re

ct
 in

st
al

la
tio

n

(1
) L

os
s

of
 c

om
m

un
ic

at
io

n
w

ith
 g

ro
un

d
st

at
io

n
(2

) D
rif

t o
ut

si
de

 ra
ng

e
sa

fe
ty

 a
re

a
(3

) L
os

s
of

 m
is

si
on

P
ro

ba
bl

e
M

aj
or

3A
Fa

ils
af

e
au

to
pi

lo
t

fo
rc

es
 c

on
tro

lle
d

de
sc

en
t

[F
S

P
_A

V
C

S
_0

01
] I

t i
s

al
w

ay
s

th
e

ca
se

 th
at

w

he
ne

ve
r l

os
s

of
 c

om
m

un
ic

at
io

n
w

ith
 g

ro
un

d
is

de

te
ct

ed
,fa

ils
af

e
au

to
pi

lo
t e

ve
nt

ua
lly

 ta
ke

s
co

nt
ro

l
w

ith
in

 a
 s

pe
ci

fie
d

tim
e

du
ra

tio
n.

A
VI

O
N

IC
S

SO
FT

W
A

R
E:

 A
U

TO
PI

LO
T

P
H

A
_D

E
.A

P
P

_A
V

C
S

_0
12

Fl
ig

ht
 m

an
ag

em
en

t s
ys

te
m

 (F
M

S
) F

ai
lu

re
R

em
ot

e
M

aj
or

3B
V

er
ify

 th
at

 s
pe

ci
fic

at
io

n
is

co

ns
is

te
nt

 w
ith

 th
eo

ry

[F
S

P
_A

V
C

S
_0

04
] W

he
n

FM
S

 fa
ilu

re
 is

 d
et

ec
te

d,
 it

is

 a
lw

ay
s

th
e

ca
se

 th
at

 fa
ils

af
e

au
to

pi
lo

t e
ve

nt
ua

lly

ta
ke

s
co

nt
ro

l w
ith

in
 a

 s
pe

ci
fie

d
tim

e
du

ra
tio

n

P
H

A
_D

E
.A

P
P

_A
V

C
S

_0
13

A
P

 F
ai

lu
re

P
ro

ba
bl

e
M

aj
or

3A
V

er
ify

 c
or

re
ct

 a
ut

op
ilo

t
im

pl
em

en
ta

tio
n

[F
S

P
_A

V
C

S
_0

03
] W

he
n

A
P

 fa
ilu

re
 is

 d
et

ec
te

d,
 it

is

 a
lw

ay
s

th
e

ca
se

 th
at

 fa
ils

af
e

au
to

pi
lo

t e
ve

nt
ua

lly

ta
ke

s
co

nt
ro

l w
ith

in
 a

 s
pe

ci
fie

d
tim

e
du

ra
tio

n

P
H

A
_D

E
.A

P
P

_A
V

C
S

_0
14

W
ay

po
in

t d
at

a
Fa

ilu
re

R
em

ot
e

H
az

ar
do

us
2B

(1
) V

er
ify

 le
ga

lit
y

of

is
su

ed
 c

om
m

an
ds

(2

) G
ua

ra
nt

ee
 c

or
re

ct

in
te

rp
re

ta
tio

n
of

co

m
m

an
ds

[A
1]

 C
om

m
an

ds
 m

us
t b

e
in

te
rp

re
te

d
co

rr
ec

tly
[A

2]
 N

o
co

m
m

an
d

sh
al

l m
ak

e
th

e
au

to
pi

lo
t

ex
ec

ut
e

an
 u

ns
af

e
m

an
eu

ve
r.

P
H

A
_D

E
.A

P
P

_A
V

C
S

_0
15

A
ut

op
ilo

t m
od

ul
e

R
em

ot
e

H
az

ar
do

us
2B

(1
) V

er
ify

 le
ga

lit
y

of

is
su

ed
 c

om
m

an
ds

(2

) G
ua

ra
nt

ee
 c

or
re

ct

in
te

rp
re

ta
tio

n
of

co

m
m

an
ds

[A
1]

 C
om

m
an

ds
 m

us
t b

e
in

te
rp

re
te

d
co

rr
ec

tly
[A

2]
 N

o
co

m
m

an
d

sh
al

l m
ak

e
th

e
au

to
pi

lo
t

ex
ec

ut
e

an
 u

ns
af

e
m

an
eu

ve
r.

(1
) L

os
s

of
 G

P
S

 s
ig

na
l

(2
) I

nc
or

re
ct

 w
ay

po
in

t a
nd

 h
ea

di
ng

 d
at

a
su

pp
lie

d
to

 a
ut

op
ilo

t
(3

) D
rif

t o
ut

si
de

 ra
ng

e
sa

fe
ty

 a
re

a

(1
) L

os
s

of
 G

P
S

 s
ig

na
l

(2
) I

nc
or

re
ct

 w
ay

po
in

t a
nd

 h
ea

di
ng

 d
at

a
su

pp
lie

d
to

 a
ut

op
ilo

t
(3

) D
rif

t o
ut

si
de

 ra
ng

e
sa

fe
ty

 a
re

a

(1
) I

nc
or

re
ct

 c
om

pu
ta

tio
n

of
 c

on
tro

l s
ur

fa
ce

si

gn
al

s
(2

) I
nc

or
re

ct
 a

ct
ua

to
r s

ig
na

ls
 s

up
pl

ie
d

(3
) L

os
s

of
 c

on
tro

l o
ve

r f
lig

ht
 s

ur
fa

ce
(4

) L
os

s
of

 m
is

si
on

(5
) L

os
s

of
 fl

ig
ht

(6
) I

nc
or

re
ct

 c
om

pu
ta

tio
n

of
 w

ay
po

in
ts

 a
nd

he

ad
in

gs

1.
 D

ea
dl

oc
ks

2.
 T

im
in

g
er

ro
rs

3.
 M

em
or

y
co

rr
up

tio
n

4.
 In

co
rr

ec
t s

pe
ci

fic
at

io
n

5.
 In

co
rr

ec
t i

m
pl

em
en

ta
tio

n
6.

 In
ac

cu
ra

te
 /

 in
co

rr
ec

t
as

su
m

pt
io

ns

7.
 W

ro
ng

 in
te

rp
re

ta
tio

n
of

th

eo
ry

(1
) G

ro
un

d
st

at
io

n
pi

lo
t c

on
tro

lle
r

ov
er

rid
es

 a
ut

op
ilo

t

(2
) F

ai
ls

af
e

au
to

pi
lo

t
in

te
rv

en
es

 w
he

n
fa

ilu
re

 o
f a

ut
op

ilo
t

de
te

ct
ed

(1
) F

ai
ls

af
e

au
to

pi
lo

t
fo

rc
es

 c
on

tro
lle

d
sp

ria
l t

o
gr

ou
nd

(2
) G

ro
un

d
st

at
io

n
pi

lo
t c

on
tro

lle
r

ov
er

rid
es

 a
ut

op
ilo

t

severity. The risk analysis relies on risk categories (Figure 14), which effectively combine likelihood and severity
to give a qualitative gauge of risk. On the other hand, if the likelihood and severity can be precisely quantified
(such as using exact probabilities or distributions, or cost of the loss event), it is possible to perform quantitative
risk analysis (as is done during PRA).

SEVERITY CATASTROPHIC HAZARDOUS MAJOR MINOR
NO SAFETY

EFFECT
Likelihood Index 1 2 3 4 5

PROBABLE A 1A 2A 3A 4A 5A

REMOTE B 1B 2B 3B 4B 5B

EXTREMELY
REMOTE

C 1C 2C 3C 4C 5C

EXTREMELY
IMPROBABLE

D 1D 2D 3D 4D 5D

Figure 14: Risk categories reflecting a combination of the likelihood of hazard occurrence and severity [58].
Other categorizations also exist based on the safety guideline/standard used, e.g., a 5×5 table with five categories
of likelihood of occurrence and different severity categories, as in [21].

The risk category column provides a basis for decision making, e.g., hazards with a risk category 1A, 1B, 1C,
2A, 2B and 3A may represent risks which are unacceptable, and therefore require specific measures to reduce it
to acceptable levels. On the other hand a hazard with a risk category 3D may be considered as acceptable, and
therefore may not be dealt with, in the same way as those in the previous categories. We revisit these notions
in Section 6 when we consider how risk analysis will drive the creation of the safety case outline of the Swift
UAS. As seen in table 3, the analysis facilitates the identification of functional safety requirements, which when
correctly implemented will eliminate or mitigate the identified hazards. For example, the failure hazard of the AP
submodule of the Swift UAS autopilot (PHA DE.APP AVCS 013), is adjudged to present unacceptable risk
(category 3A). To mitigate this risk, a functional safety requirement is created which states:

[FSP AVCS 003]: When AP failure is detected, the failsafe autopilot shall always eventually take control within
a specified time duration.

The failsafe autopilot represents a mechanism for contingency management or flight termination and forms
part of the Swift UAS contingency management system (CMS).

This analysis is ongoing therefore table 3 is partially filled. The gaps in the table reflect lack of domain
knowledge on the part of the authors and subsequent work includes closing these gaps in discussion with the
designer and range safety officer of the Swift UAS. Additionally, the columns Likelihood and Severity were
filled by the authors and do not reflect the actual risk of these hazards in the Swift UAS. Indeed, subsequent
work also involves populating the columns with values which are representative of the knowledge of the domain
experts, and the available data.

Note also that in Table 3, only a small subset of software hazards and their corresponding causes have been
listed. Elsewhere29 latent software defects have been identified as potential additional causes for autopilot soft-
ware failure hazards. As future work, we anticipate updating the hazard analysis to include these additional
causes, the resulting mitigation measures and the corresponding safety requirements. Some of these safety re-
quirements pertain to the existing practices of process-based software safety assurance activities (Appendix E).

Hazard identification also provides input for identifying failure modes. This can subsequently be used in an
FMEA. As an example, a fragment of the identified failure modes is shown in Table 4.

The hazard analysis illustrated in this section provides the basis for the safety case outline of the Swift UAS.
Additionally, it provides the rationale for deriving functional safety requirements. Indeed, the generic safety case
outline for the Swift UAS, iteratively argues that hazards which present the potential for mishaps are eliminated or

29In communication with FAA DER, Joe Wlad. See also Appendix E.

37

38

Table 4: Failure modes and effects analysis (FMEA) fragment

HAZARD / SCENARIO
DESCRIPTION HAZARD CATEGORY LINK TO RELATED

SCENARIOS ID COMPONENT FAILURE MODE

Actuation failure Mechanical PHA_ACT_001 FMEA_ACT_001 Winglet actuator (L&R) Stuck
FMEA_ACT_002 Winglet actuator (L&R) Free
FMEA_ACT_003 Winglet actuator (L&R) Damaged (partially free)
FMEA_ACT_004 Elevon actuator (L&R) Stuck
FMEA_ACT_005 Elevon actuator (L&R) Free
FMEA_ACT_006 Elevon actuator (L&R) Damaged (partially free)
FMEA_ACT_007 Flap actuator (L&R) Stuck
FMEA_ACT_008 Flap actuator (L&R) Free
FMEA_ACT_009 Flap actuator (L&R) Damaged (partially free)
FMEA_ACT_010 Front wheel steering actuator Stuck
FMEA_ACT_011 Front wheel steering actuator Free
FMEA_ACT_012 Front wheel steering actuator Damaged (partially free)

Populsion failure Overheating PHA_PRP_001 FMEA_PRP_001 Motor controller Overheating
FMEA_PRP_002 DC Motor Overheating

Propulsion failure Mechanical PHA_PRP_002 FMEA_PRP_003 Motor controller Stress fracture
FMEA_PRP_004 Motor controller Wear out due to friction
FMEA_PRP_005 DC motor Stress fracture
FMEA_PRP_006 DC Motor Wear out due to friction

Propulsion failure Electrical PHA_PRP_003 FMEA_PRP_007 Motor controller Open circuit
FMEA_PRP_008 Motor controller Short circuit
FMEA_PRP_009 Motor controller Overvoltage
FMEA_PRP_010 DC Motor Physical loss of connector
FMEA_PRP_011 DC Motor Open circuit
FMEA_PRP_012 DC Motor Short circuit
FMEA_PRP_013 DC Motor Overvoltage
FMEA_PRP_014 DC Motor Physical loss of connector

Avionics failure Hardware (including Electrical) PHA_AVCS_001 FMEA_AVCS_001 IMU/ GPS (Rockwell Collins Athena 111m) Accumulation error (Abbe error)

FMEA_AVCS_002 IMU/ GPS (Rockwell Collins Athena 111m) Accuracy error
FMEA_AVCS_003 IMU/ GPS (Rockwell Collins Athena 111m) Non acquisition of satellites

FMEA_AVCS_004 DGPS (Novatel OEM4-G2) Accuracy error
FMEA_AVCS_005 DGPS (Novatel OEM4-G2) Non acquisition of satellites

FMEA_AVCS_010 I/O Board - Parvus COM-1274 Soldering problems
FMEA_AVCS_011 I/O Board - Parvus COM-1275 Overheating
FMEA_AVCS_012 I/O Board - Parvus COM-1276 Physical loss of connector

FMEA_AVCS_013 Flight computer - ADL945PC-L2400 Soldering problems
FMEA_AVCS_014 Flight computer - ADL945PC-L2401 Overheating
FMEA_AVCS_015 Flight computer - ADL945PC-L2402 Physical loss of connector

Avionics failure Software PHA_AVCS_002 FMEA_AVCS_020 Flight management system (FMS) Incorrect transition
FMEA_AVCS_021 Flight management system (FMS) Incorrect updates
FMEA_AVCS_022 Flight management system (FMS) Wrong response to command

FMEA_AVCS_023 Autopilot (AP) Incorrect transition
FMEA_AVCS_024 Autopilot (AP) Incorrect updates
FMEA_AVCS_025 Waypoint data Incorrect data
FMEA_AVCS_026 gs11m
FMEA_AVCS_027 javmodem
FMEA_AVCS_028 ap_rcap
FMEA_AVCS_029 datastore

FMEA_AVCS_030 ap_failsafe Non detection of communication loss

FMEA_AVCS_031 pcsfilter
FMEA_AVCS_032 sv203interface
FMEA_AVCS_033 Reflection virtual machine
FMEA_AVCS_034 CGL
FMEA_AVCS_035 scripts (rfs and rff files)

Flight critical system PHA_FCRS_001 FMEA_FCRS_001 Pilot receiver (Duplicated)
FMEA_FCRS_002 Motor controller (Duplicated)
FMEA_FCRS_003 Multiplexers Stuck at 1

mitigated, given a specified context. Effectively, the safety case outline describes the framework of the argument
structure which will be used in assuring the safety of the target system. It also links the justifying evidence
(when it exists) to the safety requirements derived from hazard elimination or mitigation measures. This outline
is discussed in greater detail in Section 6.

5.2 Safety Requirements
We consider the following high-level safety requirements, which have been derived from the hazard analysis
described in section 5.1:

A1 The autopilot shall interpret all commands correctly.

The safety significance here, is that it is important to take care to avoid going into areas where one should
not go (i.e., outside the range) by avoiding overshoot when tracking to a waypoint.

A2 The autopilot shall execute safe maneuvers for all commands.

This is ensured by placing limits on the output of each block in the autopilot. Speed is limited between
Vmin and Vmax, but alpha and beta are not directly limited. Instead, (alpha, beta, V) can be converted to
Euler angles and limits are placed on those. However, even if the Eulers appear to be in range, because
of the wind, the angle of attack might be inaccurate. Therefore, since we are not sure about the wind,
conservative limits are placed on the Euler angles – pitch θmin and θmax; likewise for the roll (but not the
yaw).

There are several design features relating to the safe execution of commands by the autopilot. For example,
“throttle control altitude is default, for safety if the engine fails” [34]. The rationale for this is that there are
two ways to control altitude — elevators for the angle of attack (pitch angle), or throttle for the altitude. If
you use the angle of attack you will eventually stall during engine out.

Another example is that during immediate attitude capture “the aircraft is controlled within the safety
limits of the controller”. These safety limits are set to “conservative” values, using their expertise. This
conservativeness is reasonable since it is a standard aircraft.

A3 The autopilot shall maintain accurate state information.

If inaccurate information is transmitted to the GSO, then the pilot will not be able to safely control the
UAV, nor will the autopilot be able to ensure that safe limits are maintained.

We choose A2 as the initial Base Year target safety requirement. Based on Figure 15 this can be refined to
this lower level functional safety requirement (among others)

• The autopilot shall correctly compute the actuator outputs

which can then be further refined to the following low-level Base Year Target functional safety requirements:

LL-SR-001 The autopilot module shall correctly compute the aileron control variable.

LL-SR-002 The autopilot module shall correctly compute the elevator control variable.

The previous section describes the computations which are used to compute the aileron control variable.
These are properties of the code, and can be seen as functional safety requirements, though we do not explicitly
label them as such at this low level.

• The autopilot module shall correctly compute the cross-track error.

• The autopilot module shall correctly compute the desired heading.

39

As time permits, we will verify other aspects of the autopilot safety and functional safety.
The Swift UAS hazard analysis (Section 5.1) provides the justification for these safety requirements (among

the complete set of safety requirements and functional safety requirements). For example, requirements A1
and A2, are, in part, derived from the mitigation measures for failure hazards PHA DE.APP AVCS 014 and
PHA DE.APP AVCS 015 of the waypoint data and the autopilot modules respectively, during the descent phase
(Table 3).

Safety properties of the software (which could be expressed ass requirements) include (but are not limited to)
the following language-specific properties:

• absence from run-time errors (such as division by 0)

and domain-specific properties:

• correct use of units

• variables representing physical quantities (e.g., bank angle) remain within the appropriate bounds

Note that the UAS has a particular configuration, and a particular set of modules, instantiated via a script,
executing a particular flight plan. Safety is specific to each of these choices. However, the general properties
outlined above are largely independent of these variabilities.

Requirement A1 is essentially functional correctness of autopilot, a high-level property of the flight software.
Roughly speaking, the correctness of the autopilot module is dependent on showing the correctness of the un-
derlying subsystems. To show the correctness of the autopilot and the function calls instigated there we must
show the correctness of the FMS and AP subsystems which the autopilot depends upon and initializes. The FMS
subsystem interprets the list of commands given to an aircraft. The transition between these commands must be
correctly executed, which implies that new modes will be set in the FMS and AP systems. The AP system must
then correctly compute the output for each aircraft control surface based on which modes have been set. The
correctness of the autopilot is dependent on each subsystem properly communicating any state transitions and
then operating appropriately on that resulting state. At a high level the correctness of the autopilot depends on
the following conditions:

1. The Autopilot module and its dependent objects are correctly initialized and the module makes its update
calls properly.

2. The FMS system is correctly initialized. For each command the transitions are correctly implemented and
the resulting modes that are set are correct for that command.

3. The AP system is correctly initialized and correctly interprets the modes set in the FMS. The output of
surface control calculations is correct for the current set of modes.

Figure 15 lists the high level hierarchy of functional safety requirements for the autopilot module. This
decomposition is based on the structure of the code defining the autopilot module and its subsystems.

40

41

The autopilot is correct if

• The system is properly initialized

– aircraft state information is properly received from the sensors
– the current, previous, and next waypoints are properly defined
– the FMS object is properly initialized
– the AP object is properly initialized
– Input and Output variables are properly routed via the reflection systems scripts
– Parameter data is properly initialized.

• The FMS system is correct if

– The FMS system and AP system are properly initialized by the autopilot
– The FMS system properly interprets all commands
– The FMS system properly transitions between commands and waypoints
– UpdateCommandTransitions is correct

∗ The FMS system properly transitions into a COMMAND LAND command
· The FMS system properly transitions between phases when the command is COMMAND LAND
· the transition criteria for each phase is properly interpreted
· the FMS system properly transitions between modes representing the different phases of the landing com-

mand
· the FMS system properly sets the new waypoint for approach

∗ The FMS system properly transitions into and executes all other commands
– The FMS system properly sets FMS Lateral and Longitudinal modes for the corresponding command

∗ setNewFMSWaypoint is correct
– The FMS system properly sets AP Lateral and Longitudinal modes

∗ SetFMSLatMode is correct
∗ SetFMSLonMode is correct

– The FMS system properly updates state variables in the AP system
∗ UpdateFMSLatMode is correct
∗ UpdateFMSLonMode is correct

• The AP system creates correct output for all aircraft control surfaces if

– The autopilot correctly initializes the AP object
– The FMS system correctly updates the AP modes and state variables.
– Each PID loop

∗ receives correct aircraft state information
∗ receives correct current and previous waypoint information

– PID controller objects are properly initialized
– PID controller updates are correct for each aircraft controller surface
– The CGL mathematics libraries provide correct results
– The autopilot shall correctly compute the actuator outputs

Figure 15: Breakdown of autopilot functionality

6 System Safety Case Outline
We now present several fragments of the intended overall safety argument for the Swift UAS. We have con-
structed the safety case fragment using AdvoCATE, our assurance case automation toolset [15]. The fragments
together represent an end-to-end “slice” of the argument (shown as a bird’s eye view in Figure 16) across the
overall safety case, starting from a top-level safety goal down to the evidence and/or proof obligations for a
low level computation for a specific flight control surface. Broadly, this slice can be thought of as comprising
a manually created fragment (shown enclosed in a dotted box in Figure 16) and an automatically generated
fragment.

In the overall safety argument fragments to be shown subsequently, information for specific context elements
and justification elements are mined from the information provided by the SME, specifically from [32–34,36,37].

Manually created safety case fragment

Auto-generated safety case fragment

Figure 16: Bird’s eye view of an end-to-end slice of the overall system safety case for the Swift UAS.

6.1 Manually Created Safety Case Fragment
The manually created safety case mainly reflects the part of the (slice of the) overall safety case which is relevant
for the airborne system in the Swift UAS, and it is based on the preliminary hazard and risk analysis (Section 5).

The argument is created in layers, i.e., starting with a top-level safety claim, we identify sub-claims linking
the top-level system safety claim to software. Subsequently, claims about the software are broken down into
claims about the autopilot; then into claims about the autopilot controller (AP) module, and eventually into

42

43

Top-level Safety Case Fragment

Safety Case Fragment linking
Software and Autopilot

Safety Case
Fragments
linking System
and Software

Safety Case
Fragments
linking Autopilot
and Controller
(AP) module

Safety Case Fragment
linking Controller (AP)
module and PID Controller
Values

Figure 17: Bird’s eye view of the manually created safety case fragment for the Swift UAS.

claims about the PID controllers which provide the appropriate control signals to the relevant flight control
surfaces. This is shown in Figure 17 as a bird’s eye view.

As shown in the figure, the argument fragment supporting the claims at the last level are automatically
generated using AUTOCERT, and this is described in greater detail in Section 6.2. We now briefly describe each
layer of this safety case fragment.

6.1.1 Top-level Safety Case Fragment

The case is made for a safe system by creating an argument structure that justifies that mishap risk has been
reduced to acceptable levels, by either eliminating the identified hazards, or by mitigating them. Recalling the
risk categories shown in Figure 14, the hazards which need to be considered in the safety case are those which
are categorized as having unacceptable risk. By definition, when mishap risk has been reduced to acceptable
levels, the system is safe. A key challenge is providing sufficient confidence that all the hazards which contribute
to mishaps have been identified and addressed. We begin the safety argument by claiming that the Swift UAS is
safe in the context of a given site of operation, for certain weather conditions, for a specified mission and in a
specific configuration (Figure 18).

In Figure 18, one strategy for arguing that the failure hazards of the airborne system (the UAV) have been
eliminated or mitigated, could be first argument over all hazards, across all operating phases (Strategy ID
N70618522). An alternative approach is first argument over all subsystems (Strategy ID N18584532) instead.
One reason to use the former is to initially address those failure hazards which can change risk categories de-
pending on the mission phase. For example, failure of the nose wheel actuator does not pose mishap risk during
the cruise phase, whereas it does, during the flare sub-phase of the descent phase. On the other hand, using the
latter strategy, i.e., arguing over all subsystems, facilitates the creation of a safety argument which is easier to
maintain and can be better modularized.

Note that regardless of the strategy that is used first, arguing for the mitigation of hazards that may change
risk categories will be still required for ensuring that the safety case is complete. We hypothesize, however, that
depending on the strategy used, the structure of the safety case will change. Testing this hypothesis is not part of
the scope of this work and is left for future work.

6.1.2 Linking the System and Software

Figure 19 shows the safety case fragment where the claim that the UAV failure hazards during descent are
mitigated (Goal ID N20891613) is decomposed to the claim that avionics failure hazards during descent are
mitigated (Goal ID N2763522). In turn, this goal is refined to the claim that software failures (in the avionics
system) are mitigated during descent (Goal ID N20268452). This claim is further developed in the safety case
fragment shown in Figure 20.

Figure 19 also illustrates how two sources of non-formal information have been incorporated: the hazard
analysis from the FMEA (e.g., as shown in Figure 4) as the context for the argument over all identified causes
(Strategy ID N16380072), and the flight-day procedures (Evidence ID N1518857) as evidence of the measures
employed to mitigate actuator failures resulting from maintenance issues.

6.1.3 Linking the Software and the Autopilot Module

As mentioned in Section 6.1.2, Figure 20 shows the safety case fragment that develops the claim of mitigating
(avionics) software failures during descent (Goal ID N20268452). This claim has been developed into the claims
that (1) the avionics software modules and commands are correct (Goal ID N35108042) and (2) subsequently
that the autopilot module is correct (Goal ID N82535547) by using the strategy of making correctness arguments
(Strategy ID N93041050). Note that arguing correctness is not always required when making a safety claim.

However, in our case the correctness of the avionics software is itself safety related. In other words, incorrect
behavior is unsafe behavior and this context is made explicit in the argument fragment (Context ID N76400477),
i.e., in the definition of correctness of the software components. In the particular case of the failsafe autopilot
(which is part of the avionics software and also forms a part of the Swift UAS CMS), its correct behavior is
required to assure safety.

44

45

Developed further in
Safety Argument
Fragment 02

Figure 18: Safety argument fragment 01. Top level safety argument for the Swift UAS.

Developed further in
Safety Argument Fragment 03

Figure 19: Safety argument fragment 02. Entry point to the software safety argument for the Swift UAS from
the top-level safety argument.

Figure 20 also shows how the claim of mitigation of avionics software failures during descent (Goal ID
N20268452) is also linked to the identified high-level functional safety requirements30 A1, A2 and A3 as identi-
fied in Section 5.2. The latter are themselves reflected as specific goals:

(i) N14968801: The autopilot interprets all commands correctly during descent.
(ii) N19965398: The autopilot executes safe maneuvers for all commands during descent.
(iii) N11024219: The autopilot maintains accurate state information during descent.
These arise in the safety argument, in part, from the strategy that software failures can be mitigated by

satisfaction of the safety requirements on avionics software during descent (Strategy ID N36621902). Finally,
we also argue that software failures during descent are mitigated when the expected input the software is reliably
provided (Strategy ID S1 Inp rel, and Goal ID G2 inp rel).

46

47

D
ev

el
op

ed
fu

rth
er

in
S

af
et

y
A

rg
um

en
tF

ra
gm

en
t0

4

Figure 20: Safety argument fragment 03. Argument linking safety claims about the avionics software and the
autopilot.

48

!
"#
"$
%&
"'
()
*+,
"*
-.

/
0(
"+
1
2
*3
)4
".
+5
*0
34
".
+6
7

Figure 21: Safety argument fragment 04. Argument linking safety claim for the Swift UAS Autopilot to the AP
submodule.

6.1.4 Linking the Autopilot and the Controller Module

Figure 21 shows that the claim that the autopilot module of the avionics software is correct (Goal ID N82535547)
is undeveloped, i.e., it may not be sufficient to use the strategies of arguing correctness of the design (Strategy
ID N59283531) and correctness of the implementation (Strategy ID N3259575) to claim the correctness of the
autopilot. Thus, we reflect the need to show that the autopilot meets the higher-level requirements on the Swift
UAS itself using an undeveloped and uninstantiated goal (Goal ID N87102962).

In this report, we mainly develop the claim (Goal ID N27918261) that the implementation of the AP module
(class) is correct. In turn, arguing this claim amounts to arguing that the implementation of the PID controller for
each control surface is correct (Goal ID N42862332).

6.1.5 Linking the Controller Module to aileron control

As mentioned in Section 6.1.4, the correctness of the autopilot module of the avionics software is refined into
the claim of correctness of the PID controller updates of the actuator values for the flight control surfaces. This
claim is developed by arguing for the correctness of the PID controller over each control surface. In this report,
in particular, we are concerned with the correctness of the controller updates for the aileron (so as to relate the
fragment to the sequence of calculations in the aileron described earlier in Section 2.3.2).

In Figure 22, we show the safety case fragment in greater detail starting from the claim that the auto-
pilot module is correct (Goal ID N82535547), linking it to the correct implementation of AP class (Goal ID
N27918261), and subsequently to the claim of correct PID controller updates for each flight control surface
(Goal ID N42862332). This claim is made in the context of the low-level functional safety requirement as given
in Section 5.2. Finally, this is refined into two sub-claims about the correct implementation of the controllers for
two flight control surfaces:

(i) N39596683: Implementation of PID controller is correct for Aileron control variable, and
(ii) N5207777: Implementation of PID controller is correct for Elevator control variable.
These two claims are created in the context of the identified low-level Base Year target safety requirements

(LL-SR-01 and LL-SR-02 respectively), as given in Section 5.2. In the next section, we show how the safety
argument to support these two claims are automatically generated.

6.2 Semi-automatically Generated Safety Case
Our goal is to combine manually created safety case fragments with automatically generated fragments. First,
we recall the lowest level of the manually created safety case fragment for the Swift UAS, as shown in Figure 23.
In Figure 23, a claim of correctness in the PID controller updates for flight control surfaces is broken down
into sub-claims of correct updates to the aileron and elevator control variables in the autopilot, respectively.
The final component in the safety case, the actual argument for correctness of the control variables, is derived
automatically.

In this section, we first present the automatically generated safety-case fragments for the Swift UAS. Then,
in section 7 we describe our method for semi-automatic generation of the safety argument to support the two
claims mentioned above.

In Figure 24 we see a bird’s eye view of the automatically generated safety case fragments combined with
the manually created safety case fragment. In particular, only the two goals from Figure 23 are shown in the top
left of Figure 24 (enclosed in the dotted box), to indicate the link to the manually created safety case fragment.
The automatically generated components are the two right branching structures, one for each of the low-level re-
quirements. In greater detail, Figure 25 shows the initial part of the automatically generated safety case fragment
for the lowest level goals shown in Figure 23. (Goal IDs N39596683, and N5207777).

We support two ways of integrating manual and generated fragments. First, by tagging goals in ASCE [3]
with the string autocert:n, indicating that this goal is to be merged with the fragment generated by verifying
the nth goal given in a separate AUTOCERT specification file. Second, the integration script can extract the
relevant goals from the safety case and directly call AUTOCERT.

30As a matter of convention, the goals are not stated in the same way as the requirements. The goals are stated as predicates which can be
evaluated as TRUE or FALSE, instead of stating them using the convention for stating requirements, i.e., using “shall” statements.

49

50

Figure 22: Safety Argument Fragment 05. Linking claims about the autopilot to claims about the AP controller
to claims about the implementation of specific PID controllers for two flight control surfaces.

Figure 23: Safety case fragment linking claims about the autopilot to two flight control surfaces.

Link to manually created safety case fragment

Figure 24: Bird’s eye view of the automatically generated safety case for the Swift UAS

We run the AUTOCERT tool [17] to develop the claims in Figure 23 into a number of verification conditions
(VCs). These formulas can then be discharged by automated theorem provers. AUTOCERT assumes that low-
level library functions meet their specifications, and does not verify the bodies. Evidence of this has to be
provided, therefore, either by testing, or by inspection. The fragment below each goal outlines the sequence
of intermediate computations in the code used to establish the relevant goal: typically a property on a variable.
Some of these intermediate steps correspond to lower level goals.

In Figure 25 we see details of the first and part of the second level underneath the point where the manually
created and automatically generated safety case fragments were merged. The tree structure descending to the
right, underneath the lowest strategy node (Strategy ID AC30) has not been shown here. The goal from the auto-
matically generated safety case fragment has been merged with the goal from the manually created fragment.
The strategy, model, and subsequent goal nodes are all automatically generated from XML taken from the AU-
TOCERT safety case generator. In this case, the argument is for the correctness of the aileron control variable
output->m_aileron_m1p1, whose property is stated in the top level goal (Goal ID AC1).

This property is the condition that must be shown to hold, for the argument to hold. The strategy asserts that
we show the correctness of the claim by decomposition of the correctness property, where the notion of decom-
position is that embodied within AUTOCERT. The context (Context ID AC6) clarifies that the decomposition is
of the correctness property at line 542, which is in reference to the original source code.

Next we see the verification conditions that must be shown to achieve this goal. These, too, are goal nodes.
The diamond attached to the bottom of the goal node asserts that they are incomplete as no proofs have been gen-
erated. The claim (Goal ID AC28) represents a dependent variable, m_rollError_rad and its property. There

51

Figure 25: A step in the generated fragment of the safety case.

may be multiple dependent variables but in this case output->m_aileron_m1p1 is dependent, directly, only
on this variable. This goal represents the start of a recursive instance of the tree.

The auto-generated safety case fragment continues thus, until the reasoning reaches assumptions of the sys-
tem or axioms. In the auto-generated safety case this is represented by complete leaf nodes. In our example,
however (Figure 25), the argument is not yet complete, as shown by the GSN notation for undeveloped goals.

Theorem provers can be used to discharge the VCs. The proof provides evidence in the safety case, and
the prover provides context. Figure 26 indicates that a proof was successfully found, using theorem prover
SSCPA--0.0. The path to the proof object is shown (rather than the proof itself).

The safety case also needs to represent any assumptions that have been made about library functions, and
what methods, if any, have been used to verify these. This information is obtained from a separately specified
file (not shown here) and is represented in the safety case fragment as seen in Figure 27. Here, the function was
inspected and a report was made of this inspection. In other cases the node could denote that testing was done
with additional information giving a path to the test results.

Finally, the provers use various domain theories to discharge the VCs. The full text of the list of domain the-
ories is hidden by the browser but in this case includes such theories as arithmetic reasoning and transformation
geometry. Figure 28 shows a fragment of a semi-automatically created safety case narrative, corresponding to a
step in the auto-generated fragment.

52

53

Figure 26: Proof of a VC by a Prover.

Figure 27: Inspection of a library function.

54

Goal N39596683: Implementation of PID controller is correct for aileron control variable output->m_aileron_m1p1. This goal
requires us to formally prove that ap satisfies the following formal requirement:

has_unit(output->m_aileron_m1p1, desired(aileron))

The relevant external assumptions for the verification of this goal are:

1. airplaneData->m_heading_rad is a value representing a current heading
2. airplaneData->m_pitch_rad is a value representing a current pitch
3. airplaneData->m_altitude_ft is a value representing a current altitude
4. airplaneData->m_roll_rad is a value representing a current roll
5. airplaneData->m_pos_north_ft is a value representing a position to north
6. airplaneData->m_pos_east_ft is a value representing a position to east
7. airplaneData->m_airspeed_fps is a value representing a current speed
8. srcWpPos is a value representing a position in the North East frame
9. dstWpPos is a value representing a position in the North East frame

10. currACPos is a value representing a position in the North East frame
11. m_latmode is equal to ’LATMODE_CROSSTRACK’
12. m_lonmode is equal to ’LONMODE_ALTITUDECMD’
13. m_desiredAltitude_ft is a value representing the desired altitude
14. m_desiredpitch_rad is a value representing the desired pitch
15. m_prevWaypointEast_ft is a value representing a position to east
16. m_prevWaypointNorth_ft is a value representing a position to north
17. m_waypointEast_ft is a value representing a position to east
18. m_waypointNorth_ft is a value representing a position to north
19. lineB is a value representing an intersection point
20. lineM is a value representing a slope

In order to certify this requirement, we begin with the safety of the variable

• output->m_aileron_m1p1

that occurs in the formal requirement; the fact that this implies the requirement is shown by a single verification condition:

• ap_frame_019_0051

We then turn to the sequence of intermediate variables on which the safety of the initial variable depends:

• headingError_rad

• m_pidTargets->m_currentXTrackErr

• m_pidTargets->m_desiredheading_rad

• m_pidTargets->m_desiredroll_rad

• m_pidTargets->m_xtracksignal_deltaHeading

• rollError_rad

and the following input variables from APUpdate

• airplaneData->m_heading_rad

• airplaneData->m_roll_rad

• dstWpPos

• srcWpPos

• currACPos

The variable output->m_aileron_m1p1 has a single relevant occurrence in the requirement. The safety is established at a single
location, ap.cpp, line 542 by the aileron variable calculation. The correctness of the definition gives rise to 2 verification conditions.

• ap_frame_002_0001 (i.e., establish the precondition at line 542 under the substitution originating from line 539)
• ap_frame_002_0002 (i.e., establish the precondition at line 542 under the substitution originating from line 539)

It relies, in turn, on the safety of the following variable:

• rollError_rad

Figure 28: Fragment of a draft safety case narrative

7 Transformation Methodology

7.1 Domain Theory
The automatically generated safety case fragments that are joined with the hand-generated fragments are derived
from the certification process in AUTOCERT. The domain theory described in this section encompasses the
mathematical knowledge necessary to certify specific aspects of the autopilot system, namely the aileron and
elevator control variable calculations. This knowledge is compiled into AUTOCERT and used to generate a
certification argument for the variables and components specified in the cert file, which, as seen in Section 7.4, can
be created from the safety case fragment itself. One result of the certification process is the XML file containing
all of the verification information necessary to automatically generate the safety case fragments representing the
low level software component verification.

The domain theory consists of the annotation schemas, function specifications, and axioms that relate to
aspects of the software component in question. Much of this domain theory can be seen in the resulting complete
safety case. For instance from the annotation schema are derived the goals (and subgoals) of the safety case. The
schemas are also used in the generation of verification conditions. The external functions in the code base are
represented in AUTOCERT as function specifications. These are represented as nodes in the safety case. Finally
the verification conditions are proved by a subset of the axioms and the proof is also represented in the safety
case.

7.2 Domain Theory Description
Section 2.3 described the sequence of calculations used to compute the aileron control variable from several
inputs drawn from the aircraft’s current state and the flight plan.

We take correctness of this computation to mean that the code implements a mathematical specification of a
given property. This specification will be expressed as a formal requirement and proven using a domain theory
mainly formalizing geometric and navigational equations, and consisting of annotation schemas (Figures 29 and
30) and axioms (Figures 31 to 34). See [14] for the syntax of annotation schemas. We also need to specify
properties of library functions (Figure 30). We emphasize that this domain theory is preliminary and has not yet
been validated.

The axioms provide the necessary facts used to prove the generated verification conditions are correct. They
mainly involve adjustments of orientations in radians through different quadrants based upon dependencies on
the aircraft state and the desired value needed to accomplish the movement of the control surface. Many of these
axioms describe how a property is preserved under addition or subtraction of 2π. Others describe the validity
of reversing the sign of a value while maintaining a property. Figure 35 gives the grammar of properties of the
domain theory.

The purpose behind the axioms, schemas, and domain theory in general is to ultimately prove proper-
ties of the code via verification conditions. In the case of the requirement output → m aileron m1p1 ::
desired(aileron), 51 verification conditions were generated. Of these 51, most conjectured that the regulation
of a variable maintained a given property. The regulation involved the quadrant adjustments of radian values or
the reversing of the sign based on current aircraft state. All 51 were proved using a suite of 5 automated theorem
provers.

For the second requirement output → m elevator m1p1 :: desired(elevator), 13 verification conditions
were generated. As for the first requirement, the verification conditions correspond to the maintenance of a given
property under regulation through quadrant adjustments or sign reversals. All 13 of the verification conditions
were verified using the same suite of 5 provers.

7.3 From Formal Proofs to Safety Cases
In this section we describe the transformation steps taking AutoCert generated XML to a safety case fragment.
First we discuss the XML formats that define the data at each step. There are three steps, and hence three XML
schemas, in this process. Then we describe the transformations that take place at each step and the architecture
of the system.

55

56

function(initial_heading
, [’initial heading from ’, XPos, ’to’, YPos]
, cglGeom_CalculateHeadingAngle_rad(XN, XE, YN, YE)
, [XPos=[XN,XE]::pos(ne), YPos=[YN,YE]::pos(ne)]
, _::initial(heading)
, []
).

definition(crosstrack_error
, [’computing the cross track error’]
,
(
cglGeom_CalculateLineSlopeIntercept(LineM, LineB, SrcWpPos, DstWpPos);
cglGeom_CalculateDistanceToLine(CurrACPos, LineM, LineB)
)
, [CurrACPos::pos(ne), SrcWpPos::pos(ne), DstWpPos::pos(ne)]
, _::distance
, []
).

function(line_slope_intercept
, [’LineSlopeIntercept’]
, cglGeom_CalculateLineSlopeIntercept(LineM, LineB, SrcWpPos, DstWpPos)
, [SrcWpPos::pos(ne), DstWpPos::pos(ne)]
, [LineM::_, LineB::_]
, []
).

function(distance_to_line
, [’distance to line’]
, cglGeom_CalculateDistanceToLine(CurrACPos, LineM, LineB)
, [CurrACPos::pos(ne), LineM::_, LineB::_]
, _::distance
, []
).

function(vector_dot_product
, [’dot product’]
, cglVec2_Dot(pA, pB)
, [pA::vec(3), pB::vec(3)]
, _::vec_dot(pA, pB)
, []
).

function(crosstrack_deltaheading
, [’computing the cross track delta heading’]
, ’m_pid_CrossTrackErr2Heading->Update1’(XTE)
, [XTE::error(xtrack)]
, _::desired(delta(heading))
, []
).

Figure 29: Math schemas.

57

definition(desired_heading
, [’computing the desired heading’]
, [DesHead + DeltaHead]
, [DesHead::initial(heading), DeltaHead::desired(delta(heading))]
, _::desired(heading)
, []
).

definition(calc_error
, [’computing the difference between current and desired values in’, T]
, [Y-Z]
, [Y::current(T), Z::desired(T)]
, _::error(T)
, []
).

function(desired_roll
, [’computing the desired roll’]
, ’m_pid_HeadingErr2Roll->Update’(HeadingError)
, [HeadingError::error(heading)]
, _::desired(roll)
, []
).

function(desired_pitch
, [’computing the desired pitch’]
, ’m_pid_AltitudeErr2Pitch->Update’(Y)
, [Y::error(altitude)]
, _::desired(pitch)
, []
).

function(elevator_out
, [’the elevator variable calculation’]
, ’m_pid_PitchErr2Elevator->Update’(Y)
, [Y::error(pitch)]
, _::desired(elevator)
, []
).

function(aileron_out
, [’the aileron variable calculation’]
, ’m_pid_RollErr2Aileron->Update1’(Y)
, [Y::error(roll)]
, _::desired(aileron)
, []
).

Figure 30: Math schemas (continued).

58

%---
% Autopilot Axioms
%---
%---
% mode distinctions
%---
fof(mode_contr2, axiom,

(˜(’LONMODE_ALTITUDECMD’ = ’LONMODE_PITCHCMD’))).

fof(mode_lat, axiom,
(˜(’LATMODE_CROSSTRACK_NOFLYBACK’ = ’LATMODE_CROSSTRACK’))).

%---
% error quadrant adjustments
%---
% roll
% E is in radians
% E < -PI
fof(roll_error_2_pi_plus, axiom,

! [E] : (
(has_unit(E, error(roll)) &

lt(E, uminus(float_3_14159)))
=> has_unit(plus(float_3_14159, plus(float_3_14159,E)), error(roll)))).

% E > Pi
fof(roll_error_2_pi_minus, axiom,

! [E] : (
(has_unit(E, error(roll)) &

lt(float_3_14159, E))
=> has_unit(plus(E, uminus(plus(float_3_14159, float_3_14159))), error(roll)))).

% rollError
% E = Current - Desired
fof(roll_error_calc, axiom,

! [A,D,E] : (
(has_unit(A,current(roll)) & has_unit(D,desired(roll)))
=> has_unit(minus(A,D), error(roll)))).

% E = Current - Desired
fof(heading_error_calc, axiom,

! [A,D] : (
(has_unit(A,current(heading)) & has_unit(D,desired(heading)))
=> has_unit(minus(A,D), error(heading)))).

%---------------------------
% heading error adjustments
%---------------------------
% E < -PI
fof(heading_error_2_pi_plus, axiom,

! [E] : (
(has_unit(E, error(heading)) &

lt(E, uminus(float_3_14159)))
=> has_unit(plus(float_3_14159, plus(float_3_14159,E)),

error(heading)))).

% E > PI
fof(heading_error_2_pi_minus, axiom,

! [E] : (
(has_unit(E, error(heading)) &

lt(float_3_14159, E))
=> has_unit(plus(E,uminus(plus(float_3_14159, float_3_14159))),

error(heading)))).

Figure 31: Axioms

59

%---
% current heading adjustment
%---
% H > PI
fof(current_heading_2_pi_minus, axiom,

! [H] : (
(has_unit(H, current(heading)) &

lt(float_3_14159, H))
=> has_unit(plus(H, uminus(plus(float_3_14159, float_3_14159))),

current(heading)))).

% H < -PI
fof(current_heading_2_pi_plus, axiom,

! [H] : (
(has_unit(H, current(heading)) &

lt(H, uminus(float_3_14159)))
=> has_unit(plus(float_3_14159, plus(float_3_14159,H)),

current(heading)))).
%------------------------
% desired heading and adjustments
%------------------------
% heading + delta_heading
fof(desired_from_delta, axiom,

! [X,D] : (
(has_unit(X,desired(delta(heading))) & has_unit(D,initial(heading)))
=> has_unit(plus(D,X), desired(heading)))).

% H < -PI
fof(desired_heading_2_pi_plus, axiom,

! [H] : (
(has_unit(H, desired(heading)) &

lt(H, uminus(float_3_14159)))
=> has_unit(plus(float_3_14159, plus(float_3_14159,H)),

desired(heading)))).

% H > PI
fof(desired_heading_2_pi_minus, axiom,

! [H] : (
(has_unit(H, desired(heading)) &

lt(float_3_14159, H))
=> has_unit(minus(H,plus(float_3_14159,float_3_14159)),

desired(heading)))).

%--------------------------------
% pitch error adjustment
%--------------------------------
% E < -PI
fof(pitch_error_2_pi_plus, axiom,

! [E] : (
(has_unit(E, error(pitch)) &

lt(E, tptp_uminus(tptp_float_3_14159)))
=> has_unit(plus(tptp_float_3_14159,plus(tptp_float_3_14159,E)),

error(pitch)))).

% PI < E
fof(pitch_error_2_pi_minus, axiom,

! [E] : (
(has_unit(E, error(pitch)) &

lt(tptp_float_3_14159, E))
=> has_unit(plus(E, tptp_uminus(plus(tptp_float_3_14159,tptp_float_3_14159))),

error(pitch)))).

Figure 32: Axioms (continued)

60

%--------------------------------
% upper and lower bank limit axioms
%--------------------------------
% m_bankLimit_rad is a constant in the code
% case when desired bank >limit
fof(bank_limit_upper, axiom, has_unit(m_bankLimit_rad, desired(roll))).

% case when desired bank < -limit
fof(bank_limit_lower, axiom, has_unit(uminus(m_bankLimit_rad),
desired(roll))).

%--------------------------------
% altitude and pitch
%-------------------------------
fof(altitude_error_calc, axiom,

! [A,D] : (
(has_unit(A,current(altitude)) & has_unit(D,desired(altitude)))
=> has_unit(minus(A,D), error(altitude)))).

% -PI <= (P - D) < PI
fof(error_pitch_calc, axiom,

! [P,D] : (
(has_unit(P, current(pitch)) & has_unit(D, desired(pitch)))
=> has_unit(minus(P,D), error(pitch)))).

%--
% Cross track delta heading adjustments
%--
fof(gXtrack_pos, axiom,

lt(0, g_XtrackMaxCorrectionAngle_rad)).

% reverse of delta heading
fof(delta_heading_minus, axiom,
! [D] : (
(has_unit(D, desired(delta(heading))))
=> has_unit(uminus(D), desired(delta(heading))))).

% g_XtrackMaxCorrectionAngle is delta heading
fof(delta_heading_pos, axiom,

has_unit(uminus(g_XtrackMaxCorrectionAngle_rad),
desired(delta(heading)))).

%---
% helper axioms for autopilot
%---

fof(minus_minus_orig, axiom,
! [T] : (tptp_uminus(tptp_uminus(T)) = T)).

fof(fabs, axiom,
! [X] : ((leq(0, X)) => fabs(X) = X)).

fof(fabs_neg_1, axiom,
! [X] : ((lt(X,0)) => fabs(X) = tptp_uminus(X))).

Figure 33: Axioms (continued)

61

%-----------------------------
% initial heading
%-----------------------------
% There are geometric calculations (conditions) in the
% initial heading assignments. These affect the
% ordering of the atan2 arguments

% calculate initial heading angle
% PE Previous waypoint East
% PN Previous waypoint North
% WE Current waypoint East
% WN Current waypoint North

% standard direction, angle > PI/2
fof(initial_heading_1, axiom,

! [H, PE, PN, WE, WN] : (
(has_unit(WN,pos(north)) & has_unit(WE,pos(east)) &

has_unit(PN,pos(north)) & has_unit(PE,pos(east)) &
H = atan2(minus(PE,WE), minus(PN,WN)))
=> has_unit(H, initial(heading)))).

% need to reverse direction, angle < PI/2
fof(initial_heading_2, axiom,

! [H, PE, PN, WE, WN] : (
(has_unit(WN,pos(north)) & has_unit(WE,pos(east)) &

has_unit(PN,pos(north)) & has_unit(PE,pos(east)) &
H = atan2(minus(WE,PE), minus(WN,PN)))
=> has_unit(H, initial(heading)))).

fof(error_xtrack_from_slope_intercept, axiom,
! [X, M, B , CE, CN] : (

(has_unit(CE, pos(east)) & has_unit(CN, pos(north)) &
has_unit(M, slope) & has_unit(B, intersect) &
X = divide(minus(minus(CE, times(CN,M)), B),

sqrt(succ(times(M,M)))))
=> has_unit(X, error(xtrack)))).

% adjustment to assure that current and destination
% waypoints are different
% Src = source waypoint {north, east}
% WPN = m_waypointNorth_ft =(initially) Src[0]
fof(pos_update, axiom,
! [WPN, Src, X] : (
(has_unit(WPN, pos(north)) & has_unit(Src, pos(ne)) &

X = update2(Src,0, plus(a_select2(Src,0), float_1_0)))
=> has_unit(X, pos(ne)))).

Figure 34: Axioms (continued)

T ::= heading | roll | aileron | xtrack | pitch | elevator | altitude | delta(T)
F ::= ba | lla | ne | north | east
U ::= desired(T) | current(T) | error(T) | pos(F)

Figure 35: Grammar of domain specific terms

AUTOCERT generates an XML document with information describing the formal verification of require-
ments. The core of this is a chain of information relating requirements back to assumptions. Each step consists
of an annotation schema for the definition, or “def”, of a program variable, or “hotvar”, the associated verifica-
tion conditions that must be shown for the correctness of that definition, and the variables on which that variable,
in turn, depends, or “dvars”. We mine pertinent parts of this XML document to create a safety case fragment
describing the chain of dependent variables, verification conditions, and definition schemas (considered as GSN
models) that go into the verification of specific components or variables of a software system.

7.3.1 Formats

The first format we describe is a portion of the automatically generated XML from AUTOCERT. The syntax of
the pertinent portions can be seen in Figure 36. This figure describes the XML tags holding data and defining
its structure. Tags on the left hand side contain elements (or data) described on the right. Strings represent
data components which get translated into the body of safety case nodes. Some of the tags and elements are
self-explanatory.

The model name contains the identifier of the system under evaluation. Requirements come in two forms,
system-requirements and component-requirements. For our purposes they contain the same information but
describe verification of different levels of the software system. A requirement-id is a unique identifier assigned
to the system or component requirement. This is only a small portion of the high level system elements. However
these are the only elements we currently retrieve for the safety case fragments.

A hotvar is a variable in the software system that is under analysis. Creating the safety case requires a
number of elements from hotvars and the variables on which the hotvar depends. These dependent variables
are also hotvars. The dependency is noted through the list of dependent variables in dvar-list. Each dvar is
a hotvar elsewhere defined in the system. The source-location defines the line and file in which the hotvar is
defined. The safety-requirement is the property which the hotvar must be shown to have. The def-schema and
then schema-name gives the annotation pattern(s) which were applied to the hotvar in the source code to generate
the verification conditions. The def-vc-list and its vc define the verification conditions which were generated, and
hence must be shown to hold in order to verify the system or component requirement.

〈certification-info〉 ::= 〈model -name〉 〈requirement-list〉
〈model -name〉 ::= String
〈requirement-list〉 ::= 〈system-requirement〉∗ 〈component-requirement〉∗
〈system-requirement〉 ::= 〈requirement-id〉 〈hotvar〉
〈component-requirement〉 ::= 〈requirement-id〉 〈hotvar〉
〈requirement-id〉 ::= String
〈hotvar〉 ::= 〈hotvar -name〉 〈source-location〉 〈 safety-requirement〉

〈def -vc-list〉 〈dvar -list〉 〈def -schema〉
〈hotvar -name〉 ::= String
〈source-location〉 ::= 〈line〉 〈file〉
〈safety-requirement〉 ::= String
〈def -vc-list〉 ::= 〈vc〉∗
〈dvar -list〉 ::= 〈dvar〉∗
〈dvar〉 ::= String
〈def -schema〉 ::= 〈schema-name〉
〈schema-name〉 ::= String
〈line〉 ::= String
〈file〉 ::= String
〈vc〉 ::= String

Figure 36: Grammar of AUTOCERT generated XML (fragment)

The second XML schema (Figure 37) is an intermediate step between the AUTOCERT generated XML and

62

the safety case fragment format. It is generated by a XSLT transformation. A safetycase defines the root of the
document. A safetycase can contain zero or more arguments. Each argument corresponds to a single system-
requirement from the AUTOCERT generated document.

The model-name here is a model in the GSN sense, namely some data attached to a strategy (and not to
be confused with the model names in Figure 36). In our case, these will be schema names. The idReq and
safety-req are the same as requirement-id and requirement-formula in the syntax above. The goal-def defines the
goal of the verification task in terms of the hotvar name, the safety-requirement and the location information.
A strategy-def defines a strategy by which the hotvar will be shown to be correct. Typically this is encoded
as “Prove correctness of the computation at lines n to m” where nnn is the line number from the location
information above. The subgoal-vc elements define the verification conditions related to this particular variable.
The subgoal-dvar defines a wrapper around a recursive instance of the XML schema already defined. Namely
it defines the elements of a specific dvar from above, but in this case inserted into a tree-like structure. This
structure allows us to represent, directly, the dependence of one variable upon another.

〈safetycase〉 ::= 〈argument〉∗
〈argument〉 ::= 〈model -name〉∗ 〈idReq〉

〈safety-req〉 〈goal -def 〉
〈strategy-def 〉 〈subgoal -vc〉∗
〈function-name〉 〈function-info〉
〈subgoal -dvar〉∗

〈subgoal -dvar〉 ::= 〈model -name〉∗ 〈goal -def 〉
〈strategy-def 〉 〈subgoal -vc〉∗
〈function-name〉 〈function-info〉
〈subgoal -dvar〉∗

〈vc-list〉 ::= 〈vc〉

Figure 37: Grammar of the intermediate XML document (fragment)

The final XML format is actually a proprietary format for the Adelard ASCE system, namely the XML-based
ASCE-GSN notation, AXML31. The schema definition for the AXML is based on the GSN notation [40]. It
can be found at [3]. The defined ASCE-GSN schema here defines either node or link tags. The node tags are
GSN nodes. The type of node (e.g., Goal or Strategy) can be denoted as well as the title which defines the text
displayed to the user. The node can also be given a reference. This reference can be used, in conjunction with the
reference from another node, to define link elements. The link elements define arrows. Each of the tree structures
defined in an intermediate XML file as defined above can be translated into a node. We can then define links
between the related nodes.

7.3.2 Algorithm

We begin after the construction of the safety document XML file generated by AUTOCERT. This file contains the
elements described in the previous section32. There are two steps to creating a complete safety case. The input to
this set of transformations is the AUTOCERT generated XML document. This is transformed into an intermediate
stage, which is another XML document. Finally the intermediate XML document is parsed and combined with
a hand generated safety case fragment to create the complete safety case. We describe the details of this process.
The overall architecture can be seen in Figure 38.

The first major and necessary step to creating a complete safety case involves running the generated XML file
through an XSLT transformation. This involves relating the AUTOCERT XML file with an XSLT file to generate
a new XML document. In this process we transform the AUTOCERT XML document into a document with the
schema described in 37. The current method for doing this involves the Saxon XSLT processor (version 9 - home

31In the work described here, we generate AXML v1.3. In more recent work [15], we instead generate safety cases in an Extended GSN
(EGSN) format which can either be rendered directly in our AdvoCATE tool, or translated into AXML to view in ASCE.

32Codebase: https://babelfish.arc.nasa.gov/trac/autocert/browser/trunk/safetycase

63

https://babelfish.arc.nasa.gov/trac/autocert/browser/trunk/safetycase

AutoCert safety.xml

intermediate.xml

XSLT Processor

Automatically Generated

Automatically Generated

XSLT code

Tree Generator

and Combiner

(java)

intermediate.xml

complete.axml

fragment.axml

Manually generated

Automatically Generated

Semi-automatically Generated

Figure 38: Architecture of the transformation from AUTOCERT XML to safety case AXML.

edition). The Saxon XSLT processor accepts an XML document and an XSLT file and generates the new XML
document. The added benefit to this is that the syntactic well-formedness of both the input and output XML is
validated in processing. The Saxon XSLT transformation will not generate syntactically incorrect XML.

The resulting intermediate XML file is then transformed into an AXML file. In this step it is also combined
with the hand generated safety case fragment, which is also an AXML document. This process uses a Java
program to read in both the hand generated fragment and the intermediate XML file. Both files are read and
parsed as DOM objects. This allows for efficient processing on a node by node, element by element, basis.
We want to retain all of the hand generated AXML and simply replace specific nodes with the tree fragments
generated from the AUTOCERT XML file. Hence we prune the hand generated safety case and graft our tree in
place.

The nodes in the hand generated document where the generated fragments are grafted are denoted with unique
comments relating to a tree in the intermediate XML file, namely autocert:n. These nodes are identified and
replaced by the top node from the intermediate XML file. The top node, and all subsequent nodes from the
intermediate file, are transformed into the AXML format. Specifically for each element in the intermediate XML
file we generate an AXML node element. These nodes are appended to the DOM structure created by parsing
the hand generated AXML file. The nodes are created by traversing the DOM object tree created by parsing the
intermediate XML file, again creating a node for each element in the intermediate files DOM object tree. By
parsing the DOM object gives another validation of syntactically correct XML.

Once all of the nodes have been created, links elements are created for the new nodes. Links already existed
for the hand generated fragment. This involves traversing the DOM object tree a second time. Links are created
for each node to its children. Since we have grafted a new node from the intermediate XML tree in place of
a pruned node from the hand generated tree we have have a connection between the hand generated tree to the
newly generated nodes. The new DOM object is written out to a new file. Currently the AXML tree fragments
created from the intermediate XML file are also written to a new AXML file and can be viewed separately.

7.3.3 Validating the Transformation

With respect to the automatic generation of XML and AXML we take a number of steps to validate the results.
Some of the steps are implicit in the processing. The generation of the XML document from AUTOCERT is
validated by the standard testing procedure for AUTOCERT results. This system is a set of scripts that run
AUTOCERT against a number of examples and verifies that files have been created, verification conditions were

64

generated and that proofs were accomplished depending on a specific set of command line options. Different
options generate different sets of results and output. In particular, safety case generation can be instigated by a
command line switch. When XML is to be generated we check to verify that the XML file has been created.
These results are then sent to user and logged.

At each step in the process of transforming the XML into a safety case fragment the syntactic correctness
of the XML and AXML can be verified implicitly by the transformations themselves. Any error in the syntax
of the XML will prevent it from being properly parsed and will result in an error being reported. In the case of
the XSLT transformation, if a syntactic error is found in either the XML or the XSLT the XSLT processor will
report the condition and fail to generate output. In the AXML generation phase, Java DOM objects will fail to
load improper XML and throw an error which is caught by a set of exceptions built into the program. Finally, the
ASCE system will fail to load AXML that is not properly formed or has duplicate nodes.

Finally we rely on visual inspection of the results in an appropriate viewer, such as ASCE. The resulting safety
case is inspected with an eye towards assuring that the generated claims, arguments, and evidence are consistent
with the stated safety properties. And hence that those safety properties hold for the referenced portions of code.
These results of the inspection are recorded and the safety case itself will also act as evidence to this effect.

As described in the previous sections, we have run the tool on the Swift autopilot code, in particular file
ap.cpp of the autopilot, in order to verify the two Base Year safety requirements. The resulting safety case
consists of an argument that describes with a sequence of computations, such as delta heading, cross track error,
initial heading, and so on. The argument states at which lines in the code these computations occur, and on what
they depend. We have verified by inspection that each of these locations and the computation dependencies are
correct.

7.4 From Safety Cases to Formal Specifications
A corollary product to the safety case combiner tool is a system that generates a cert file to be used in conjunction
with AUTOCERT. A cert file contains meta-information about the system to be verified such as the requirement
to be verified and any assumptions about the system. A safety-case fragment may often be created before the
software verification is completed and hence illuminating software components that need to be verified. The cert
file generator will create the necessary file for the verification process to proceed.

As noted, when combining nodes from the hand-generated and the automatically generated fragments, a
unique identifier autocert:n is placed in the comment field of the node to indicate locations where one
fragment should be grafted on to another. The node in the hand-generated case will contain information about
the requirement needing to be verified and can also have associated nodes containing assumptions about the
system. This information, when encoded into a hand-generated safety case fragment, can be extracted and used
to create a specific cert file. The cert file then will be used to verify the system component relating to that
requirement or requirements. By this method the hand-generated safety case fragment can be used to identify
software components that are not verified and the cert file generator facilitates the generation of the necessary
materials to do the verification.

The cert file generator looks through the hand-generated fragment for the unique autocert:n identifiers.
Depending on the type of node the identifier occurs in the system is able to infer if the labeled node is a require-
ment or an assumption. Both are reformatted into an acceptable syntax for AUTOCERT. They are then written to
a file. If a cert file already exists, that can be used as well, with the new requirements being appended to the end
of the file. There is no limit to the number of requirements and assumptions that can be discovered and created.

In the autopilot case, the nodes representing the aileron and elevator control verification could have had text
representing the actual system requirement being verified.

• output.m aileron m1p1::desired(aileron)

• output.m elevator m1p1::desired(elevator)

Both represent the actual variable names to verify and the properties they are assumed to have. Further, we could
have had code level assumptions represented as nodes in the safety case fragment. For instance we may have
assumptions in the safety case about the state of the aircraft.

65

• ’airplaneData→m heading rad’ :: current(heading)

• ’airplaneData→m pos altitude ft’ :: current(altitude)

These are extracted from the safety case and wrapped in a requirement or assumption predicate, as needed. They
are then written to a file where AUTOCERT can access it and verify those specific requirements.

8 Evaluation Metrics
This section describes the metrics which we use to evaluate the slice of the safety case created for the Swift UAS
(Figure 16). In particular, we define metrics for four quantities33 of interest, namely:

1. Coverage
2. Degree of Automation
3. Understandability
4. Uncertainty (Confidence)

Each of these is now described in greater detail.

8.1 Coverage
Coverage for the safety case can be interpreted in different ways. We initially consider four distinct notions of
coverage, namely:

Coverage of hazards: Coverage of hazards measures the proportion of the hazards, identified during hazard
analysis, that have been covered by the safety case. We define a measure COVH to quantify the coverage
of hazards, whose valid values lie in the range [0, 1].

Coverage of high-level safety requirements: Coverage of high-level safety requirements measures the propor-
tion of high-level safety requirements (defined for eliminating/ mitigating hazards), covered by the safety
case. We define a measure COVRHL

for measuring the coverage of high-level requirements, whose valid
values lie in the range [0, 1].

Coverage of low-level safety requirements: Coverage of low-level safety requirements, i.e., the functional safety
requirements, measures the proportion of low-level safety requirements (obtained from refining high-level
safety requirements), covered by the safety case. We define a measure COVRLL

for measuring the cover-
age of low-level requirements, whose valid values lie in the range [0, 1].

Coverage of claims: Coverage of claims34 measures the internal completeness of the safety case, i.e., the frac-
tion of the total number of claims in the safety case, that have been instantiated and completely developed.
We define a metric COVC for measuring the internal completeness, whose valid values lie in the range
[0, 1].

Note that COVRHL is correlated with COVH , since safety requirements are derived from the hazard analysis;
indeed, the former are directly linked to elimination or mitigation measures for those hazards categorized as
having unacceptable risk. Since low-level safety requirements are derived from high-level safety requirements,
COVRHL

is also correlated with COVRLL
. Additionally, COVC is also correlated with COVH since several of

the claims in the safety case reflect claims of mitigation or elimination of the relevant hazards. Here, we do not
report on the exact relations between the coverage measures above, and it is left as future work.

33We use the terminology given in [59]; specifically: a quantity is a “property of a phenomenon, body, or substance, where the property
has a magnitude that can be expressed as a number and a reference”.

34In this report, claims are used interchangeably with goals.

66

8.1.1 Base Measures

The measures of coverage are derived from base measures, which are now defined.

• H : Number of identified hazards having unacceptable risk, is computed by counting those hazards classi-
fied as having unacceptable risk, in the list of hazards obtained from hazard analysis.

• RHL: Total number of high-level safety requirements. Note that one or more high-level safety requirements
may exist for mitigating or eliminating a hazard having unacceptable risk. Hence, if r(Hi) is the number
of high-level safety requirements per hazard Hi, then RHL is given as

∑H
i r(Hi).

• RLL: Number of low-level safety requirements. Note that one or more low-level safety requirements may
exist for each high-level safety requirement. If r(Ri) is the number of low-level safety requirements per
high level requirement Ri, then RLL is given as

∑RHL

i r(Ri).

• Let X = {D ,UI ,UD ,UID}, be a set of claim categories, where

1. D : Developed claims, refer to the claims which have been developed into sub-claims using strategies
to the point where they can be tied to solutions (evidence). Thus, developed claims represent a
complete chain of argumentation from evidence to claims (verification conditions).

2. UI : Uninstantiated claims, refer to claims that have not been exactly instantiated. Thus, they may
be considered as “placeholders” for a future claim to be included into an ongoing safety argument.

3. UD : Undeveloped claims, refer to claims which have been instantiated but not developed, i.e., the
exact claim is known but the strategies to decompose the claim down to sub-claims and eventually to
tie it to specific evidence is not yet known or has not been included in the safety case.

4. UID : Uninstantiated and undeveloped claims, refer to claims which require both instantiation and
further development so they can be linked to evidence.

• Define the set Claimsx(E) to mean the set of claims of category x ∈ X for entity E (where E is a hazard
or a requirement). Then we have cx(E) = |Claimsx(E)| as the total number of claims of category x ∈ X
for an entity E in the safety case.

– If E is a hazard, we have the measure cx(Hi) = |Claimsx(Hi)| reflecting the number of claims
of category x ∈ X for a hazard Hi where i = (1 . . . H). Thus, cD(H1) measures the number of
developed claims for hazard H1, and the total number of developed claims for all hazards is given as∑H
i=1 cD(Hi).

– Similarly, if E is a (high-level or low-level) requirement, the measure cx(Ri) = |Claimsx(Ri)|
reflects the number of claims of category x ∈ X per requirement Ri, where i = (1 . . .RHL) for
high-level requirements and i = (1 . . .RLL) for low-level requirements. Thus cD(R1) measures the
number of developed claims for requirement R1. The total number of developed claims for all high-
level requirements RHLi is given as

∑RHL

i=1 cD(R
HL
i), assuming that claims for separate requirements

are disjoint. Similarly, the total number of developed claims for all low-level requirements RLLi is
given as

∑RLL

i=1 cD(R
LL
i), again assuming disjointness.

• Cx: Total number of claims in the safety case of category x ∈ X, where X is defined as before. Here CUI ,
for example, measures the total number of uninstantiated claims in the safety case, and CD measures the
total number of developed claims in the safety case.

• C: the total number of claims. We have C =
∑
x∈X Cx, since the separate claim classes are disjoint.

67

8.1.2 Measuring Coverage

We compute coverage measures from the base measures as:

1. The coverage of hazards is the fraction of the total number of developed claims for all hazards to the total
number of claims for all hazards. Thus,

COVH =

∑H
i=1 cD(Hi)

|⋃Hi=1 Claimsx(Hi)|
(1)

If all such claims are unique, i.e., the claims for each hazard are disjoint, this equates to

COVH =

∑H
i=1 cD(Hi)∑H

i=1

∑
x∈X cx(Hi)

(2)

2. The coverage of high-level requirements is the fraction of the total number of developed claims for all
high-level requirements to the total number of claims for all high-level requirements. Thus,

COVRHL
=

∑RHL

i=1 cD(R
HL
i)

|⋃RHL

i=1 Claimsx(RHL
i)|

(3)

If all such claims are unique, i.e., the claims for each high-level requirement are disjoint, this equates to

COVRHL
=

∑RHL

i=1 cD(R
HL
i)∑RHL

i=1

∑
x∈X cx(R

HL
i)

(4)

3. Equivalently, the coverage of low-level requirements is the fraction of the total number of developed claims
for all low-level requirements to the total number of claims for all low-level requirements. Thus,

COVRLL
=

∑RLL

i=1 cD(R
LL
i)

|⋃RLL

i=1 Claimsx(RLL
i)|

(5)

If all such claims are unique, i.e., the claims for each low-level requirement are disjoint, this equates to

COVRLL =

∑RLL

i=1 cD(R
LL
i)∑RLL

i=1

∑
x∈X cx(R

LL
i)

(6)

4. The coverage of claims (internal completeness) is the proportion of the total number of developed claims
to the total number of claims. Thus,

COVC =
C −∑X\{D} Cx

C
=

CD

C
(7)

8.1.3 Coverage for the Swift UAS Safety Case Fragment

We apply the measures described in sections 8.1.1 and 8.1.2, to the slice of the Swift UAS safety-case shown
in Figure 16). Tables 5 and 6 summarize the corresponding measurements. Since the argument fragments are
disjoint we can use summations in the calculations.

Based on Table 5 and Table 6, we make the following observations:

68

Table 5: Base measures (coverage) for the Swift UAS safety case.

Measure Value Comments
H 14 This reflects the number of failure hazards considered at the component level

in the preliminary hazard analysis (PHA).
RHL 6 Reflects the total number of high-level safety requirements specified in the

PHA. Of these, one requirement has been considered in the measurement,
i.e., the base-year target safety requirement.

RLL 2 Reflects the number of low-level requirements derived from the base-year
target safety requirement.

CD (H1) 149 Total number of developed claims for the avionics failure hazard (identified
here as H1) in the UAV, during descent.

CD (H2) 2 Total number of developed claims for the actuation failure hazard (identified
here as H2) in the UAV, during descent.

CD (H3...14) 0 Total number of developed claims for each of the remaining hazards (H′−2).
The value of this base measure is zero since the claims for these hazards have
not been developed in the safety case fragment.

CD (RHL
A2) 148 Number of developed claims for the high-level requirement A2. Note that

A2 is the initial base-year target safety requirement, therefore we have only
considered this requirement in the measurements.

CD 157 Total number of developed claims in the overall safety case fragment for the
Swift UAS (including those claims not related to hazards identified in the
hazard analysis)

C 220 Total number of claims in the overall safety case fragment for the Swift UAS

Table 6: Derived coverage measures for the Swift UAS safety case.

Measure Value Comments
COVH 0.74

(i) The total number of developed claims for all considered hazards is given
as

∑H
i=1 cD(Hi) =

∑14
i=1 cD(Hi) = 149 + 2 = 151

(ii) The total number of claims for all hazards is given as∑H
i=1

∑
X cx(Hi) =

∑14
i=1

∑
X cx(Hi) = 204

COVRHL
0.8

(i) The total number of developed claims for all considered high-level require-
ments is given as

∑RHL
i=1 cD(RHL

i) =
∑6

i=1 cD(RHL
i) = CD(RHL

A2) =
148
(ii) The total number of claims for all considered high-level requirements is
given as

∑RHL
i=1

∑
X cx(RHL

i) =
∑6

i=1

∑
X cx(RHL

i) = 184
COVRLL

0.88
(i) The total number of developed claims for all considered low-level require-
ments is given as

∑RLL
i=1 cD(RLL

i) =
∑2

i=1 cD(RLL
i) = 136

(ii) The total number of claims for all considered low-level requirements is
given as

∑RLL
i=1

∑
X cx(RLL

i) =
∑2

i=1

∑
X cx(RLL

i) = 32 + 122 = 154
COVC 0.71 Computed as CD/C = 157/220

• The quality of the computed measures depends on the quality of the artifacts being measured. With feed-
back on the validation of the hazard list and its subsequent refinement, we foresee changes to the measure-
ments give in Table 5 and Table 6. Additionally, the coverage measures consider both the manually created
safety case fragments and the automatically generated fragments together.

• The measurements are meaningful only in the context of the slice of the safety case (Figure 16), since a
complete safety case for the Swift UAS is not yet available. For instance, the measures of coverage do not
account for missing claims35 related to five of the six high-level requirements, and twelve of the fourteen
identified failure hazards considered in the PHA.

Thus, the true coverage of hazards and the high-level requirements is less than that shown in Table 6, if the

35Note that these claims have not been included in the safety case fragment. The reason for their exclusion was mainly to focus on
demonstrating the creation of an end-to-end safety case, rather than a comprehensive and complete one.

69

relevant missing claims are included in the fragment and subsequently measured. If we assume that at least
one claim per hazard / high-level requirement must exist in the safety fragment, we may compute the error
in our measures of hazard coverage and high-level requirements coverage, respectively, as ε(COVH) =
| 151
204+12 − 151

204 | = |0.70 − 0.74| = 0.04, and ε(COVRHL) = | 148
184+5 − 148

184 | = |0.78 − 0.80| = 0.02.
Furthermore, if the preliminary hazard list is also considered, the error values will increase since we have
only counted the hazards relevant for building the safety case slice.

However, there is no well-defined way of knowing a priori, exactly how many claims a requirement or a
hazard induces. By examining the base measure, e.g., CD(H3...14), as shown in Table 5, and the hazard
coverage COVH , as shown in Table 6, we have an indication regarding the true coverage of hazards and the
extent to which the considered hazards are covered by the safety case. Effectively, we may now interpret
(i) hazard coverage with reference to the list of hazards as the fraction of covered hazards (say Hc) to the
total hazards, i.e., Hc

H = 2
14 = 0.1428. (ii) extent of hazard coverage by the safety case fragment as COVH

= 0.74.

• We believe that both measures are required to correctly gauge hazard coverage (assuming that the argu-
ments chains on which measurement is applied, are themselves valid). Including the notion of argument
validity into the coverage measures (either as a Boolean measure or a confidence measure), is a promising
avenue for future work. Similarly, we can derive a measure of requirements coverage (with reference to
the list of hazards), where the measure COVRHL

indicates the extent to which the safety case covers these
requirements.

• With respect to the measure COVRLL , we measure perfect coverage since all claims that are developed
for the low level requirements are both automatically generated, and terminate either in a solution or
a verification condition. As we will see in section 8.2.2, although we measure perfect coverage of the
low-level requirements by the safety argument, the extent to which the low-level requirements are actually
covered (by the verification) is not perfect. The latter is measured using measures for degree of automation.
This is described next.

8.2 Degree of Automation
To measure degree of automation, we consider two measures; namely:

1. DEGA1 , measuring the fraction of automatically generated claims to the total number of claims in the
safety case. This measure effectively gauges how much of the safety case contains automatically generated
claims, and its valid values lie in the range [0, 1].

2. DEGA2 , measuring the fraction of the total amount of code for which verification conditions are generated
to the amount of code that covers all the requirements processed. This measure gauges the extent to which
automatically generated sub-claims cover an automatically generated claim, and the valid values lie in the
range [0, 1].

8.2.1 Base Measures

To compute the values of these measures for degree of automation, we define the following base measures:

• C : Total number of claims in the safety case. We can compute this as C =
∑

X Cx, where X, and Cx are
as defined in section 8.1.1.

• CA: Total number of automatically generated claims in the safety case.

• LOC (Ri): Lines of code corresponding to a requirement Ri. Since the automatic generation of safety
claims is created from the proof of correctness of the code implementing a requirement, this base measure
gives a gauge of the amount of code which must be automatically processed for covering a claim reflecting
a specific requirement.

70

• LOCV (Ri): Verified lines of code, corresponding to a requirement Ri, gives a measure of the amount of
code which has been automatically processed, for generating verification conditions.

Table 7 lists the measurements after applying these base measures.

Table 7: Base measures (degree of automation) for the Swift UAS safety case.

Measure Value Comments
C 220 From Table 5
LOC (RLL

1) 44 Auto-generation is applied starting at low-level requirements LL-SR-001 and
LL-SR-002 respectively. This measure counts the number of LOC covering
LL-SR-001.

LOCV (RLL
1) 42 Number of LOC corresponding to low-level requirement LL-SR-001 which

are verified.
LOC (RLL

2) 7 Auto-generation is applied starting at low-level requirements LL-SR-001 and
LL-SR-002 respectively. This measure counts the number of LOC covering
LL-SR-001

LOCV (RLL
2) 5 Number of LOC corresponding to low-level requirement LL-SR-001 which

are verified.
CA 152 Computed as the total number of (automatically generated) claims for all low

level requirements. This term is given by the denominator of equation (6) as∑RLL
i=1

∑
X cx(RLL

i)

8.2.2 Measuring Degree of Automation

Now, we compute the measures of degree of automation from the base measures as:

DEGA1 =
CA
C

(8)

Thus, DEGA1 = 152/220 = 0.69. We interpret this measure to mean that approximately 69% of the claims in
the slice of the safety case for the Swift UAS are automatically generated. The proportion of claims which were
not automatically generated is therefore given as 1−DEGA1 = 0.31. This proportion reflects the claims which
are created from the hazard analysis and potentially could be automatically generated.

To compute the total fraction of the amount of code which is automatically processed, we compute DEGA2

as:

DEGA2 =

∑RLL

i=1 LOCV (Ri)∑RLL

i=1 LOC (Ri)
(9)

Thus, DEGA2 =
{∑2

i=1 LOCV (Ri)
}
/
{∑2

i=1 LOC (Ri)
}
= 42+5

44+7 = 0.9215.

This measure is interpreted to mean that the automatically generated claims cover about 92% of the code
representing the two low-level requirements (LL-SR-001 and LL-SR-002). This is attributed to portions of the
code for which schemas were not created (and therefore was neither exercised by AUTOCERT, nor had claims
automatically generated). This proportion of the code, i.e., 0.0785 of the code for the low-level requirements,
can also be processed for automatic generation of safety claims.

8.3 Understandability
8.3.1 Challenges to Measuring Understandability

Defining a measure of understandability or comprehensibility requires defining how we can quantify the degree
to which a safety argument can be understood. One possible avenue for this is to define a subjective scale,
say 〈0 . . . 5〉, where 0 implies incomprehensible, whereas 5 implies a perfectly comprehensible safety argument.

71

Measurement of comprehensibility and quantification using such a scale requires subjective assessment by the
relevant stakeholder.

Since a safety argument aggregates diverse sources of evidence, based on the stakeholder assessing the safety
case, certain portions of the safety case are likely to be more comprehensible than other portions, e.g., domain
knowledge about the Swift UAS (such as flight control theory used in creating the autopilot) referenced as context
or justification or as evidence in the safety case, is likely to be better accessible and understandable to the subject
matter expert than, say, to a stakeholder who has a lesser depth of aviation domain knowledge, or to a stakeholder
who has a different area of expertise.

Hence, it is reasonable to expect that a subjective evaluation of certain aspects of the safety argument by a
set of stakeholders who have the same background is likely to be consistent. However, the challenge in defining
a measure of understandability for the overall safety argument, is creating a measure which reflects a consistent
measurement, and not one which changes relative to the measurement instrument (in this case, the stakeholder),
i.e., it is unlikely that two different stakeholders with different expertise will evaluate a given portion or all of the
safety case consistently.

In [26], a guideline is given on the steps that may be taken to evaluate comprehensibility (subjectively); in
particular, [26] gives a four-step process for argument evaluation, the first step of which is argument compre-
hension. The recommendation for comprehensibility evaluation is to identify key elements in the safety case,
to identify the links between argument and evidence, and to re-represent the argument in discussion with the
originator of the safety case.

8.3.2 Towards Measuring Understandability

A potential way to characterize the overall understandability is to compute the proportion of elements in the
safety case which were understandable, to the total number of elements in the safety case.

Let Ue be the understandability of an element of the safety case where e ∈ E : {Claim, Strategy, Context,
Justification, Evidence}. Ue is measured on a scale 〈very low, low, medium, high, very high〉, corresponding to
the degree of understandability.

Let N(e) be the number of elements of type e in the safety case, and N(Ue) be the number of elements for
which understandability is available on the defined scale. The measure of overall understandability of the safety
argument in relation to a given element Ue may be given as

Ue =
N(Ue)∑
EN(e)

, e ∈ E (10)

Thus, we would interpret UClaim as the proportion of claims in the overall safety argument which is under-
standable on the defined scale. On this basis, a measure of understandability may be provided for each element
in the safety case.

8.4 Confidence in the Safety Argument
Despite the many potential advantages that a safety case can provide with respect to the explicit consideration
of safety assurance, subjectivity inherent in the structure of the argument and its supporting evidence, as well as
the lack of sufficient statistical data, pose a key challenge to the measurement and quantification of confidence
in the overall safety case. Consequently, confidence in a safety case is often assessed by appealing to qualitative
reasoning.

In this section, we explore the challenges of measuring confidence in safety cases; in particular, we propose an
approach for confidence measurement by integrating probabilistic reasoning with Bayesian Networks (BNs) [38]
into safety arguments represented in the Goal Structuring Notation (GSN) [39]. An overarching motivation is,
eventually, to integrate the confidence measures obtained from safety arguments into a quantitative framework
for risk analysis [53].

In our proposed approach for measuring confidence in safety cases, we build the confidence argument for the
safety argument by quantifying the uncertainty in the latter, where applicable, by using BNs. In particular, we
use BNs to measure the confidence in the claims made (and, as a consequence, in the argument) by computing

72

the joint distribution of a set of random variables (r.v.) that represent the quantified sources of uncertainty present
in, and derived from, the safety argument.

8.4.1 Illustrative Example

Figure 39 shows an extract from the safety argument for the target system36. Through hazard analysis, we have
determined that the safe functioning of the autopilot requires the correct calculation of the angle of attack of the
aircraft (G1). Now, we discuss ways to measure confidence in the argument and quantify the uncertainty in this
claim.

Figure 39: Safety argument fragment for correct angle of attack

We address G1 by arguing that

1. G1.1: the Pitot (air-data) probe provides the correct sensor values to the autopilot
2. G2.1: the specification is correct and
3. G2.2: the implementation of this specification is also correct.

In turn, these claims are justified in part (using the strategies shown in Figure 39)

1. E1: evidence arising from wind tunnel experiments calibrating the air-data probe
2. E2: subjective assessment of the formula used in the specification as evidenced by the outcome of a review,
3. E3: formal verification of the implementation, using a proof of correctness, and
4. E4: evidence of low probability of failure on demand (PFD) obtained from sensor datasheets.

36Note that this fragment represents a portion of the overall safety argument for the Swift UAS

73

Note that in figures 16, and 17, this argument fragment is shown in its factored form, i.e., divided into its main
argument legs, which represent the development of each of the three goals G1.1, G2.1, and G2.2. The rationale
for this refactoring is to keep the argument structure consistent with overall safety case fragment, where argument
about specifications are separated from arguments about implementation and input. The argument structure as
shown in Figure 39 has been constructed explicitly for the purpose of illustrating how we perform confidence
measurement in a safety argument.

To gauge whether G1 is to be accepted, e.g., by a regulator, it is reasonable to present an additional argument
to justify the sufficiency of confidence in the claim (and, as a consequence, the overall argument fragment shown).
For instance, as in [28], a qualitative confidence argument may be created in which it is argued that (a) there is
credible support for the inference asserted via the claims G1.1, G2.1 and G2.2 that G1 is true, (b) the assurance
deficits for this asserted inference have been identified and (c) that the residual assurance deficits are acceptable.
Unfortunately, although there is some guidance available on identifying where the assurance deficits lie [45],
there is little guidance on how it may be gauged that the residual assurance deficit is acceptable. Here, the
challenge for the regulator is in assessing that a qualitative argument (i.e., the confidence argument) provides
sufficient confidence in another qualitative argument (i.e., the safety argument).

8.4.2 Uncertainty in the Safety Argument

The sources of uncertainty in the argument for G1, as shown in Figure 39, are mainly:

(U1) Uncertainty in the sensor values is stochastic (aleatory) and is attributed, in part, to the PFD of the Pitot
probe, and to any errors in converting the sensed analog values to an appropriate digital equivalent. The
former is given by the variance in the PFD (or measured failure rate in the case of continuous demand)
obtained, say, through statistical testing of the sensor. We assume, for the sake of simplicity, that analog to
digital conversion is perfect.

(U2) Uncertainty that specification is correct contains both aleatory and epistemic uncertainties: the calibration
error of the Pitot probe (when the probe has not failed) is a source of aleatory uncertainty that contributes
to the overall uncertainty in the correctness of the specification, whereas the uncertainty as to whether
the formula for computing the angle of attack is itself correct and is correctly used is a source of epis-
temic uncertainty. Calibration of the air-data probe is experimentally performed in a wind tunnel [35]. A
confidence level can be used to effectively specify the confidence in the experiment and is obtained from
statistical analysis of the corresponding empirical data. The confidence that the correct formula is used
to compute the angle of attack is subjectively gauged by reviewing the specification against flight control
theory by domain experts, e.g., the aircraft design team.

(U3) Uncertainty that the implementation is correct is the uncertainty in the verification procedure i.e., the proof
of correctness. The verification chain contains a combination of several steps and related tools [17] each
of which induces an uncertainty that together contribute to the overall uncertainty that the proof is perfect.
For this paper, we mainly gauge (U3) via subjective judgment from the developers of the verification tools.
Modeling of the sources of uncertainty in the verification chain is left for future work.

Both (U2) and (U3) are epistemic uncertainties. Additional epistemic uncertainties arise from assurance
deficits [28] in the safety argument itself, and are also subjectively quantified.

(U4) Uncertainty in the sufficiency of the sub-claims is the uncertainty whether the sub-claims, e.g., G1.1, G2.1,
G2.2, are appropriate and sufficient to infer the parent claim (sub-claim), e.g., G1, or whether there is a
need for additional sub-claims.

(U5) Uncertainty in the appropriateness of the context reflects on whether the context used for a claim or a
strategy is appropriate and trustworthy.

74

8.4.3 Measuring Confidence

To assess the uncertainty (confidence) in the claim G1, first we model the confidence in the claim and the sources
of uncertainty (U1) - (U5), respectively, as discrete r.v.; subsequently we characterize the overall confidence in
the argument as the joint distribution of the r.v., and we use BNs to quantify this joint distribution. A Bayesian
paradigm is appropriate in this context because it permits the inclusion of both subjective and quantitative data.
Additionally, BNs allow us to (1) compute the joint distribution of r.v. by exploiting the conditional independence
between the r.v. and (2) perform inference when evidence37 is available. The structure of the network encodes
the assumptions of conditional independence. Thus, the arcs represent dependencies between the r.v. and may
be interpreted as correlation. Each of the r.v. has a defined set of states and an associated probability distribution
over those states. Figure 40 shows the BN model which we use to model the sources of uncertainty and the
confidence in the claim G1.

Figure 40: BN modeling sources of uncertainty and confidence for the argument fragment shown in Figure 39.

In Figure 40, the root node Claim Accepted (a node with only incoming arcs) of the BN models the con-
fidence in the claim G1. The leaf nodes (nodes without incoming arcs) model each of the identified sources of
uncertainty, e.g., the node Proof models the confidence in the solution E3: Proof of correctness, corresponding to
the source of uncertainty (U3). The intermediate nodes (nodes with both incoming and outgoing arcs, e.g., Com-
putation Correct) abstract and aggregate relevant leaf nodes; additionally, they serve to reduce the complexity
associated with the specification of conditional probabilities and in post-specification inference.

All the nodes in the BN have the same set of five states: 〈very low, low, medium, high, very high〉 which are
mapped to the interval [0, 1] as shown in Table 8. Such a mapping allows including confidence values that have
been obtained from both quantitative data (e.g., the confidence level associated with the experimental calibration
of the air data probe), and from qualitative means (e.g., the reviewer confidence in specification correctness).

Table 8: Mapping r.v. states to a unit interval

State Interval
Very Low [0, 0.2)

Low [0.2, 0.4)

Medium [0.4, 0.6)

High [0.6, 0.8)

Very High [0.8, 1]

37Note that evidence supplied in the BN is distinctly different from the evidence supplied in the safety argument itself. The former is
evidence of increasing, decreasing, or complete credibility in the latter.

75

The quantitative specification for each of the leaf nodes is given as a prior probability distribution over the
states of the node; in particular, we use a (doubly) truncated Normal distribution [23] whose mean is the prior
belief (or measure) of confidence and the variance is picked so as to appropriately represent the confidence in
this prior itself.

To obtain a truncated Normal distribution, one normalizes the probability mass of a standard Normal distri-
bution, which has been truncated over the region [0, 1]. The resulting (truncated Normal) distribution is useful
for modeling subjective belief since (a) the assignment of the probability mass to a specific subset of states of
the RV is obtained by changing the mean and (b) a variety of distribution shapes are achieved by changing the
variance [23].

For intermediate nodes and the root nodes we specify a prior conditional probability distribution (CPD) in a
parametric way, again using a truncated Normal distribution. Here, the mean of the distribution is the weighted
average of the parent r.v. while the variance is the inverse of the sum of the weights [23]. The weights can be
considered as modeling the “strength of correlation” between the r.v. In the context of a safety argument, this
would be viewed as the importance assigned to the contribution of a certain source of uncertainty to the overall
confidence.

Thus, if Cc, Cp, Cs and Ccc are the r.v. modeling the confidence in the accurate calibration of the air data
probe, the correctness of the proof, the correctness of the specification, and the correct computation respectively,
π(X) is a prior distribution over a random variable X , and NT (µ, σ2) is the truncated Normal distribution with
mean µ and variance σ2, we have:

• π(Cc) ∼ NT (µc, σ2
c), where µc is given by the confidence measure of the experiment. In Figure 40,

π(Cc) ∼ NT (0.9, 0.05) corresponds to the prior measure of a 90% confidence level in the calibration
experiment of the air data probe.

• π(Cp) ∼ NT (µp, σ2
p), where µp is given by the subjective measure of confidence in the proof. In Figure 40,

π(Cp) ∼ NT (0.9, 0.01) would be interpreted, for instance, as there being a priori “very high” confidence
in the proof of correctness to be supplied as evidence.

• π(Ccc|Cp, Cs) ∼ NT (µcc, σ2
cc) is the CPD of the confidence in correct computation, given the confidence

in the proof and the specification; µcc is given as ((100Cp + 100Cs)/200), i.e., the weighted average of
the parent r.v., with each given equal weight; σ2

cc is chosen as the inverse of the sum of weights, i.e., 0.005.

The specification of the priors for the rest of the r.v. is given in a similar way. The BN of Figure 40 completely
specifies the prior confidence in the overall argument; whereas the prior confidence to be expected in the claim,
given the prior distribution of the parent r.v., is computed as {high} ↔ NT (0.7257, 0.0145).

9 Discussion

9.1 Approach
In this report we have described the preliminary safety case fragments which we have assembled: a manually
developed top-level system safety case, and lower-level fragments automatically generated from the formal veri-
fication of safety requirements. There are four distinguishing features to our work.

1. The argumentation in our safety case provides a level of detail which goes well beyond the state of the
practice. Safety cases typically leave many details implicit or informal. Indeed, safety cases rarely go down
to the level of software implementations. Making safety-relevant data and its connections to requirements
explicit is highly worthwhile since a safety case serves primarily as a form of communication. The safety
case is also useful, we believe, as a form of book-keeping: keeping track of data, and how it fits into the
“big picture”.

2. Safety cases do not generally combine manually developed and automated fragments. Where automation
is used, it tends to be as a black box that provides a single piece of evidence, and not a full argument
fragment. We believe much more can be done to increase the degree of rigor and formality.

76

3. We combine traditional safety analysis techniques with formal methods. Although there has been previous
work on the use of formal methods in safety cases, much of this has ignored the safety aspect.

4. We combine diverse sources of information. Safety is inherently heterogeneous, and “formal” and “non-
formal” should not be seen as opposites, but as complementary and equally important. Software is part of
a system and parameters and specifications must be justified. For example, Table 9 shows a selection of
variables defined in the target system code that have values derived from outside sources38, and Figure 2
shows how our software verification methodology rests on connections between the formal specifications
and the wider safety process.

9.2 Scope and Automation
It is in the nature of this project that detailed domain knowledge is required. However, our domain knowledge
is limited and there has been an inevitable and non-trivial learning curve. Moreover, getting access to domain
experts (who have, nevertheless, been very helpful) has also presented a bottleneck. However, we believe we
have now laid a solid basis for further work.

Though we have only verified one small part of the system we can potentially do much more. Although the
AUTOCERT tool is aimed at one specific kind of analysis, it is our intention to combine the results of multiple
tools. AUTOCERT provides a proof that source code complies with a mathematical specification. As part of its
analysis, AUTOCERT “reverse engineers” the code, sifting through potentially overlapping fragments to create
links from the code to high-level functional descriptions of concepts used in requirements. The functional de-
scriptions are are specified by annotation schemas, and AUTOCERT works by inferring annotations at instances
of these patterns. It then generates the chain of reasoning which allows the requirements to be concluded from
the assumptions, where each link in that chain corresponds to a particular implementation pattern. It thus pro-
vides a decomposition of the argument which lends itself naturally to inclusion in a safety case. However, not
all mathematical properties are best specified in such a compositional dataflow style like this, and we plan to
actively investigate integrating results from other tools.

Simulation is crucial when developing flight software, and Section 4 describes its use in the EAV flight
software methodology (see also Appendix C). We would like to characterize more formally the simulation pro-
cess and how it fits into subsequent analyses and decisions. Similarly, the testing of the flight software should
provide evidence, both current testing practice, and its combination with formal techniques, such as the use of
AUTOCERT-derived verification conditions to test code and library functions.

Other forms of static analysis should be applied to verify that signals lie within physical bounds, the absence
of run-time errors such as division by zero and the degree to which a function is defined, numerical proper-
ties such as accuracy and robustness, and concurrency properties such as freedom from priority inversion and
deadlocks. In general, for each class of property, there are specific tools which are better suited for their analysis.

Our hazard analysis (Section 5.1) has been conducted manually. However, there is potential for automation
especially when considering hazard identification guided from definitions of the system boundaries, as well as
from its functional and physical decompositions, i.e., we hypothesize that it is possible to automate some part of
the hazard analysis, in particular via the systematic enumeration of the combinations of system components or
their interactions at defined system boundaries.

9.3 Trustworthiness
We have identified several challenges in characterizing the trustworthiness of a safety case, i.e., via quantifying
confidence in a safety argument. These challeges are mainly relevant to validating the model used for quantifying
confidence.

(i) First, we believe that justifying the basic BN structure and the assumptions of conditional independence
could be achieved, in part, by automatically generating the BN from the GSN-based safety argument, where for

38We have not yet considered all of these in our preliminary safety case.

77

78

Table 9: Defined variables and their values (excerpt)

Fi
le

/C
la

ss
Va

ri
ab

le
N

am
e

D
ef

au
lt

va
lu

e
in

co
de

D
ef

au
lt

va
lu

e
fr

om
sc

ri
pt

U
ni

ts
U

se
s

ap
.h

/.c
pp

m
ba

nk
A

ng
le

L
im

it
ra

d
35

.0
*

C
G

L
M

A
T

H
R

A
D

PE
R

D
E

G
ra

di
an

s
m

pT
er

ra
in

D
B

N
U

L
L

cl
as

s
ob

je
ct

”i
fi

ns
ta

nt
ia

te
d

it
ca

n
be

se
tt

o
a

fil
e

co
n-

ta
in

in
g

te
rr

ai
n

da
ta

”
m

al
tit

ud
eM

od
e

A
LT

IT
U

D
E

M
O

D
E

M
SL

en
um

er
at

ed
ty

pe
”M

SL
=

M
ea

n
Se

a
L

ev
el

–
B

ar
om

et
-

ri
c;

D
ef

au
lt

va
lu

e
in

ap
cl

as
s.

A
l-

te
rn

at
iv

e
va

lu
es

ca
n

be
A

G
L

=
A

bo
ve

G
ro

un
d

L
ev

el
or

R
A

D
A

R
–

ch
an

ge
s

se
t

vi
a

sc
ri

pt
s”

m
ba

nk
L

im
it

ra
d

40
.0

*
C

G
L

M
A

T
H

R
A

D
PE

R
D

E
G

ra
di

an
s

m
m

in
T

hr
ot

tle
m

1p
1

-0
.8

co
nt

ro
lle

ro
ut

pu
t

m
m

ax
T

hr
ot

tle
m

1p
1

0.
8

co
nt

ro
lle

ro
ut

pu
t

g
X

tr
ac

kM
ax

C
or

re
ct

io
nA

ng
le

ra
d

45
.0

*
C

G
L

M
A

T
H

R
A

D
PE

R
D

E
G

ra
di

an
s

”M
ax

im
um

cr
os

s
tr

ac
k

co
rr

ec
tio

n
an

gl
e.

L
im

iti
ng

va
lu

e
on

he
ad

in
g

co
rr

ec
tio

ns
.

(i
.e

.
T

he
m

ax
im

um
va

lu
e

th
at

th
e

ai
r-

cr
af

tc
an

co
rr

ec
tf

or
:l

im
ite

d
by

ba
nk

in
g

an
gl

e
(?

))
”

fm
s.

h/
.c

pp
m

la
nd

in
gF

la
re

M
ax

A
lt

ft
A

G
L

10
0.

0
10

0
fe

et
m

la
nd

in
gF

la
re

M
in

A
lt

ft
A

G
L

50
.0

50
fe

et
m

la
nd

in
gW

he
el

sD
ow

nA
lt

ft
A

G
L

2.
0

2
fe

et
m

la
nd

in
gD

es
ce

nt
R

at
e

fp
s

-2
0.

0
fe

et
pe

rs
ec

on
d

m
la

nd
in

gF
la

re
M

ax
D

es
ce

nt
R

at
e

fp
s

-1
5.

0
fe

et
pe

rs
ec

on
d

m
la

nd
in

gF
la

re
M

in
D

es
ce

nt
R

at
e

fp
s

-0
.1

fe
et

pe
rs

ec
on

d
m

la
nd

in
gF

la
re

T
hr

ot
tle

m
1p

1
-0

.6
5

-0
.6

5
co

nt
ro

lle
ro

ut
pu

t
m

la
nd

in
gG

lid
eS

lo
pe

ra
d

15
.0

*
C

G
L

M
A

T
H

R
A

D
PE

R
D

E
G

ra
di

an
s

each source of uncertainty identified, a corresponding node (or nodes) exists in the BN.
(ii) Next, specifying leaf node probabilities and the prior CPD for the relevant intermediate/root nodes is

straightforward, where empirical data is available. When only subjective judgment is available, quantifying
confidence and selecting an appropriate prior distribution is problematic despite extensive research on belief
elicitation methods [8].

We believe that one way to address this issue is to identify metrics using techniques such as the Goal-
Question-Metric (GQM) method [5] and to correlate these metrics to confidence levels based on a defined quality
model, e.g., we hypothesize that a metric such as coverage (by a safety argument) of hazards (in a hazard list)
would correlate with the confidence in the sufficiency of the argument.

(iii) Finally, we require greater investigation to justify the weights used in specifying CPD requires. Assuming
that the strategies used to decompose goals are viewed as being equally important, using equal weights appears
to be a reasonable way forward.

Our preliminary investigation has emphasized the importance of treating assurance in an integrated way
through linking qualitative safety arguments to quantitative arguments about uncertainty and confidence. This
integration reaps the benefits of GSN in clearly communicating safety arguments to the many stakeholders of
the safety case, while ensuring rigor in measuring confidence via probabilistic reasoning using BNs. We believe
that when integrated into an engineering processes, the safety arguments in this approach will influence the
development, assessment and management activities, whereas the confidence arguments will influence the level
of rigor required in these activities to achieve the desired level of confidence in the safety arguments.

10 Future Work
We are developing a methodology and toolchain for combining automatically generated “bottom-up” safety case
fragments, with manually developed “top-down” system safety cases, and have shown here how we can combine
AUTOCERT-generated formal verifications with other safety case fragments. The safety case fragments which we
have developed are just one small part of what we anticipate will be the eventual safety case. For example, one
necessary extension will be to include information from the aircraft design process (see Figure 41 in Appendix C).

This is an example-driven project. Our study of the target system, its associated domain theory, and discus-
sions with domain experts have been invaluable in uncovering issues in the automated construction of heteroge-
nous safety cases. First and foremost, we plan to continue this collaboration. Although we have concentrated
on developing safety case fragments for the Swift UAS, we intend to look at other configurations and specific
missions in the EAV group’s family of UASs. Just as the underlying Reflection architecture is intended as a plug
and play embedded real-time environment, we might aim for “plug and play safety cases” (or product lines).
Another interesting topic relating to safety cases “in the large” would be to develop techniques which allow us to
show that changes to a safe aircraft preserve safety.

We now list some specific lines of work that we believe are worth pursuing.

More formal verification: The low-level target safety requirements that we looked at were based on functional
and physical unit correctness. There are other properties that should be checked for in this code, such
as runtime safety and physics-based bounds. We also want to look at combining results from different
verification tools, as discussed in Section 9.

Automated assembly: We aim to develop a mark-up language (perhaps based on XML) for declaring safety-
relevant information, in particular evidence. By stating what the data shows, assumes, and depends on, we
anticipate that we will be able to automatically assemble more parts of the safety case.

Relating to this, it would be worth constraining the language used in nodes of the safety case. Such a
controlled natural language could be based on an ontology, and would allow us to further characterize
coverage, well-formedness, comprehensibility, and would allow us to more precise express queries. For
example, assertions of expert opinion could be limited to certain classes of statement.

Inclusion of formal verification knowledge: There are many different ways of converting formal verification
knowledge into safety case fragments. However, the structure of the safety case is driven by both the safety

79

and the verification methodology. Examples of high-level choices include whether to decompose over all
requirements vs all scenarios vs all code branches.

Rather than hard-coding these design choices in the transformation, they could be represented declaratively
using templates. This would give us control over the structure of the generated safety case and let us more
easily investigate and compare different structures.

There are also choices in how to layout the generated safety case. We have chosen to duplicate shared VCs,
but they could be shared in a dag-like manner, though doing this naively will inevitably lead to spaghetti
diagrams.

The automated generation of safety case narratives will build on previous work on the generation of safety
documents [14]. Holloway has written on the use of structured text formats for safety cases [30] and the
draft OMG structured argument metamodel [2] also supports text formats.

We have initially targeted the ASCE safety case format, but aim to support support multiple formats such
as the D-Case safety case format [54] from Kinoshita and Takeyama. We also intend to look at ideas from
hiproofs [4, 16] to impose hierarchical structuring on the generated safety case fragments, since the level
of schema steps will be too low-level for some purposes.

Alignment with NASA Standards, NPR and Guidelines: NASA has numerous safety-relevant procedural re-
quirements, standards, and guidelines at both the software and system levels (Appendix D). It will be
important to develop a safety case methodology which is aligned with these.

We also plan to continue the uncertainty/confidence work, both the theoretical basis and its application to
our target system. We expect that this can be used to provide a basis for Probabilistic Risk Assessment [53].

Evaluation measures: The measures we described to objectively evaluate our approach (Section 8), were man-
ually applied, as were the measurements that were collected as a consequence. Future work will involve the
definition of procedures and algorithms to collect metrics automatically, to the extent possible. An impor-
tant aspect of the safety case methodology is determining when the safety case is trustworthy enough, i.e.,
determining that the residual uncertainty in the safety argument and the claims made is acceptably small.
This aspect also has important implications on the “completeness” of the safety case, i.e., whether all the
relevant hazards have been addressed; specifically, the hazards which are a consequence of (unforeseen)
system interactions are of particular importance [42].

We hypothesize that capturing domain knowledge in a knowledge base or an ontology might provide a
reasonable way to check whether hazards addressed in the system safety case correspond well with the
domain knowledge represented in the knowledge base. More specifically, whether hazards addressed in
the safety case miss references to concepts or relationships specified in the domain model.

Safety case manipulation: The inclusion of automatically generated fragments, and all relevant sources of in-
formation, will lead to increasingly large safety cases. Since the primary motivation of safety cases is
communication of safety relevant information to the various participants in the safety process, we believe
that a safety case should not be viewed as a static and unchanging artifact but that, rather, should be
amenable to manipulation in various automated ways. The Query-View-Transformation (QVT) standard
for model manipulation could be applied here. Some examples include:

Queries What parts of a safety case need to be changed given a change in the underlying system, or in
supporting evidence?

Views Show different views of the safety case. Abstract a high-level view of safety, say at the level of
ConOps. For example, view the case by mission phase (as opposed to, say, by subsystem). Different
views for different stakeholders (e.g., system developer vs software engineer vs project manager).
Show claim nodes of different classes. Extract the list of expert assertions.

Transformations Map a safety case to other useful artifacts, e.g., a diagnostic model [52], or runtime
monitors. Diagnostic models can be defined using Bayesian networks of failure nodes, so there may
be an interesting link to our confidence work.

80

Hierarchical structure: Verification using AUTOCERT results in an argument structure which is derived from
the tree of computations. However, reasoning at the level of computations and lines of code may well be
too low-level for some purposes, so one possibility is to impose an additional level of hierarchical structure
using hiproofs [4,16]. This would also provide a unified theoretical basis for querying safety cases. Safety
case patterns [41] could provide another possible structuring mechanism.

In addition to these avenues of future work, a necessary area of future work39, is to align the safety analysis
with the existing development process. Specifically, in Section 3.4, we identified some system requirements
relevant for safety. Of those, we have only verified that requirement R12 can be tied to our hazard analysis and
subsequently be reflected in the safety case fragments (See Table 10, in Appendix A, as well as Figure 19). To
insure that the system safety analysis is reflected in ongoing development (and that any information from the
development which is relevant for the safety case is included), it is imperative to close the loop of verifying
the relevance of the identified system requirements to the safety of the Swift UAS. Specifically this implies
identifying and analysis those hazards which are implicitly addressed by the system requirements, and ensuring
that the corresponding safety requirements are explicitly stated.

In the option years, we had originally proposed:

1. Specification of extended safety case components and data definition language

2. Automatic generation of extended safety case and safety case narrative

3. Specification of techniques to query, view, and transform safety cases

Each of these items relates directly to topics outlined above. Further work on the target system safety case
(Item 2) will drive the research. Generation of safety case narratives should be a straightforward extension,
and will ease use of the technology. Item 1 relates to the automated assembly of sources of information, and
Item 3 covers the various manipulations of safety cases described above. This also relates to the generation of
narratives. Finally, as our work progresses and matures, we anticipate developing recommendations for a safety
case methodology that is aligned with NASA standards and procedures.

39Primarily from an engineering perspective and relatively less so from a research viewpoint.

81

References
[1] JO-3 Flight Operations Manual Moffett Federal Airfield.

[2] System assurance task force: Argument metamodel. Technical report, Object Management Group, February
2010. Sysa/10-02-6.

[3] Adelard LLP. Assurance and Safety Case Environment (ASCE). http://www.adelard.com/
asce/, Last accessed 2011.

[4] David Aspinall, Ewen Denney, and Christoph Lüth. Querying proofs (work in progress). In Conference on
Intelligent Computer Mathematics, Bertinoro, Italy, 2011.

[5] V. Basili, G. Caldiera, and D. Rombach. Goal question metric approach. In Encyclopedia of Software
Engineering, pages 528–532. John Wiley, 1994.

[6] Nurlida Basir, Ewen Denney, and Bernd Fischer. Constructing a safety case for automatically generated
code from formal program verification information. In The 27th International Conference on Computer
Safety, Reliability and Security (SafeComp ’08), Newcastle, England, 2008.

[7] Nurlida Basir, Ewen Denney, and Bernd Fischer. Deriving safety cases for the formal safety certification of
automatically generated code. In International Workshop on the Certification of Safety-Critical Software
Controlled Systems (SafeCert ’08), Budapest, Hungary, 2008.

[8] P. Bishop, R. Bloomfield, B. Littlewood, A. Povyakalo, and D. Wright. Towards a formalism for conserva-
tive claims about the dependability of software-based systems. IEEE Transactions on Software Engineering,
37(5):708 – 717, 2011.

[9] R. Bloomfield and P. Bishop. Safety and assurance cases: Past, present and possible future – an Adelard
perspective. In Proceedings of the 18th Safety-Critical Systems Symposium, Feb. 2010.

[10] R.E. Bloomfield, B. Littlewood, and D. Wright. Confidence: its roles in dependability cases for risk assess-
ment. In Proceedings of the 37th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 2007.

[11] Reece A. Clothier, Jennifer L. Palmer, Rodney A. Walker, and Neale L. Fulton. Definition of airworthiness
categories for civil unmanned aircraft systems (UAS). In 27th International Congress of the Aeronautical
Sciences, Acropolis Conference Centre, Nice, June 2010.

[12] Reece A. Clothier, Jennifer L. Palmer, Rodney A. Walker, and Neale L. Fulton. Definition of an airworthi-
ness certification framework for civil unmanned aircraft systems. Safety Science, 49(6):871–885, 2011.

[13] K. Douglas Davis. Unmanned Aircraft Systems Operations in the U.S. National Airspace System. Interim
Operational Approval Guidance 08-01, Mar. 2008.

[14] Ewen Denney and Bernd Fischer. A verification-driven approach to traceability and documentation for
auto-generated mathematical software. In Automated Software Engineering (ASE ’09), 2009.

[15] Ewen Denney, Ganesh Pai, and Josef Pohl. AdvoCATE: An Assurance Case Automation Toolset. In Pro-
ceedings of the Workshop on Next Generation of System Assurance Approaches for Safety Critical Systems
(SASSUR), 31st International Conference on Computer Safety, Reliability and Security (SAFECOMP), Sep.
2012.

[16] Ewen Denney, John Power, and Konstantinos Tourlas. Hiproofs: A hierarchical notion of proof tree. In
Martin Escardó, Achim Jung, and Michael Mislove, editors, Proceedings of the 21st Annual Conference on
Mathematical Foundations of Programming Semantics (MFPS XXI), May 2005, volume 155 of Electronic
Notes in Theoretical Computer Science (ENTCS), pages 341–359. Elsevier Science Direct, May 2006.

82

http://www.adelard.com/asce/
http://www.adelard.com/asce/

[17] Ewen Denney and Steven Trac. A software safety certification tool for automatically generated guidance,
navigation and control code. In IEEE Aerospace Conference Electronic Proceedings, Big Sky, Montana.,
2008. IEEE.

[18] J.B. Dugan, S.J. Bavuso, and M.A. Boyd. Fault trees and markov models for reliability analysis of fault
tolerant systems. Journal of Reliability Engineering and System Safety, 39:291–307, 1993.

[19] J.B. Dugan, S.J. Bavuso, and M.A. Boyd. Dynamic fault tree models for fault tolerant computer systems.
IEEE Transactions on Reliability, 41(3):363–373, Sept. 1992.

[20] FAA. Safety Risk Management Order 8040.4. Federal Aviation Administration, Jun. 1998.

[21] FAA Air Traffic Organization. Safety Management System Manual version 2.1. Federal Aviation Adminis-
tration, May 2008.

[22] FDA. Guidance for Industry and FDA Staff - Total Product Life Cycle: Infusion Pump - Premarket Notifi-
cation. United States Food and Drug Administration, Apr. 2010.

[23] N.E. Fenton, M. Neil, and J.G. Caballero. Using ranked nodes to model qualitative judgments in bayesian
networks. IEEE Transactions on Knowledge and Data Engineering, 19(10):1420–1432, Oct. 2007.

[24] N.E. Fenton and S.L. Pfleeger. Software metrics: A rigorous and practical approach. International Thomson
Computer Press, 1997.

[25] Goal Structuring Notation Working Group. GSN Community Standard Version 1, Nov. 2011.

[26] Ibrahim Habli. Reviewing and evaluating safety cases. Tutorial, Feb. 2011.

[27] Charles Haddon-Cave. The Nimrod Review: An independent review into the broader issues surrounding
the loss of the RAF Nimrod MR2 Aircraft XV230 in Afghanistan in 2006. Report, The Stationery Office,
London, UK, Oct. 2009.

[28] R. Hawkins, T. Kelly, J. Knight, and P. Graydon. A new approach to creating clear safety arguments. In
Proceedings of the Safety Critical Systems Symposium, Feb. 2011.

[29] K.J. Hayhurst, J.M. Maddalon, P.S. Miner, M.P. DeWalt, and G.F. McCormick. Unmanned aircraft hazards
and their implications for regulation. In 25th Digital Avionics Systems Conference, 2006 IEEE/AIAA, pages
1–12, October 2006.

[30] C.M. Holloway. Safety case notations: Alternatives for the non-graphically inclined? In Proceedings of the
IET 3nd International Conference on System Safety, Savoy Place, London, 2008. IET Press.

[31] International Organization for Standardization (ISO). Road Vehicles-Functional Safety. ISO 26262 Draft
Standard, Baseline 15, 2010.

[32] C. Ippolito. A vision for greener aviation, Swift UAS Design Management Plan.

[33] Corey Ippolito. Autopilot Software Design Documentation, design.vsd.

[34] Corey Ippolito. Design of an Autonomous Control System for a Small-Scale UAV.

[35] Corey Ippolito. Wind tunnel calibration of the exploration aerial vehicle (EAV) five-hole pitot probe, August
2006.

[36] Corey Ippolito. Reflection Programmer’s Manual. NASA Ames Research Center, December 2009.

[37] Corey Ippolito. Experimental autonomous vehicles (EAV) laboratory. Presentation, May 2010.

[38] F.V. Jensen. Bayesian Networks and Decision Graphs. Springer-Verlag, 2001.

83

[39] T. Kelly and R. Weaver. The goal structuring notation – a safety argument notation. In Proceedings of the
Dependable Systems and Networks Workshop on Assurance Cases, Jul. 2004.

[40] Tim Kelly. Arguing Safety: A Systematic Approach to Managing Safety Cases. PhD thesis, University of
York, 1998.

[41] Tim Kelly and John McDermid. Safety case patterns – reusing successful arguments. In Proceedings of
IEE Colloquium on Understanding Patterns and Their Application to System Engineering, 1998.

[42] N. G. Leveson. A new approach to hazard analysis for complex systems. In Intl. Conference of the System
Safety Society, Aug. 2003.

[43] N.G. Leveson. Safeware: System Safety and Computers. Addison-Wesley, 1995.

[44] B. Littlewood and D. Wright. The use of multilegged arguments to increase confidence in safety claims for
software-based systems: A study based on a BBN analysis of an idealized example. IEEE Transactions on
Software Engineering, 33(5):347–365, May 2007.

[45] C. Menon, R. Hawkins, and J. McDermid. Interim standard of best practice on software in the context of
DS 00-56 Issue 4. Standard of Best Practice Issue 1, Software Systems Engineering Initiative, University
of York, 2009.

[46] Eugene A. Morelli. Advances in experiment design for high performance aircraft.

[47] NASA Aircraft Management Division. NPR 7900.3C, Aircraft Operations Management Manual. NASA,
Jul. 2011.

[48] NASA Ames Research Center, Office of the Director. Airworthiness and Flight Safety. APR 1740.1 Ames
Procedural Requirements, Sept. 2011.

[49] National Aeronautics and Space Administration (NASA). Facility System Safety Guidebook. NASA-STD-
8719.7, Jan. 1998.

[50] NIST. Metrics and measures. http://samate.nist.gov/index.php/Metrics and Measures.html.

[51] James Reason. Human Error. Cambridge University Press, 1990.

[52] Ashok Srivastava and Johann Schumann. The case for software health management. In 4th IEEE Interna-
tional Conference on Space Mission Challenges for Information Technology (SMC-IT), 2011.

[53] M. Stamatelatos et al. Probabilistic risk assessment. Procedures and Guide for NASA managers and
practitioners 1.1, NASA Office of Safety and Mission Assurance, Aug. 2002.

[54] Makoto Takeyama. A note on D-Cases as proofs as programs. Technical report, National Institute of
Advanced Industrial Science and Technology, Osaka, Japan, 2010. AIST-PS-2010-007.

[55] UK Ministry of Defence (MoD). Safety Management Requirements for Defence Systems, 2007.

[56] U.S. Department of Defense (DoD). Procedures for performing a Failure Modes, Effects and Criticality
Analysis. MIL-STD-1629A, Nov. 1980.

[57] U.S. Department of Defense (DoD). Standard Practice for System Safety. MIL-STD-882D, Feb. 2000.

[58] U.S. Department of Transportation, Federal Aviation Administration. System Safety Handbook. FAA, Dec.
2000.

[59] Working Group 2 of the Joint Committee for Guides in Metrology (JCGM/WG 2). International vocabulary
of metrology - basic and general concepts and associated terms. Technical Report JCGM 200:2008, Bureau
International des Poids et Mesures (BIPM), 2008.

84

A Traceability
Traceability between the different (safety) requirements and sub-requirements (which form the functional safety
requirements), to the identified hazards, goals within the safety argument, evidence and external sources of
information is shown in Table 10. The table represents a requirements traceability matrix, and is partially filled,
reflecting ongoing work.

85

86

Table 10: Requirements traceability matrix

Su
b-

R
eq

ui
re

m
en

t
H

az
ar

d
G

oa
l

Ev
id

en
ce

Ex
te

rn
al

Sc
he

m
a

A
xi

om

A
ct

ua
to

rs
 m

us
t n

ot
 in

te
rfe

re
 o

r c
ol

lid
e

w
ith

 e
xi

st
in

g
st

ru
ct

ur
e

P
H

A
_D

E
.A

P
P

_A
C

T_
00

1,

P
H

A
_D

E
.A

P
P

_A
C

T_
00

2,

P
H

A
_D

E
.A

P
P

_A
C

T_
00

3,

P
H

A
D

E
.A

P
P

A
C

T
00

4

G
24

_U
A

V
_D

es
ce

nt
_A

ct
ua

tio
n

E
31

_U
A

V
_D

es
ce

nt
_A

ct
ua

tio
n

Fl
ig

ht
-d

ay

pr
oc

ed
ur

es

C
om

m
an

ds
 m

us
t b

e
in

te
rp

re
te

d
co

rr
ec

tly
P

H
A

_D
E

.A
P

P
_A

V
C

S
_0

14
,

P
H

A
_D

E
.A

P
P

_A
V

C
S

_0
15

N
o

co
m

m
an

d
sh

al
l m

ak
e

th
e

au
to

pi
lo

t
ex

ec
ut

e
an

 u
ns

af
e

m
an

eu
ve

r
P

H
A

_D
E

.A
P

P
_A

V
C

S
_0

14
,

P
H

A
_D

E
.A

P
P

_A
V

C
S

_0
15

S
ta

te
 in

fo
rm

at
io

n
is

 a
cc

ur
at

e

Th
e

au
to

pi
lo

t i
s

co
rr

ec
t

P
H

A
_D

E
.A

P
P

_A
V

C
S

_0
15

G
16

_U
A

V
_D

es
ce

nt
_A

vi
on

ic
s_

S
W

_A
ut

op
ilo

t_
au

to
pi

lo
t,

G
6_

U
A

V
_D

es
ce

nt
_A

vi
on

ic
s_

S
W

A
ut

op
ilo

t
au

to
pi

lo
t

E
15

_U
A

V
_D

es
ce

nt
_

A
vi

on
ic

s_
S

W
_A

ut
op

ilo
t_

au
to

pi
lo

t

Th
e

s y
st

em
 is

 p
ro

pe
rly

 in
iti

al
iz

ed
ai

rc
ra

ft
st

at
e

in
fo

rm
at

io
n

is
 p

ro
pe

rly
 re

ce
iv

ed
 fr

om
 th

e
se

ns
or

s
G

27
_U

A
V

_D
es

ce
nt

_A
vi

on
ic

s_
S

W
A

ut
o p

ilo
t

au
to

pi
lo

t
Th

e
cu

rr
en

t,
pr

ev
io

us
, a

nd
 n

ex
t w

ay
po

in
ts

 a
re

pr

op
er

ly
 d

ef
in

ed
G

28
_U

A
V

_D
es

ce
nt

_A
vi

on
ic

s_
S

W
A

ut
op

ilo
t

au
to

pi
lo

t

Th
e

FM
S

 o
bj

ec
t i

s
pr

op
er

ly
 in

iti
al

iz
ed

G
29

_U
A

V
_D

es
ce

nt
_A

vi
on

ic
s_

S
W

A
ut

op
ilo

t
au

to
pi

lo
t

Th
e

A
P

 o
bj

ec
t i

s
pr

op
er

ly
 in

iti
al

iz
ed

G
30

_U
A

V
_D

es
ce

nt
_A

vi
on

ic
s_

S
W

A
ut

op
ilo

t
au

to
pi

lo
t

In
pu

t a
nd

 O
ut

pu
t v

ar
ia

bl
es

 a
re

 p
ro

pe
rly

 ro
ut

ed
 v

ia

th
e

re
fle

ct
io

n
s y

st
em

s
sc

rip
ts

P
ar

am
et

er
 d

at
a

is
 p

ro
pe

rly
 in

iti
al

iz
ed

.

Th
e

A
P

 s
ys

te
m

 c
re

at
es

 c
or

re
ct

 o
ut

pu
t

fo
r a

ll
ai

rc
ra

ft
co

nt
ro

l s
ur

fa
ce

s
P

H
A

_D
E

.A
P

P
_A

V
C

S
_0

13

G
23

_U
A

V
_D

es
ce

nt
_A

vi
on

ic
s

_S
W

_A
ut

op
ilo

t_
A

P
,

G
9_

U
A

V
_D

es
ce

nt
_A

vi
on

ic
s

S
W

A
ut

op
ilo

t
A

P
Th

e
au

to
pi

lo
t c

or
re

ct
ly

 in
iti

al
iz

es
 th

e
A

P
 o

bj
ec

t
G

29
_U

A
V

_D
es

ce
nt

_A
vi

on
ic

s_
S

W
A

ut
op

ilo
t

au
to

pi
lo

t

Th
e

FM
S

 s
ys

te
m

 c
or

re
ct

ly
 u

pd
at

es
 th

e
A

P
 m

od
es

an

d
st

at
e

va
ria

bl
es

.

G
41

_U
A

V
_D

es
ce

nt
_A

vi
on

ic
s

_S
W

_A
P

,
G

10
4_

U
A

V
_D

es
ce

nt
_A

vi
on

ic
s_

S
W

A
P

P
ID

 c
on

tro
lle

r o
bj

ec
ts

 a
re

 p
ro

pe
rly

 in
iti

al
iz

ed

G
44

_U
A

V
_D

es
ce

nt
_A

vi
on

ic
s

_S
W

_A
ut

op
ilo

t_
A

P
,

G
75

_U
A

V
_D

es
ce

nt
_A

vi
on

ic
s

S
W

A
ut

op
ilo

t
A

P

P
ID

 c
on

tro
lle

r u
pd

at
es

 a
re

 c
or

re
ct

 fo
r e

ac
h

ai
rc

ra
ft

co
nt

ro
lle

r s
ur

fa
ce

G
45

_U
A

V
_D

es
ce

nt
_A

vi
on

ic
s

_S
W

_A
ut

op
ilo

t_
A

P

E
28

_U
A

V
_D

es
ce

nt
_

A
vi

on
ic

s_
S

W
_A

ut
o

pi
lo

t_
A

P
_A

ile
ro

n,
E

44
_m

_a
ile

ro
n_

m
1p

1

S
pe

ci
fic

at
io

n
re

vi
ew

 b
y

S
M

E

R
eq

ui
re

m
en

t
TR

A
C

E
 T

O

B Parameters and Variables
This appendix contains descriptions of the parameters and variables used in the instance of the autopilot code.
The parameters and variables are defined and initialized in a number of locations, including the code base and in
the scripting language that instantiates the instance of the autopilot in the Reflection virtual machine.

Table 11 contains variables and system constants defined in the code base. They are initialized either in the
code or in the scripts that load the modules into the Reflection VM. The script values will over ride the constructor
initialized values.

Tables 12 and 13 describe the initial gain values for the PID controllers used in the autopilot system. Table
12 describes the PID controller gain and bounds set in the code. Table 13 shows the values set through the scripts
after a module (namely the autopilot) is loaded into the Reflection virtual machine. As can be seen the gain
values can be re-initialized through the scripts. The maximum and minimum values are only initialized in the
code. Using the scripts to redefine the gain values allows the researcher to experiment, on the fly, with different
response characteristics without having to rebuild the code base.

Tables 14 and 15 show variables that are regulated in the code. By regulated it is meant that the variables are
constrained to be within explicit bounds by a macro function that is called after assignments to those variables.
The first table, Table 14, lists variables that have unique upper and lower bounds. Table 15 contains variables
that contain values in radians. These are regulated at plus or minus 2*PI.

The final two tables 16 and 17, show variables that represent external values coming into the autopilot
module and aircraft data from sensors stored in the gs111m module. Table 16 shows the variable name, the
units and use of the value stored in that variable. There is also a cross reference to Table 17 showing the name
of the variable in the gs111m module. Some sensor information, collected in the gs111m module, is not used
in the autopilot. However it is logged and sent to the ground station. It may possibly be used in other modules in
the system.

87

88

Table 11: Defined variables and their values

Fi
le

/C
la

ss
Va

ri
ab

le
N

am
e

D
ef

au
lt

va
lu

e
in

co
de

D
ef

au
lt

va
lu

e
fr

om
sc

ri
pt

U
ni

ts
U

se
s

ap
.h

/.c
pp

m
ba

nk
A

ng
le

L
im

it
ra

d
35

.0
*

C
G

L
M

A
T

H
R

A
D

PE
R

D
E

G
ra

di
an

s
m

pT
er

ra
in

D
B

N
U

L
L

cl
as

s
ob

je
ct

if
in

st
an

tia
te

d,
it

ca
n

be
se

t
to

a
fil

e
co

nt
ai

ni
ng

te
rr

ai
n

da
ta

m
al

tit
ud

eM
od

e
A

LT
IT

U
D

E
M

O
D

E
M

SL
en

um
er

at
ed

ty
pe

M
SL

=
M

ea
n

Se
a

L
ev

el
–

B
ar

o-
m

et
ri

c,
D

ef
au

lt
va

lu
e

in
ap

cl
as

s.
A

lte
rn

at
iv

e
va

lu
es

ca
n

be
A

G
L

=
A

bo
ve

G
ro

un
d

L
ev

el
or

R
A

D
A

R
ch

an
ge

s
se

tv
ia

sc
ri

pt
s

m
ba

nk
L

im
it

ra
d

40
.0

*C
G

L
M

A
T

H
R

A
D

PE
R

D
E

G
ra

di
an

s
m

m
in

T
hr

ot
tle

m
1p

1
-0

.8
co

nt
ro

lle
ro

ut
pu

t
m

m
ax

T
hr

ot
tle

m
1p

1
0.

8
co

nt
ro

lle
ro

ut
pu

t
g

X
tr

ac
kM

ax
C

or
re

ct
io

nA
ng

le
ra

d
45

.0
*

C
G

L
M

A
T

H
R

A
D

PE
R

D
E

G
ra

di
an

s
M

ax
im

um
cr

os
s

tr
ac

k
co

rr
ec

tio
n

an
gl

e.
L

im
iti

ng
va

lu
e

on
he

ad
in

g
co

rr
ec

tio
ns

.
(i

.e
.

T
he

m
ax

im
um

va
lu

e
th

at
th

e
ai

rc
ra

ft
ca

n
co

rr
ec

t
fo

r,
lim

ite
d

by
ba

nk
in

g
an

gl
e

(?
))

fm
s.

h/
.c

pp
m

la
nd

in
gF

la
re

M
ax

A
lt

ft
A

G
L

10
0.

0
10

0
fe

et
m

la
nd

in
gF

la
re

M
in

A
lt

ft
A

G
L

50
.0

50
fe

et
m

la
nd

in
gW

he
el

sD
ow

nA
lt

ft
A

G
L

2.
0

2
fe

et
m

la
nd

in
gD

es
ce

nt
R

at
e

fp
s

-2
0.

0
fe

et
pe

rs
ec

on
d

m
la

nd
in

gF
la

re
M

ax
D

es
ce

nt
R

at
e

fp
s

-1
5.

0
fe

et
pe

rs
ec

on
d

m
la

nd
in

gF
la

re
M

in
D

es
ce

nt
R

at
e

fp
s

-0
.1

fe
et

pe
rs

ec
on

d
m

la
nd

in
gF

la
re

T
hr

ot
tle

m
1p

1
-0

.6
5

-0
.6

5
co

nt
ro

lle
ro

ut
pu

t
m

la
nd

in
gG

lid
eS

lo
pe

ra
d

15
.0

*C
G

L
M

A
T

H
R

A
D

PE
R

D
E

G
ra

di
an

s

89

Table 12: PID controllers and initial settings in code

Variable name pGain iGain dGain iMax iMin
m pid RollErr2Aileron 1.0 0.0 0.0 1000.0 -1000.0
m pid HeadingErr2Roll -1.0 0.0 0.0 1000.0 -1000.0
m pid CircleDistErr2Heading 0.01 0.0 0.0 1000.0 -1000.0
m pid CrossTrackErr2Heading -1.0 0.0 0.0 1000.0 -1000.0
m pid Yacc2Rudder 0.01 0.0 0.0 1000.0 -1000.0
m pid HeadingErr2Rudder 0.01 0.0 0.0 1000.0 -1000.0
m pid PitchErr2Elevator 5.0 0.05 0.0 1000.0 -1000.0
m pid AltitudeErr2Pitch -0.005 -0.00005 0.0 1000.0 -1000.0
m pid AirspeedErr2Pitch 0.01 0.0001 0.0 1000.0 -1000.0
m pid VertSpeedErr2Pitch -0.01 -0.001 0.0 1000.0 -1000.0
m pid AirspeedErr2Throttle -0.01 -0.001 0.0 1000.0 -1000.0
m pid AltitudeErr2Throttle -0.005 -0.00005 0.0 1000.0 -1000.0
m pid GlideSlopeDevThrottle 0.01 0 0.0 1000.0 -1000.0

Table 13: PID controllers and initial settings in scripts

Variable name pGain iGain dGain
m pid RollErr2Aileron 0.5 0.0 0.0
m pid HeadingErr2Roll -1.0 0.0 0.0
m pid CircleDistErr2Heading 0.00 0.00001 0.0
m pid CrossTrackErr2Heading 0.004 0.0 0.0
m pid Yacc2Rudder 0.00 0.0 0.0
m pid HeadingErr2Rudder 0.03
m pid PitchErr2Elevator 1.0 0.0001 0.0
m pid AltitudeErr2Pitch not set
m pid AirspeedErr2Pitch 0.05 0.0001 0.0
m pid VertSpeedErr2Pitch -0.013 0.000 0.0
m pid AirspeedErr2Throttle -0.175 0.000 0.0
m pid AltitudeErr2Throttle -0.060 -0.000100 0.0
m pid GlideSlopeDevThrottle not set

Table 14: Variables regulated by a defined value in PID loops.

Variable Min Max Units Use of Variable Calculated In
output.m aileron m1p1 -1.0 1.0 controller output output to actuator ap
m pidTargets.-
m desiredroll rad

- m bankLimit rad m bankLimit rad radians internal calculation ap

m pidTargets.-
m desiredpitch rad

-20 *
CGL MATH -
RAD PER DEG

20 * CGL MATH -
RAD PER DEG

radians internal calculation ap

output.m elevator m1p1 -1.0 1.0 controller output output to actuator ap
output.m rudder m1p1 -1.0 1.0 controller output output to actuator ap
output.m throttle m1p1 -1.0 1.0 controller output output to actuator ap
m pidTargets.-
m xtracksignal -
deltaHeading

-(CGL MATH PI *
0.5)

(CGL MATH PI *
0.5)

radians internal calculation ap

m pidTargets.-
m xtracksignal -
deltaHeading (second
instance)

-g XtrackMax-
CorrectionAngle rad

g XtrackMax-
CorrectionAngle rad

radians internal calculation ap

90

Table 15: Variables regulated plus or minus 2 * PI in PID loops. If the value of the variable is greater than PI,
the variable is regulated to -2*PI. If the value of the variable is less than -PI the variable is set to 2*PI

Variable >PI <-PI Units Use of variable Calculated In
airplaneData.m heading rad -2*PI 2*PI radians internal calculation ap
m pidTargets.m desiredheading rad -2*PI 2*PI radians internal calculation ap
headingError rad -2*PI 2*PI radians internal calculation ap
rollError rad -2*PI 2*PI radians internal calculation ap
pitchError rad -2*PI 2*PI radians internal calculation ap
glideSlopeDev rad -2*PI 2*PI radians internal calculation ap

Table 16: Data from gs111m sensors/module used in the Autopilot.

Variable Units Defines gs111m Source Variable
m pos north ft feet aircraft position, north of origin m posNorth ft
m pos east ft feet aircraft position, east of origin m posEast ft
m pos altitude ft feet aircraft altitude m posUp ft
m airspeed fps feet per second aircraft airspeed m ias fps
m vertspeed fps feet per second aircraft vertical speed m velUp fps
m accel Y fps2 feet per second squared aircraft acceleration m accelY ba fps2
m pitch rad radians aircraft pitch angle m eulerPitch rad
m roll rad radians aircraft roll angle m eulerRoll rad
m heading rad radians aircraft heading m trueHeading rad
m flightPathAngle rad radians aircraft path angle un-enabled

Table 17: Relevant data collected in the gs111m module

Property Variable Units Defines Used in autopilot as
Indicated Airspeed m ias fps feet per second indicated airspeed (true air-

speed at ground level) from
pitot tube

m airspeed fps

Velocity m NorthVelocity fps feet per second vector North Velocity
Velocity m EastVelocity fps feet per second vector East Velocity
Position m posNorth ft feet aircraft position, north of ori-

gin from GPS
m pos north ft

Position m posEast ft feet aircraft position, east of origin
from GPS

m pos east ft

Acceleration m accelX ba fps2 feet per second squared acceleration in X component unused in EAV
Acceleration m accelY ba fps2 feet per second squared acceleration in Y component m accel Y fps2
Acceleration m accelZ ba fps2 feet per second squared acceleration in Z component unused in EAV
Vertical m velUp fps feet per second vertical airspeed m vertspeed fps
Attack m attackAngle rad radians attack angle (alpha) unused in EAV
Side slip m sideslipAngle rad radians side slip angle (beta) unused in EAV
Pitch m eulerPitch rad radians Euler Pitch m pitch rad
Roll m eulerRoll rad radians Euler Roll m roll rad
Heading m trueHeading rad radians True Heading m heading rad
True Airspeed see indicated airspeed
Angular Velocity rate gyros + kalman filter unused in EAV
Battery Voltage m rawBattVolt byte volts Battery Voltage (collected by

modem module)

C Aircraft Design
Figure 41 shows the control system design process as being implemented for the Swift UAV. Roughly, the dia-
gram can be read in a left to right, top to bottom fashion. The process starts by generating models of the intended
system. These models then relate to the actual hardware to be mounted on the aircraft, and they also provide
the 6-DOF simulation40 that will be used to fine tune the implementation on the UAV. The resulting system is
iteratively tested and refined with different parameters. At each iteration it is tuned against the simulation and
further refined.

Navier-Stokes
CFD

Range of hinge
moments

Flight test maneuver
data – trim to level

flight/ fully instrumented

Control system
design

Estimated stability
derivatives and
modes/poles

Linearized flight control
model (one specific trim

condition)

Aerodynamics
lookup tables

Sizing of
motors/actuators

System
ID

Aircraft Design Simulation Controller Design Flight Test

Back off initial gains,
adjust with flight test

data

Tune

Modification of
Control surfaces

Manufacturer
data sheets

Geometric model

X-Foil and
LinAir

Validates

Pilot
training

Static
margins

HILS / Iron-Bird
test data

Ground
TestsHandling

characteristics

First design

Subsequent designs

Before first flight

6-DOF simulation

Figure 41: Aircraft design flow: A portion of the steps and products generated in the modification of control
surfaces and control system design, as part of the overall aircraft design.

406 Degrees of Freedom simulation.

91

D NASA Regulatory Requirements
NASA’s regulatory environment consists of NASA procedural requirements (NPRs), some of which (though not
all) reference NASA standards, and possibly guide books. NPRs are available at the NASA Online Directives
Information System (NODIS) (http://nodis3.gsfc.nasa.gov/main_lib.html). Standards and guidance
documents are obtained from the NASA standards website (https://standards.nasa.gov/). Relevant documents and
websites for this project include:

• NPR 7150.2A - NASA Software Engineering Requirements
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7150_002A_&page_

name=main&search_term=NPR%207150%2E2A

• NPR 7123.1A - NASA Systems Engineering Processes and Requirements
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7123_001A_&page_

name=Preface&search_term=NPR%207123%2E1A

• NPR 7900.3B - Aircraft Operations Management Manual
http://www.hq.nasa.gov/office/codeq/doctree/79003.htm

• NASA-GB-8719.13 - NASA Software Safety Guidebook
https://standards.nasa.gov/documents/detail/3315126

• NASA-STD-8719.13 - NASA Software Safety Standard
https://standards.nasa.gov/documents/detail/3314914

• NASA-STD-8739.8 - Software Assurance Standard
https://standards.nasa.gov/documents/detail/3315130

• NASA/SP-2009-569 - Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis
https://standards.nasa.gov/documents/detail/3315758

• NPR 8715.5A - NASA Range Flight Safety Program
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_8715_005A_&page_

name=main&search_term=8715%2E5

• NASA Range Safety
http://kscsma.ksc.nasa.gov/Range_Safety/Overview.html

• Range safety documents
http://kscsma.ksc.nasa.gov/Range_Safety/NASALinks.html

• NPR 8715.5A: Appendix A (Range safety definitions: CMS, etc.)
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_8715_005A_&page_

name=AppendixA

• NPR 8705.5A: Probabilistic Risk Assessment (PRA) Procedures for Safety and Mission Success for
NASA Programs and Projects
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_8705_005A_&page_

name=main

• NPR 8715.3C: (System Safety) NASA General Safety Program Requirements
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_8715_003C_&page_

name=main

There are also Ames Procedural Requirements:

• APR 8705.1: System Safety and Mission Assurance
http://server-mpo.arc.nasa.gov/Services/CDMSDocs/Centers/ARC/Dirs/APR/APR8705.

1.html

92

http://nodis3.gsfc.nasa.gov/main_lib.html
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7150_002A_&page_name=main&search_term=NPR%207150%2E2A
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7150_002A_&page_name=main&search_term=NPR%207150%2E2A
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7123_001A_&page_name=Preface&search_term=NPR%207123%2E1A
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7123_001A_&page_name=Preface&search_term=NPR%207123%2E1A
http://www.hq.nasa.gov/office/codeq/doctree/79003.htm
https://standards.nasa.gov/documents/detail/3315126
https://standards.nasa.gov/documents/detail/3314914
https://standards.nasa.gov/documents/detail/3315130
https://standards.nasa.gov/documents/detail/3315758
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_8715_005A_&page_name=main&search_term=8715%2E5
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_8715_005A_&page_name=main&search_term=8715%2E5
http://kscsma.ksc.nasa.gov/Range_Safety/Overview.html
http://kscsma.ksc.nasa.gov/Range_Safety/NASALinks.html
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_8715_005A_&page_name=AppendixA
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_8715_005A_&page_name=AppendixA
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_8705_005A_&page_name=main
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_8705_005A_&page_name=main
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_8715_003C_&page_name=main
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_8715_003C_&page_name=main
http://server-mpo.arc.nasa.gov/Services/CDMSDocs/Centers/ARC/Dirs/APR/APR8705.1.html
http://server-mpo.arc.nasa.gov/Services/CDMSDocs/Centers/ARC/Dirs/APR/APR8705.1.html

E Software Certification Overview
Here, some implications of the existing practice of process-based software safety assurance on the safety assur-
ance activities for the Swift UAS, are described.41

Categories and Software Levels
Some of the hazards identified in Table 3 may have a root cause in a software function and can only be mitigated
by verifying the correct operation of the underlying software. For example, a race condition between two critical
autopilot control tasks may lead to a fault and loss of control of the autopilot. This race condition may have been
rooted in incorrect design of the underlying operating system. Therefore, it is essential that all software compo-
nents be properly verified to ensure the safety case claims can be supported. For this reason, it is recommended
that RTCA/DO-178B, Software Considerations in Airborne Systems and Equipment Certification, published De-
cember 1, 1992 be used as a guidance document to ensure all claims related to software have sufficient evidence
to support these claims. The evidence to support DO-178B certification can be extensive and there are many
approaches to producing this evidence. One potential approach is discussed below.

Any latent defects in the Swift autopilot system whose anomalous behavior, as shown by the system safety as-
sessment, would cause or contribute to a catastrophic failure of the aircraft means that the software is considered
safety-critical, Level A according to guidance in RTCA/DO-178B.

Table 18 provides the relevant definitions of the appropriate software level and associated failure condition:

Table 18: Software certification levels

Software Certification Level Definition
or Failure Condition

Level A Software whose anomalous behavior, as shown by the sys-
tem safety assessment, would cause or contribute to a fail-
ure of system function resulting in a catastrophic failure
condition for the aircraft.

Catastrophic Failure conditions that would prevent continued safe flight
and landing

All software operating on the Swift UAS platform would be required to meet DO-178B, Level A unless the
system were partitioned to contain faults. Partitioning and fault containment are beyond the scope of this safety
case. The following components of software operate on the Swift UAS platform and can impact the safety of the
vehicle, including:

• Autopilot
• FMS
• CGL
• Windows XP Embedded Operating system
• Script Files
• Reflection Virtual Machine
• Board-specific software (e.g, BIOS, PCI, etc.) and device drivers
• INS/GPS software (and associated operating system, drivers and board support software
• 900 MHz Radio Software (if software is used)

The possible failure conditions that may lead to application software malfunctioning within a given partition
may be summarized as follows:

• Incorrect results are provided to the application by the operating system.
• Expected results are not provided, or are provided past their deadlines.

41The content of this section has been provided by FAA DER, Joe Wlad.

93

• Application code is not executed as expected (not run, incorrectly run, or incorrectly sequenced).
• Fault conditions are not detected or handled incorrectly.
• Data is incorrectly modified
• Timing errors
• Priority inversion
• Deadlock conditions
• Incorrect or untimely response provided by the OS to external or user generated events
• Failure of operating system or board support software to ensure resources are available as required for a

given application

Table 19 provides a high-level description of DO-178B certification activities which would be employed
to demonstrate compliance with DO-178B, Level A objectives. These processes would apply to all software
components used on the Swift UAS.

Table 19: Software certification activities

RTCA/DO-178B Processes Description
Planning Defining the Certification Strategy and Planning documents, to include

the Plan for Software Aspects of Certification (PSAC), Software De-
velopment Plan (SDP), Software Verification Plan (SVP) and appropri-
ate standards.

Configuration Management The process by which the software and software lifecycle data will be
controlled and managed, including problem reports and software up-
dates

Quality Assurance Assurance of Independence and enforcement of software lifecycle pro-
cesses and activities

Requirements Definition and review of High and low-level software requirements
Design Definition and review of Software Design
Coding Definition and review of Software source and object code.

Integration Cohesion of software modules into one or more functional components
Verification Reviews of requirements, design, source and object code as well as test

plans, procedures, results and coverage analysis
Documentation Production of all required DO-178B documentation to support Level A

certification
Certification Liaison Relationship with the certification authority and if required approval of

PSAC, SAS and SCI documents

Since much of the software used on the Swift UAS is considered “PDS” or previously developed software, one
would need to undertake a reverse engineering process to reconstruct all the required DO-178B documentation
and activities. Guidance exists in the form of a Federal Aviation Administration Position Paper (CAST-18:
Reverse Engineering in Certification Projects)42, which can be used to ensure this effort is done with as little
certification risk as possible. Figure 42 gives an abstract overview of this process.

Requirements Develop Tests

Design

Code

Test

(3)

(4)
(2)

(1)

Figure 42: Activities for reverse engineering DO-178B documentation for previously developed software.

42http://www.faa.gov/aircraft/air cert/design approvals/air software/cast/cast papers/

94

1. The first step is to examine the entire code structure and reverse engineer high-level and low-level require-
ments.

2. Thereafter, reverse engineer design data (either in the form of pseudo-code or similar documentation).
Then the requirements and design data would be traced together and linked with the source code itself.
Convenient tools such as DOORS would be use to accomplish this task.

3. Step 3 is to produce the test cases from the requirements (not from the design or source code).
4. These requirements-based tests are executed in Step 4 and then the coverage of the source and object code

would be analyzed against DO-178B, level A requirements. This process would be repeated until complete
source and object coverage is achieved.

The documentation required to support DO-178B certification evidence includes, at a minimum, the products
shown in Table 20:

There are other certification considerations that may be applicable to the software on the Swift UAS platform,
such as use of non-deterministic functions (such as freeing of memory, use of Direct Access Memory control,
among other), use of object oriented design (C++, Java), ability to qualify tools used in the verification process,
among others but these are considered out of scope for this phase of the safety case.

95

96

Table 20: Software certification evidence

Product Name Description
Plan for Software Aspects of Certification Provides the Certification Authorities an overview of the means of com-

pliance and insight into the planning aspects for delivery of the product.
Software Quality Assurance Plan Defines the SQA process and activities.
Software Configuration Management Plan Defines the CM system and change control process.
Software Development Plan Define the processes used for requirements analysis, development, and

test for the software product. Include the standards for requirements,
design, and code.

Software Verification Plan Defines the test philosophy, test methods and approach to be used to
verify the software product.

Software Requirements Standard
Software Design Standard
Software Coding Standard
Software Test Plan Documents the project specific approach to verifying the software prod-

uct.
Software Requirements Specification Defines the high-level requirements applicable to the air data computer

software
Software Design Document Describes the design of the certifiable air data computer software.
Software Configuration Index Identifies the components of the certifiable air data computer software

with version information necessary to support regeneration of the prod-
uct.

Software Configuration Index Identifies the components of the air data computer software with version
information necessary to support regeneration of the air data computer
software.

Software Life Cycle Environment Configuration Index Identifies the tools used to build and test air data computer software.
Software Development information Software Development information includes as a minimum:

• Reference to the applicable requirements
• Reference to the implementation (Design & Code)
• Evidence of reviews for the Requirements, Design, Code, and

Test procedures and test results
• Software Test Procedures
• Software Test Results
• Analysis documents for verification, coverage analysis, and any

special case analysis.
• Change History (CM System)
• Applicable Problem Reports

Traceability Matrix Provides traceability from the requirements, to the built software, to test
for the delivered software product.

Software Accomplishment Summary Documents the actual versus planned (wrt PSAC) activities and results
for the project. Provides a summary of the means of compliance used
for the software. Justifies any deviations from the plans.

Results Documents the results of the functional and structural coverage testing.
This includes the actual results and any applicable analyses performed
including coverage analysis.

	Introduction
	Context
	Specific Research Problem
	Relevant Terminology
	Safety Assurance Methodology
	Safety Cases and the Goal Structuring Notation
	Organization

	Target System: The Swift UAS
	Description
	Operation of the Airborne System
	System Parameters

	Flight Software Architecture
	Execution Layers of the Reflection Framework
	Modules, Scripts, and the Reflection Virtual Machine
	Autopilot Module
	Mission Configurations

	Flight Management System and Controller
	Control Modes
	Aileron High-level Control Sequence
	Mathematical Calculations for the Aileron
	Elevator High-level Control Sequence

	Safety Considerations for the Target System
	Preliminaries
	Regulatory Framework
	Contingency Management
	System Requirements Relevant for Safety

	Heterogeneity in Safety Information
	Safety Analysis of the Target System
	Preliminary Hazard Analysis
	Hazard Identification
	Risk Analysis

	Safety Requirements

	System Safety Case Outline
	Manually Created Safety Case Fragment
	Top-level Safety Case Fragment
	Linking the System and Software
	Linking the Software and the Autopilot Module
	Linking the Autopilot and the Controller Module
	Linking the Controller Module to aileron control

	Semi-automatically Generated Safety Case

	Transformation Methodology
	Domain Theory
	Domain Theory Description
	From Formal Proofs to Safety Cases
	Formats
	Algorithm
	Validating the Transformation

	From Safety Cases to Formal Specifications

	Evaluation Metrics
	Coverage
	Base Measures
	Measuring Coverage
	Coverage for the Swift UAS Safety Case Fragment

	Degree of Automation
	Base Measures
	Measuring Degree of Automation

	Understandability
	Challenges to Measuring Understandability
	Towards Measuring Understandability

	Confidence in the Safety Argument
	Illustrative Example
	Uncertainty in the Safety Argument
	Measuring Confidence

	Discussion
	Approach
	Scope and Automation
	Trustworthiness

	Future Work
	Traceability
	Parameters and Variables
	Aircraft Design
	NASA Regulatory Requirements
	Software Certification Overview

