
Perspectives on Software Safety Case Development for Unmanned Aircraft

Ewen Denney and Ganesh Pai

SGT / NASA Ames Research Center
Moffett Field, CA 94035, USA

Email: {ewen.denney, ganesh.pai}@nasa.gov

Ibrahim Habli

Department of Computer Science
University of York, York, UK

Email: Ibrahim.Habli@cs.york.ac.uk

Abstract—We describe our experience with the ongoing
development of a safety case for an unmanned aircraft system
(UAS), emphasizing autopilot software safety assurance. Our
approach combines formal and non-formal reasoning, yielding
a semi-automatically assembled safety case, in which part of
the argument for autopilot software safety is automatically
generated from formal methods. This paper provides a discus-
sion of our experiences pertaining to (a) the methodology for
creating and structuring safety arguments containing hetero-
geneous reasoning and information (b) the comprehensibility
of, and the confidence in, the arguments created, and (c) the
implications of development and safety assurance processes.
The considerations for assuring aviation software safety, when
using an approach such as the one in this paper, are also
discussed in the context of the relevant standards and existing
(process-based) certification guidelines.

Keywords-Software safety; Safety cases; Unmanned aircraft;
Formal methods; Aviation software.

I. INTRODUCTION

The approval process for deploying airborne software

largely occurs via certification, a core activity in develop-

ing safety-critical systems. In aviation, this occurs through

demonstrating compliance with aerospace standards and

regulations (e.g., DO-178B [1]) to a government appointed

authority, e.g., the U.S. Federal Aviation Administration

(FAA) or the European Aviation Safety Agency (EASA).

Via prescriptive certification, especially in civil aviation,

developers demonstrate that a software system is acceptably

safe by appealing to the satisfaction of a set of process

objectives that the safety standards require for compliance.

The means for satisfying these objectives are often tightly

defined within the standards. In general, such prescriptive

safety standards offer useful guidance on “good practice”

software engineering methods, safety analysis techniques,

and the way in which factors such as independence in the

process can improve confidence. However, a fundamental

limitation lies in the observation that good tools, techniques,

and methods do not necessarily lead to the achievement of

a specific level of integrity/assurance, often expressed in

terms of failure rates. A correlation between the prescribed

techniques and the failure rate of systems has not been

demonstrated [2].

Increasingly, consideration is being given to goal-based
certification, where the corresponding standards require the

submission of a safety argument that communicates how

evidence, e.g., generated from testing, analysis and review,

satisfies claims concerning safety. This is commonly referred

to as a safety case [3]; the counterpart for software is the

software safety case [4]. The requirement for a safety case

has been central in goal-based standards, particularly in

domains such as defense, rail, and oil & gas. The revision of

DO-178B, i.e., DO-178C, includes a new note concerning

assurance arguments1 as an alternative method to show that

system safety objectives are satisfied. Similarly, the interim

guidance for approving unmanned aircraft system (UAS)

operations includes the use of “alternate methods of compli-

ance”, specifically referring to a safety case with sufficient

data, as a means for possible approval [6, Section 5.0].

Although there is some general guidance on the use of

safety cases in aviation [7], and for airborne software [8], to

our knowledge, there is little documented experience on their

application to UAS [9], given the existing (and upcoming)

framework for approval. We anticipate that reporting the

perspectives from developing a system/software safety case

for a UAS might, eventually, aid the formulation of such

guidance; however, that is not the main aim of this paper.

Rather, it is to examine (i) whether a safety case can

transparently and coherently communicate assurance by

reconciling heterogeneous safety-relevant information and

diverse reasoning, and (ii) the extent to which software

safety assurance can be improved by the development of an

explicit software safety case, particularly from a systems per-

spective. In this paper, we briefly describe our methodology

for developing a safety case for an experimental UAS with

a focus on the safety assurance of the autopilot software.

We then report the insights gained / lessons learned from

the perspectives of safety case design, comprehensibility of

the arguments, quantitative confidence assessment, and the

implications from existing processes and standards.

II. THE SWIFT UAS

We are interested particularly in assuring the safety of

the airborne system in the Swift unmanned aircraft system

(UAS) being developed at NASA Ames. The UAS comprises

1Conceptually, a safety case can be considered as a specialization of an
assurance case [5].

978-1-4673-1625-5/12/$31.00 ©2012 IEEE

the electric Swift Unmanned Aerial Vehicle (UAV), dual

redundant ground control stations (GCS) and communication

links. The UAV can fly autonomously, in different modes,

e.g., computer in control (CIC), following an uploaded

or a pre-programmed nominal flight plan; it can be also

controlled by a pilot on the ground. An off-nominal flight
plan describes a protocol for managing contingencies, e.g.,

failures in the primary pilot system, to ensure that any crash

that may occur is “on range”.

The flight software onboard the UAV is implemented as a

collection of loosely-coupled modules (e.g., the autopilot,

communication interfaces, configuration scripts, etc.) that

are defined on top of, and interface with, the Reflection
system: a multi-component, event-driven, real-time, config-

urable software framework. In turn, this system runs on top

of a physics library which itself runs on an embedded real-

time operating system. The onboard autopilot is involved, in

part, in the contingency management system (CMS); there-

fore, assuring its (functional) safety is especially relevant.

The autopilot software has a modular design and consists of

the flight management system (FMS) and the controller (AP)

modules. Both of these are involved in controlling the flight

surfaces, and therefore, aircraft movement.

It is important to note that the Swift UAS design, which

is far along in its development lifecycle, has incorporated

safety considerations and reuses specific functionality from a

predecessor vehicle. However, certain functionality, e.g., the

autopilot, is yet to be fully designed. This presents us with

the opportunity to influence its design via the application of

our safety assurance methodology, described subsequently.

III. SAFETY ASSURANCE

A. Methodology

Our approach (Figure 1) adopts goal-based argumentation

for linking evidence, e.g., results of software verification, to

claims that hazards, identified from safety analysis, are miti-

gated. The system safety and safety argumentation processes

are intertwined with system development, start at the level

of the UAS, and are repeated at the software level.

Through our approach, we (i) explicitly consider diverse

evidence, reasoning, assumptions and context in the safety

analysis and argument (ii) automatically generate parts of the

software safety case from formal verification, i.e., proofs of

correctness, thereby both integrating formal reasoning into

safety argumentation and providing a significantly greater

level of detail in the argument for software (iii) automatically

assemble the argument for software safety into that of safety

of the system, and (iv) explicitly consider the confidence that

can be placed in the safety case being put forth, through

uncertainty assessment.

We use the Goal Structuring Notation (GSN) [3] to

document the safety case. In brief, GSN is a graphical

notation for representing arguments in terms of basic ele-

ments such as goals (claims), context, evidence, assumptions

Figure 1. Safety assurance methodology: key activities and data flow.

and justifications. Arguments are created in GSN by linking

these elements using two main relationships: supported by,

and in context of, to form a goal structure. We also use the

AUTOCERT tool [10] to support the formal verification of

software through automatic theorem proving. It produces a

proof, along with supporting logical axioms and function

specifications that have been used. This proof can be auto-

matically transformed into a safety case fragment, using a

tool that we developed in-house at NASA Ames. This tool

also automatically assembles the software safety case into

the system-level safety case. We describe how we applied

our approach to the Swift UAS subsequently in this section.

B. Safety Analysis

We base the system safety process on the framework of

a safety risk management plan [11], so as to include safety

considerations into system/software development.

The process begins with hazard identification and risk

analysis, i.e., as preliminary hazard analysis (PHA) at the

system level; then it is repeated as subsystem hazard analysis

(SSHA) at the software level. We applied a variety of

hazard identification and analysis techniques such as failure

modes and effects analysis (FMEA) and fault tree analysis

(FTA). To refine the hazard analysis, and to manage the

wider context of safety, i.e., safety implications arising from

interactions, and deviations in processes and procedures, we

also explicitly characterized the heterogeneous sources of

evidence, assumptions and context that could be used to

support a claim of safety, e.g., concepts of operations, op-

erating procedures, assumptions made in theoretical models

(of flight control / aerodynamic stability), simulations and

computational models, etc.

Then, we identified unacceptable risks by categorizing

hazards based on a combination of the severity of conse-

quences, and the likelihood of occurrence. Subsequently, we

defined mitigation measures/controls, and we specified the

corresponding (system and software) safety requirements.

For instance, Unintended pitch down during cruise is a

system-level hazard to which the autopilot software can

contribute by failing to correctly compute the relevant pa-

rameters, e.g., angle of attack, and/or the output values

for the flight surface actuators. These are software failure

modes, and we specify the corresponding (software) safety

requirements to negate these failure modes e.g., “The auto-

pilot shall accurately compute the correct angle of attack”,

and “The autopilot shall correctly compute actuator outputs”.

C. Arguing Safety of the System

The outcome of the system safety process, in effect,

triggers the safety argumentation process (Figure 1).

Abstractly, the main steps in the safety argumentation

process are to (a) define safety claims, e.g., that a specific

hazard is eliminated, and (b) identify, select, and link the

evidence, which support the claims made, via a structured

argument that can, on analysis, be agreed upon as acceptable

and trustworthy. The top-level claim (goal) in our safety case

is: The Swift UAS is safe in the context of the defined mission,
in the specified configuration, on the defined range where it
is to be operated, and under the defined weather conditions.

To develop this claim our strategy is, primarily, to argue

that all identified hazards across all operating phases have

been mitigated. In turn, we develop the claims of hazard

mitigation by argument over the UAV subsystems (e.g., the

avionics subsystem, of which the autopilot software is a

part).

D. Arguing Software Safety in the System Context

The autopilot software safety case (ASSC) contains a

justification for the claim that the autopilot is correct (func-

tional safety), and it makes explicit the heterogeneity of

context, assumptions and evidence inherent in a safety claim,

e.g., Figure 2(a) shows a small excerpt from the ASSC

where we argue the safe computation of the angle of attack

parameter by justifying the claim that the autopilot computes

it accurately and correctly.

This justification is through an argument structure which

links diverse evidence, i.e., a proof of correct implementa-

tion, results of reviewing the corresponding specification,

data sheets for the air-data (pitot) probe, and the results

of wind tunnel experiments to calibrate the probe. Note

that the argument leg that supports the claim of correct

implementation (G2.2), as we have shown it in Figure 2(a),

abstracts a significantly more detailed argument fragment.

The items of evidence in the ASSC are, in part, generated

from formally verifying the autopilot software implementa-

tion against a mathematical specification, using AUTOCERT.

The specification contains assumptions, e.g., about the air-

craft state and flight plan, and it formalizes the software

requirements, a subset of which are derived from the system

safety requirements. Formal verification takes place in the

context of a logical domain theory, i.e., a set of axioms and

function specifications. Axioms can be either assumed to

be correct, or they can be inspected, or they can be tested

against a computational model which, itself, is inspected.

Through this approach, we are able to integrate formal

reasoning into the construction of a (software) safety case.

Conversely, formal reasoning makes use of safety-relevant

information which has not itself been derived using formal

methods. This can take the form of simplifying assumptions

which are experimentally justified, or appeals to expert

judgment, e.g., that a parameter is within safe bounds, that

an error is within an acceptable range, or that one subsystem

is similar to another (and therefore has equivalent safety-

related properties).

We automatically transform the output of AUTOCERT into

a safety case fragment, and then merge it into the upper-level

(system) safety case by replacing the relevant, overlapping,

goals in the latter with the auto-generated argument fragment

(containing the proof as evidence). If safety case fragments

have been created prior to the construction of a proof (as

might be reasonably expected), they also can be converted

into formal specifications for input to AUTOCERT.

E. Assurance of the Arguments

Assurance can be defined as justified confidence in a

property of interest [12]. Despite the explicit consideration

of diverse evidence and formal reasoning in the software

safety case, subjectivity is inherent in the structure of the ar-

gument and its supporting evidence. To assure that sufficient

confidence can be placed in the arguments made, our ap-

proach is based on quantitative uncertainty assessment [13],

which forms part of the broader safety process (Figure 1).

Confidence assessment provides feedback for improving the

safety case during its evolution (although it is not explicitly

highlighted in Figure 1).

We begin by identifying the sources of uncertainty in

the argument, following which we quantify the uncertainty

introduced by these sources. We use data where available

(in the case of aleatory uncertainties), and subjective judg-

ment for epistemic uncertainties. Thereafter, we aggregate

the quantified values into an assessment of argument/claim

confidence via probabilistic modeling. More specifically,

we model the identified sources of uncertainty as discrete

random variables (r.v.), and we characterize the confidence

in the overall argument as the joint distribution of the r.v.,

using Bayesian Networks (BN).

Is solved by

Is solved by

In context of

Is solved by

Is solved by

In context of

Is solved by

Is solved by

Is solved by Is solved by

In context of

In context of

In context of

Is solved by

In context of

Is solved by

Is solved by

Is solved by Is solved by

In context of

Is solved by

In context of

Is solved by

In context of

Is solved by

Is solved by

Is solved by

Is solved by

Is solved by

Is solved by

C1.1.1

Wind tunnel experiments
for air data probe

CONTEXT

E4

Datasheets for
Pitot probe

SOLUTION

E1

Outcome of
review and
review data

SOLUTION

G2.1.1
Specification for computing

angle of attack is reviewed to
be correct by aircraft design

team
GOAL

G2.2.1

Proof of correct imementation
generated using AutoCert

verification Tool
GOAL

E3

Proof of
Correctness

SOLUTION

G2.2

Computation of angle of attack
is correctly implemented

GOAL

E2

Data from wind
tunnel

experiments on
air data probe

SOLUTION

G2.1.1

The specification uses the
correct formula for computing

angle of attack
GOAL

S2.1.1

Argument by review
(appeal to domain

expertise)
STRATEGY

S2.3

Argument by proof of
correctness of

implementation

STRATEGY

C2.2.3

Automatic
Theorem
Provers

CONTEXT

G1.1.1

Pitot probe has an
acceptably low

probability of failure
on demand

GOAL

C1

Autopilot module
CONTEXT

C2.1.2
Value of calibration
parameter for Pitot

Probe
CONTEXT

S1.1

Argument of low
probability of sensor
failure on demand

STRATEGY

S1

Argument that input
is reliable

STRATEGY

C2.2.1

Specification for
computing angle of

attack
CONTEXT

G2.1

The specification for
computing angle of attack is

correct

GOAL

C2
Formula for angle of
attack (Flight control

theory)
CONTEXT

S2.2

Argument that correct
calibration constant is

used in the
specification

STRATEGY

G1.1

Pitot probe provides reliable
sensor values to Autopilot

GOAL

G2.1.2

The calibration constant used in
the specification is accurate

GOAL

G1

Autopilot module accurately
calculates correct angle of

attack

GOAL

C2.1.1

Aircraft design team
CONTEXT

C1.1

Pitot probe

CONTEXT

S2
Argument that
computation is

correct
STRATEGY

S2.1.2
Argument of

correct
experimental

calibration
STRATEGY

G1.1.1

Pitot probe
calibration is

accurate
GOAL

C2.2.2

AutoCert
verification tool

CONTEXT

S2.1

Argument that the
correct formula is

used in the
specification

STRATEGY

(a) (b)

Figure 2. (a) Safety case fragment showing an (abridged) argument for safe computation of angle of attack (b) Confidence quantification.

To illustrate, the BN in Figure 2(b) gives the prior

confidence in the argument of Figure 2(a). The BN structure

mirrors the initial decomposition of the top-level claim and

it also captures the uncertainty in the argument formulation,

i.e., the assurance deficits [9]. Each node in the BN and its

associated distribution characterizes the different sources of

uncertainty in the argument. The BN completely specifies

the prior confidence in the argument by modeling the

uncertainty that the claim is accepted, conditional on the

uncertainties identified for the argument.

Thus, stochastic (aleatory) uncertainty in the sensor val-

ues is influenced by the failure probability (rate) of the

pitot probe. This is quantifiable, e.g., through statistical

testing of the sensor. On the other hand, uncertainty in

the correctness of the specification is both aleatory and

epistemic in nature. The former appears since a parameter

in the function specification is obtained from wind tunnel

calibration of the pitot probe and due to the uncertainty in

the calibration experiments. We take the confidence level

of the calibration experiments as the quantitative confidence

value for the corresponding BN node, Accurate Calibration.

Epistemic uncertainty in the specification correctness is

given by subjectively quantifying the confidence that the

correct formula has been used [13], after domain experts

review the specification against flight control theory.

Even though a formal proof of correct implementation is

available, there is uncertainty along the verification chain

induced through a combination of uncertainties surrounding

the assumptions made, e.g., in the specifications, and the

tools being used. We gauged the uncertainty that the proof

is correct, using subjective judgment based on feedback from

the tool developers. Thus, the node Proof Correct in the BN

of Figure 2(b) conveys the notion that there is, a priori, very
high confidence that the proof should be trusted.

There also exists uncertainty in the sufficiency of the sub-

claims, i.e., whether the sub-claims G1.1, G2.1, and G2.2
are appropriate and sufficient to infer the parent claim G1.

Indeed, arguments can only ever be deemed “complete” (or

compelling) insofar as the uncertainty in the reasoning is

sufficiently low. For instance, the node Argument Sufficient
indicates that comparatively lower confidence exists in the

sufficiency of the argument, adjudged as medium. Uncer-

tainty also exists whether the claims made and the strategies

used to decompose the claims have been applied in the

appropriate context. Again, these uncertainties are epistemic

and we quantified it subjectively.

Based on the specified distributions and the conditional

independence assumptions as encoded by the BN structure,

the results of probabilistic modeling would suggest that

high confidence be placed in the overall argument (shown

by the distribution on the node Claim Accepted). However,

this evaluation is only an initial step towards confidence

assessment and several challenges exist (discussed subse-

quently) associated with the quantification, interpretation

and validation of the results from the model.

IV. DISCUSSION

Thus far, we have described our experience with software

safety case development in terms of our methodology for

safety analysis and argumentation as applied to the autopilot

software in the Swift UAS.

In particular, the first two authors performed the safety

analysis in close cooperation with the Swift UAS engineer-

ing team. Subsequently, they also constructed the manu-

ally created part of the safety case. In doing so, domain

knowledge that was previously implicit was made explicit

and classified as assumption, justification or evidence, as

appropriate, for use in the safety case. The functional safety

requirements were formalized, in part, by the first author

who also defined the axioms and function specifications

required for formal verification. The third author functioned

as the external independent safety case expert for evaluating

(and subsequently enhancing) the arguments made. Then,

we presented the safety case to the Swift UAS engineering

team (the designers and the range safety officer) for their

feedback.

In this section, we reflect upon the insights gained and

lessons learned from several perspectives.

A. Safety Argument Comprehension

Our initial assumptions in the choice of a graphical nota-

tion, such as the GSN, for documenting the ASSC and the

Swift UAS safety case were that a graphical notation would

be intuitively easier to comprehend, and enable us to better

communicate the reasoning used in the arguments therein.

However, our first experience through this exercise suggests

that a tabular equivalent representation is also useful to have

and, in some situations, might be better received.

We hypothesize that this is due, in part, to the (relatively

small) learning curve associated with a new notation, the

unfamiliarity of the Swift UAS engineering team with the

syntax and semantics of the GSN notation, and the preva-

lence of tabular representations for capturing development

artifacts such as requirements, hazard logs, hazard analysis

results, traceability, etc. Constructing a tabular equivalent for

an argument represented using the GSN is straightforward,

but presents the potential for some misinterpretation if table

semantics are not well specified.

We also observed that safety case fragments containing

hazard mitigation arguments over an architectural break-

down were, sometimes, misinterpreted as being equivalent to

other graphical notations in safety analysis that model failure

conditions over architectures, e.g., fault trees and event trees.

An additional impediment that we noted, to better com-

prehending the arguments as we presented them, was the

need to query the arguments and answer “what-if” questions.

Although this is desirable in terms of guiding design for de-

pendability/safety, identifying shortcomings/improvements

in the system and, practically, also for facilitating navigation

through large goal structures, the purpose of the safety argu-

ment is primarily to convey that which has been achieved to

assure safety. We hypothesize that this arose, again in part,

from mistaking the semantics of the GSN notation with that

of notations which permit such analyses, e.g., fault trees,

and unfamiliarity, in general, with the safety case concept.

The engineers also preferred to view the safety case as an

information log providing a transparent record that safety

concerns have received sufficient consideration, rather than

as an argument assuring safety. Indeed, one point made

during the feedback we received, was that flight tests are

the ultimate evidence of system safety. This is valid, but

can be reconciled with our methodology by observing the

following: since the Swift UAS is undergoing development,

our safety case is interim in the safety case lifecycle [14].

By itself, it is insufficient to completely justify the top-

level claim (Section III-C), nor should that be expected of

it. Rather, the evidence of safe flight and other evidence

from operation (which is contingent on mission specific

configurations and weather conditions) forms part of the

operational safety case [14], which we have yet to create.

A key lesson learned here is that communicating the

safety argument in a comprehensible way to the relevant

stakeholders requires a mechanism that (a) well abstracts the

data that are not relevant to the stakeholders, e.g., through

the choice of a modular argument, and (b) mainly presents

the information relevant for their role in system development

and operation.

B. Safety Argument Design

Our assurance approach was mainly to address all the

identified hazards; therefore, we adopted a hazard-directed

style of argumentation, an instantiation of the hazard-
directed breakdown pattern [15]. Since we are also con-

cerned with the safety of software, our safety case includes

explicit correctness arguments to demonstrate and justify

that software contributions to the identified system hazards

are acceptable. Here, the evidence comprises formal proofs

that the code correctly implements the formalized software

safety requirements, and where the latter are functional

safety requirements that negate the hazards.

However, like the design of software architectures, an

argument structure varies depending on the attributes that

it needs to satisfy. Whereas architectures are designed to

satisfy quality attributes such as performance, reliability

and modifiability, arguments are designed to satisfy various

attributes such as compliance, comprehensibility, validity,

and maintainability. Reflecting on the experience gained, the

safety case we developed for the Swift UAS is not explicitly

modularized, in comparison with those created using the

modular, contract-based safety case concept [8].

Thus, our safety case structure would have been different

(more modular) if, in addition, we were concerned with

compliance, maintainability, and reducing the cost of re-

certification (in the event of change).

An important objective for a modular safety case is to

establish a correspondence between the modules in the

safety case and the components in the system and software

architecture. For our safety case, and since our concern was

mainly to show how software contributions to hazards were

acceptable, splitting the structure of the safety case into

slices of arguments, each covering one hazard, offered a

better strategy for addressing that concern (i.e., in terms

of highlighting traceability between hazards and software

behavior over correspondence between argument structures

and software components).

Similarly, the overall structure of the safety case for the

Swift UAS would have been different if mere compliance

was our objective, e.g., compliance with many safety stan-

dards in the UK requires demonstrating that all residual risks

are As Low As Reasonably Practicable (ALARP)2. This

would require a cost-benefit analysis, specifically to show

that deploying additional risk reduction measures would

require grossly disproportionate costs. We did not explicitly

consider the costs of risk reduction in our safety case since

the ALARP principle is not currently applicable to the Swift

UAS. However, it is worth noting that cost-benefit analysis

is part of the design trade-off that the development team

performed during systems engineering.

C. Assessment of Confidence

1) Challenges: We selected a Bayesian paradigm as the

basis for quantitative confidence analysis since it affords a

common probabilistic framework in which to reason about

both subjective information and quantitative data. However,

several issues exist relevant to quantification, validation and

interpretation of the BN model.

First, there is a need to justify the basic BN structure and

the assumptions of conditional independence. This could be

achieved, in part, by automatically generating the BN from

the GSN-based safety argument, where for each source of

uncertainty identified, a corresponding node (or nodes) exists

in the BN. Next, specifying the prior probabilities for the

2http://www.hse.gov.uk/risk/theory/alarp.htm

Table I
QUANTITATIVE MEASURES FOR THE SWIFT UAS SAFETY CASE

Measure Value
Total number of claims 144
Coverage of considered hazards 0.7344
Coverage of high-level safety requirements 0.8667
Coverage of low-level safety requirements 1
Code covered by auto-generated claims 0.9215

leaf nodes (nodes with no outgoing arcs) is straightforward

where empirical data is available (e.g., the node Accurate
Calibration, in Figure 2(b)).

When only subjective judgment is available (e.g., the node

Correct Formula in Figure 2(b)), quantifying confidence and

selecting an appropriate prior distribution is problematic

despite extensive research on belief elicitation methods [16].

One way to address this issue, we believe, is to identify

relevant metrics using techniques such as the Goal-Question-

Metric (GQM) method [17], and to correlate these metrics

to confidence levels based on a defined quality model, e.g.,

we hypothesize that a metric such as coverage (by a safety

argument) of hazards (in a hazard list) would correlate with

confidence in the sufficiency of the argument.

For intermediate nodes (i.e., nodes with both incoming

and outgoing arcs, e.g., the node Computation Correct in

Figure 2(b)), we use a parametric form to specify the condi-

tional prior probability distribution (not shown), where some

of the parameters model the strength of correlation between

the intermediate nodes and its immediate parents. Here,

greater investigation is required to justify the parameters

used, since these are also specified subjectively. Assuming

that the strategies used to decompose goals are viewed as

being equally important, using equal weights appears to be

a reasonable way forward.

Finally, the model must be extended for interpreting its

results reasonably as a basis for decision making, e.g., by

defining the thresholds at which the confidence assessed is

considered sufficient as to accept or reject the claims made.

2) Towards Internal Measures of Quality: The above

items present a promising avenue by which to define an

integrated internal measure for quality, e.g., by extending the

measure of hazard coverage, say, to account for argument

validity expressed as a confidence level. As a preliminary

step along these lines, we defined an initial set of mea-

sures (including coverage), for objectively evaluating our

approach. Table I gives the results of applying these mea-

sures to the Swift UAS safety case. The measures indicate

reasonably high, but not complete, coverage of the hazards

and corresponding high-level requirements considered, i.e.,

about 73% and 87% respectively. This reflects the fact

that not all claims corresponding to the hazards and high-

level requirements, in the argument fragment, have been

completely developed, i.e., end in available evidence.

On the other hand, we measure perfect coverage of low-

level requirements by claims, since all corresponding claims

are both auto-generated and terminate in evidence. However,

the extent to which the low-level requirements are actually

covered (by the verification) is not perfect. This is reflected

in the last row of Table I, where about 92% of the code

is covered by auto-generated claims. This measure indicates

that there are parts of the code which were not reasoned

about, were not covered by a requirement, and therefore

remained unproven. To use these initial measures for quality

assessment, we require a quality model, similar to that used

to interpret the outcome of uncertainty assessment.

D. Implications on Processes

The existing framework used by the Swift UAS engineer-

ing team for systems development is fairly mature, based

on extensive engineering knowledge and experience with

developing previous UAVs, and the development of certain

functionality is relatively rapid. Thus, there is a need to

tailor the safety methodology such that well-defined inter-

faces exist to the system development process, so that the

safety process can keep up with development and actively

influence it. To this end, having pre-defined intervals in the

development process to synchronize with the safety process,

appears to be a reasonable way forward. Another alternative,

is to synthesize the development process from the safety

activities, as in [18].

The process as we applied it and the resulting arguments

are “heavyweight” in proportion to the development costs

and effort involved. Nevertheless, its application is justified

largely because loss of the Swift UAV is an intolerable risk.

This is due, in part, to the uniqueness of its avionics system,

the modifications that were made to the airframe for mission-

specific purposes, and the extent of research investments in

the UAV. However, for smaller UAV, the loss of aircraft may

not always be an intolerable risk. Thus, there is a need for

a lightweight version of our approach, wherein the effort

involved is appropriately proportional to the costs.

The development team found software hazard analysis to

be useful in understanding and appreciating the subtleties of

software contributions to system hazards. The engineers also

adopted and integrated the procedures for system/software

hazard analysis into their development process such that

safety is proactively included as a consideration in the

development of subsequent functionality, e.g., the electric-

battery management system.

E. Implications of Existing Guidelines/Standards

Many items of evidence used in the ASSC (Section III)

can be mapped to lifecycle data required for compliance with

DO-178B, e.g., evidence E1 of requirements review in the

argument (Figure 2(a)), is mapped to Objective 2 in Table

A4 in DO-178B (i.e., “Low level requirements are accurate

and consistent”). The added value of our software safety

argument is that it explains how the evidence, potentially

compliant with DO-178B, can provide sufficient assurance,

particularly with regard to claims concerning how software

behavior relates to specific system hazards (e.g., the link

between incorrect autopilot behavior at the software level

and a loss event at the system level).

The areas of a hazard directed safety argument which

would be least supported by DO-178B evidence are those

related to the analysis of hazardous software failure modes.

This relates to the relationship between assuring safety and

demonstrating correctness for software. Specifically, the DO-

178B guidance implies that safety analysis is a system-

level process. As such, the role of software development is

to demonstrate correctness against requirements, including

safety requirements allocated to software, as generated from

the system-level processes. The process of refining and im-

plementing these requirements at subsequent stages does not

involve any explicit application of software hazard analysis.

To this end, in DO-178B, the link between software behavior

and the required safety properties of the system is implicit.

However, others [9] have argued that hazard analysis

should be applied at the software level for each develop-

ment stage (e.g., performing hazard analysis at the software

architecture, design and source code stages). The reasoning

underlying their approach is that errors could be introduced

at each software development stage, which have the potential

to lead to hazardous failure conditions at the system level. As

such, it is important to provide assurance, through explicit

software safety arguments, that these software errors have

been identified and managed.

In the software assurance for the Swift UAS, we per-

formed hazard analysis down to the software architecture

level, identifying how software components and interactions

can contribute to system hazards. Then we defined safety

requirements, and allocated them to the components and

interactions. Subsequently, we demonstrated safety assur-

ance by appealing to the correctness of the implementation

of these interactions and components against the allocated,

and formalized, safety requirements (e.g., correctness of the

autopilot software against allocated safety requirements).

The criterion for deciding that no further hazard analysis

was needed at subsequent stages, was that a software compo-

nent was simple enough (as gauged by the developers) that

requirements could be formulated to demonstrate desired

behavior and the absence of unintended behavior.

Finally, the explicit representation of a software safety

argument is useful for developers wishing to use alterna-

tive means for compliance, e.g., by generating evidence

from formal mathematical analysis rather than from testing.

Where alternative approaches are used, a reviewer must be

convinced of the relevance and suitability of the alternative

evidence. Previous experience [19] has shown that this is

much easier to achieve using a documented safety argu-

ment. This issue is particularly important now, as DO-178B

has been updated (to DO-178C), with guidance on formal

methods, and to allow assurance arguments as an alternative

method for establishing compliance. Although compliance

with DO-178B is currently not required for the Swift UAS

software, this paper provides an example and assessment

of how assurance arguments can be developed for airborne

software, justifying how evidence generated from formal

methods can be used to support claims about safe software

behavior.

V. CONCLUSIONS AND OUTLOOK

Our perspectives in this paper are mainly based on an

interim safety case, which represents only a small part of

the overall Swift UAS safety case (which, in turn, includes

arguments assuring the safety of the ground system, the

communication infrastructure, and UAS operation, besides

those for the airborne system and its software). We note

that the interim safety case alone is insufficient to make any

categorical claims about safety improvement of the system.

Rather, the safety argument is intended to communicate

that certain specific claims made can be defended with rea-

sonable confidence based on the evidence, the assumptions

and the context supplied therein. Although we created the

safety case, in part, by using a formal verification tool, the

methodology applies more generally to include other safety

and dependability techniques.
Based on the feedback received, we are actively pursuing

research directions that are expected to improve, in general,

the practical application of safety cases, and the Swift

UAS safety case in particular. This includes improving the

modularity of the argument via abstraction to aid argument

comprehension, assessing the soundness of the manually

created argument fragments by systematically and more

extensively evaluating the argument for fallacies [20], better

characterizing the diversity of available evidence to facilitate

automatic assembly of the safety argument, and tailoring the

methodology to make it lightweight.
The need to manage and reconcile diverse information in

both the system and software safety cases becomes apparent

from the perspective of not only safety, but also compliance

to airworthiness requirements for operating a UAS [6],

where the overarching goal is to show that a level of safety

equivalent to that of manned operations exists [21]. We

believe that the approach and experience documented in this

paper is a step towards that end.

ACKNOWLEDGMENTS

NASA contract NNA10DE83C funded this work. We also

thank Mark Sumich and Corey Ippolito for their feedback.

REFERENCES

[1] RTCA SC-167 and EUROCAE WG-12, “Software Consid-
erations in Airborne Systems and Equipment Certification,”
DO-178B/ED-12B, 1992.

[2] F. Redmill, “Safety integrity levels – theory and problems,
lessons in system safety,” in Proc. 18th Safety-Critical Sys.
Symp., Feb. 2010.

[3] Goal Structuring Notation Working Group, “GSN
Community Standard Version 1,” Nov. 2011. [Online].
Available: http://www.goalstructuringnotation.info/

[4] R. Weaver, “The safety of software – constructing and
assuring arguments,” Ph.D. dissertation, Dept. of Comp. Sci.,
Univ. of York, 2003.

[5] R. Bloomfield and P. Bishop, “Safety and assurance cases:
Past, present and possible future – an Adelard perspective,”
in Proc. 18th Safety-Critical Sys. Symp., Feb. 2010.

[6] K. D. Davis, “Unmanned Aircraft Systems Operations in
the U.S. National Airspace System,” Interim Operational
Approval Guidance 08-01, FAA Unmanned Aircraft Systems
Program Office, Mar. 2008.

[7] European Organisation for the Safety of Air Navigation,
Safety Case Development Manual, 2nd ed., EUROCON-
TROL, Oct. 2006.

[8] J. Fenn, R. Hawkins, P. Williams, and T. Kelly, “Safety case
composition using contracts - refinements based on feedback
from an industrial case study,” in Proc. 15th Safety-Critical
Sys. Symp., Feb. 2007.

[9] R. Hawkins, K. Clegg, R. Alexander, and T. Kelly, “Using
a software safety argument pattern catalogue: Two case
studies,” in Proc. Intl. Conf. on Comp. Safety, Reliability and
Security (SafeComp), Sep. 2011.

[10] E. Denney and S. Trac, “A software safety certification tool
for automatically generated guidance, navigation and control
code,” in IEEE Aerospace Conf. Electronic Proc, 2008.

[11] FAA, System Safety Handbook, Federal Aviation Adminis-
tration, Dec. 2000.

[12] C. Menon, R. Hawkins, and J. McDermid, “Interim standard
of best practice on software in the context of DS 00-56 Issue
4,” Soft. Sys. Eng. Initiative, Univ. of York, Standard of Best
Practice Issue 1, 2009.

[13] E. Denney, I. Habli, and G. Pai, “Towards measurement of
confidence in safety cases,” in Proc. 5th Intl. Symp. Empirical
Soft. Eng. and Measurement (ESEM), Sep. 2011.

[14] UK Ministry of Defence (MOD), “Safety management re-
quirements for defence systems,” Defence Standard 00-56
Issue 4, Jun. 2007.

[15] T. Kelly and J. McDermid, “Safety case patterns – reusing
successful arguments,” in Proc. IEE Colloq. on Understand-
ing Patterns and Their Application to Sys. Eng., 1998.

[16] P. Bishop, R. Bloomfield, B. Littlewood, A. Povyakalo, and
D. Wright, “Towards a formalism for conservative claims
about the dependability of software-based systems,” IEEE
Trans. Soft. Eng., vol. 37, no. 5, pp. 708 – 717, 2011.

[17] V. Basili, G. Caldiera, and D. Rombach, “Goal question
metric approach,” in Encyclopedia of Soft. Eng.. John Wiley,
1994, pp. 528–532.

[18] P. Graydon and J. Knight, “Software process synthesis in
assurance based development of dependable systems,” in
Proc. European Dependable Comp. Conf. (EDCC), Apr.
2010, pp. 75–84.

[19] I. Habli and T. Kelly, “A generic goal-based certification
argument for the justification of formal analysis,” in Proc.
Certification of Safety-critical Software Controlled Sys. (Safe-
Cert), Mar. 2008.

[20] W. Greenwell, J. Knight, C. M. Holloway, and J. Pease, “A
taxonomy of fallacies in system safety arguments,” in Proc.
Intl. Sys. Safety Conf., 2006.

[21] J. Elston, M. Stachura, B. Argrow, E. Frew, and C. Dixon,
“Guidelines and Best Practices for FAA Certificate of Autho-
rization Applications for Small Unmanned Aircraft,” in Proc.
AIAA Infotech@Aerospace Conf., Mar. 2011.

