
A Lightweight Methodology for Safety Case Assembly

Ewen Denney and Ganesh Pai

SGT / NASA Ames Research Center
Moffett Field, CA 94035, USA

{ewen.denney,ganesh.pai}@nasa.gov

Abstract. We describe a lightweight methodology to support the automatic as-
sembly of safety cases from tabular requirements specifications. The resulting
safety case fragments provide an alternative, graphical, view of the requirements.
The safety cases can be modified and augmented with additional information. In
turn, these modifications can be mapped back to extensions of the tabular require-
ments, with which they are kept consistent, thus avoiding the need for engineers
to maintain an additional artifact. We formulate our approach on top of an ide-
alized process, and illustrate the applicability of the methodology on excerpts of
requirements specifications for an experimental Unmanned Aircraft System.

Keywords: Safety cases, Formal methods, Automation, Requirements,
Unmanned Aircraft Systems.

1 Introduction

Evidence-based safety arguments, i.e., safety cases, are increasingly being considered
in emerging standards [10] and guidelines [3], as an alternative means for showing
that critical systems are acceptably safe. The current practice for demonstrating safety,
largely, is rather to satisfy a set of objectives prescribed by standards and/or guide-
lines. Typically, these mandate the processes to be employed for safety assurance, and
the artifacts to be produced, e.g., requirements, traceability matrices, etc., as evidence
(that the mandated process was followed). However, the rationale connecting the rec-
ommended assurance processes, and the artifacts produced, to system safety is largely
implicit [7]. Making this rationale explicit has been recognized as a desirable enhance-
ment for “standards-based” assurance [14]; especially also in feedback received [4]
during our own, ongoing, safety case development effort.

In effect, there is a need in practice to bridge the gap between the existing means,
i.e., standards-based approaches, and the alternative means, i.e., argument-based ap-
proaches, for safety assurance. Due to the prevalence of standards-based approaches,
conventional systems engineering processes place significant emphasis on producing
a variety of artifacts to satisfy process objectives. These artifacts show an apprecia-
ble potential for reuse in evidence-based argumentation. Consequently we believe that
automatically assembling a safety argument (or parts of it) from the artifacts, to the
extent possible, is a potential way forward in bridging this gap.

In this paper, we describe a lightweight methodology to support the automatic as-
sembly of (preliminary) safety cases. Specifically, the main contribution of our paper

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012, LNCS 7612, pp. 1–12, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 E. Denney and G. Pai

is the definition of transformations from tabular requirements specifications to argument
structures, which can be assembled into safety case fragments. We accomplish this,
in part, by giving process idealizations and a formal, graph theoretic, definition of a
safety case. Consequently, we provide a way towards integrating safety cases in existing
(requirements) processes, and a basis for automation. We illustrate our approach by
applying it to a small excerpt of requirements specifications for a real, experimental
Unmanned Aircraft System (UAS).

2 Context

The experimental Swift UAS being developed at NASA Ames comprises a single air-
borne system, the electric Swift Unmanned Aerial Vehicle (UAV), with duplicated
ground control stations and communication links. The development methodology used
adopts NASA mandated systems engineering procedures [15], and is further constrained
by other relevant standards and guidelines, e.g., for airworthiness and flight safety [13],
which define some of the key requirements on UAS operations. To satisfy these require-
ments, the engineers for the Swift UAS produce artifacts (e.g., requirements specifica-
tions, design documents, results for a variety of analyses, tests, etc.) that are reviewed at
predefined intervals during development. The overall systems engineering process also
includes traditional safety assurance activities as well as range safety analysis.

3 Safety Argumentation Approach

Our general approach for safety assurance includes argument development and uncer-
tainty analysis. Fig. 1 shows a data flow among the different processes/activities dur-
ing the development and safety assurance of the Swift UAS, integrating our approach
for safety argumentation.1 As shown, the main activities in argument development are
claims definition, evidence definition/identification, evidence selection, evidence link-
ing, and argument assembly. Of these, the first four activities are adapted from the
six-step method for safety case construction [8].

The main focus of this paper is argument development2; in particular, we consider
the activity of argument assembly, which is where our approach deviates from existing
methodologies [2], [8]. It reflects the notion of “stitching together” the data produced
from the remaining activities to create a safety case (in our example, fragments of ar-
gument structures for the Swift UAS) containing goals, sub-goals, and evidence linked
through an explicit chain of reasoning.

We distinguish this activity to account for (i) argument design criteria that are likely
to affect the structure of the overall safety case, e.g., maintainability, compliance with
safety principles, reducing the cost of re-certification, modularity, and composition of
arguments, and (ii) automation, e.g., in the assembly of heterogenous data in the overall

1 Note that the figure only shows some key steps and data relevant for this paper, and is not a
comprehensive representation. Additionally, the figure shows neither the iterative and phased
nature of the involved activities nor the feedback between the different processes.

2 Uncertainty analysis [5] is out of the scope of this paper.



A Lightweight Methodology for Safety Case Assembly 3

Fig. 1. Safety assurance methodology showing the data flow between the processes for safety
analysis, system development, software verification, and safety argumentation

safety case, including argument fragments and argument modules created using manual,
automatic, and semi-automatic means [6].

Safety argumentation, which is phased with system development, is applied starting
at the level of the system and then repeated at the software level. Consequently, the
safety case produced itself evolves with system development. Thus, similar to [11], we
may define a preliminary, interim, and operational safety case reflecting the inclusion
of specific artifacts at different points in the system lifecycle. Alternatively, we can also
define finer grained versions, e.g., at the different milestones defined in the plan for
system certification3.

4 Towards a Lightweight Methodology

The goal of a lightweight version of our methodology (Fig. 1), is to give systems engi-
neers a capability to (i) continue to maintain the existing set of artifacts, as per current
practice, (ii) automatically generate (fragments of) a safety case, to the extent possible,
rather than creating and maintaining an additional artifact from scratch, and (iii) provide
different views on the relations between the requirements and the safety case.

Towards this goal, we characterize the processes involved and their relationship to
safety cases. In this paper, we specifically consider a subset of the artifacts, i.e., tables
of (safety) requirements and hazards, as an idealization4 of the safety analysis and de-
velopment processes. Then, we transform the tables into (fragments of) a preliminary
safety case for the Swift UAS, documented in the Goal Structuring Notation (GSN) [8].
Subsequently, we can modify the safety case and map the changes back to (extensions
of) the artifacts considered, thereby maintaining both in parallel.

3 Airworthiness certification in the case of the Swift UAS.
4 We consider idealizations of the processes, i.e., the data produced, rather than a formal process

description since we are mainly interested in the relations between the data so as to define and
automate the transformations between them.



4 E. Denney and G. Pai

Hazards Table

ID Hazard Cause / Mode Mitigation Safety 
Requirement

HR.1.3 Propulsion system hazards
HR.1.3.1 Motor overheating Insufficient airflow Monitoring RF.1.1.4.1.2

Failure during operation

HR.1.3.7 Incorrect programming of KD motor 
controller

Improper procedures to check programming before 
flight Checklist RF.1.1.4.1.9

System Requirements Table

ID Requirement Source Allocation
Verification
Method

Verification
Allocation

RS.1.4.3 Critical systems must be redundant AFSRB RF.1.1.1.1.3

RS.1.4.3.1
The system shall provide independent and 
redundant channels to the pilot

AFSRB

Functional Requirements Table

ID Requirement Source Allocation
Verification
Method

Verification
Allocation

RF.1.1.1.1.3
FCS must be dually 
redundant

RS.1.4.3 FCS Visual Inspection
FCS-CDR-20110701,
TR20110826

RF.1.1.4.1.2

CPU/autopilot system must 
be able to monitor engine 
and motor controller 
temperature.

HR.1.3.1 Engine systems Checklist Pre-flight checklist

RF.1.1.4.1.9
Engine software will be 
checked during pre-
deployment checkout

HR.1.3.7
Pre-deployment
checklist

Checklist
Pre-deployment
checklist

Fig. 2. Tables of hazards, system and functional requirements for the Swift UAS (excerpts)

4.1 Process Idealizations

We consider three inter-related tables as idealizations of the safety analysis and de-
velopment processes for the Swift UAS; namely: the hazards table (HT), the system
requirements table (SRT), and the functional requirements table (FRT)5.

Fig. 2 shows excerpts of the three tables produced in the (ongoing) development
of the Swift UAS. As shown, the HT contains entries of identified hazards, potential
causes, mitigation mechanisms and the corresponding safety requirements. The require-
ments tables contain specified requirements, their sources, methods with which they
may be verified, and verification allocations, i.e., links to artifacts containing the re-
sults of verification. Requirements can be allocated either to lower-level (functional)
requirements or to elements of the physical architecture.

Fig. 2 mainly shows those parts of the tables that are relevant for defining transfor-
mations to an argument structure. Additionally, we are concerned only with a subset of
the set of requirements, i.e., those which have a bearing on safety. Since we are look-
ing at snapshots of development, the tables are allowed to be incomplete, as shown in
Fig. 2. We further assume that the tables have undergone the necessary quality checks
performed on requirements, e.g., for consistency.

Entries in any of the tables can be hierarchically arranged. Identified safety require-
ments in the HT need not have a corresponding entry in the SRT or FRT. Additionally,

5 Strictly speaking, this table contains lower-level requirements and not only functional require-
ments; however, we use the terminology used by the engineers of the Swift UAS.



A Lightweight Methodology for Safety Case Assembly 5

requirements identified as safety-relevant in either of the requirements tables need not
have a hazard, from the HT, as a source (although to ensure full traceability, both of
these would be necessary). The HT, as shown, are a simplified view of hazard ana-
lysis as it occurs at a system level. In practice, hazard analysis would be conducted at
different hierarchical levels, i.e., at a subsystem and component level.

For now, we consider no internal structure to the table contents, and simply assume
that there are disjoint, base sets of hazards (H), system requirements (Rs), functional
requirements (Rf ), verification methods (V ), and external artifacts (Ar). The set of ex-
ternal artifacts contains items such as constraints from stakeholders, artifacts produced
from development, e.g., elements of the physical architecture, concepts of operation, re-
sults of tests, etc. We also consider a set of causes (C) and mitigation mechanisms (M ).
Without loss of generality, we assume that hazards and requirements have unique iden-
tifiers. Additionally, we assume the sets V , Ar, C, and M each have a unique “blank”
element, shown in the tables as a blank entry.

The HT consists of rows of type

hazard × cause
∗ × mitigation

∗ × safety requirement
∗ (1)

Definition 1. A hazards table, HT , is set of hazard entries ordered by a tree relation
→h, where a hazard entry is a tuple 〈h, c,m, sr〉, in which h ∈ H , c ⊆ C, m ⊆ M ,
and sr ⊆ (Rs ∪Rf ).

The SRT and FRT each have rows of type

requirement × source
∗ × allocation

∗ × verif method
∗ × verif alloc

∗ (2)

Definition 2. A system requirements table, RTs, is a set of system requirements en-
tries ordered by a tree relation →s, where a system requirements entry is a tuple,
〈r, so, al, vm, va〉, in which r ∈ Rs, so ⊆ (H ∪ Ar), al ⊆ (Rf ∪ Ar), vm ⊆ V ,
and va ⊆ Ar.

Definition 3. A functional requirements table, RTf , is a set of functional requirement
entries ordered by a tree relation →f , where a functional requirement entry is a tuple
〈r, so, al, vm, va〉 in which r ∈ Rf , so ⊆ (H ∪ Ar ∪ Rs), al ⊆ Ar, vm ⊆ V , and
va ⊆ Ar.

Thus, in an SRT (i) a source is one or more hazard or external artifact, (ii) an allocation
is a set of functional requirements or a set of artifacts, and (iii) a verification allocation
is a set of artifacts. Whereas in a FRT (i) a source is a hazard, external artifact or system
requirement, (ii) an allocation is a set of artifacts, and (iii) a verification allocation links
to a specific artifact that describes the result of applying a particular verification method.

Given the base sets and the definitions 1 – 3, we can now define:

Definition 4. A requirements specification, R, is a tuple 〈HT,RTs, RTf 〉.
We consider a safety case as the result of an idealized safety argumentation process, and
document its structure using GSN. We are concerned here with development snapshots,
however, so want to define a notion of partial safety case. Here, we ignore semantic
concerns and use a purely structural definition. Assuming finite, disjoint sets of goals
(G), strategies (S), evidence (E), assumptions (A), contexts (K) and justifications (J),
we give the following graph-theoretic definition:



6 E. Denney and G. Pai

Definition 5. A partial safety case, S, is a tuple 〈G,S,E,A,K, J, sg, gs, gc, sa, sc,
sj〉 with the functions

– sg : S → P(G), the subgoals to a strategy
– gs : G → P(S) ∪ P(E), the strategies of a goal or the evidence to a goal
– gc : G → P(K), the contexts of a goal
– sa : S → P(A), the assumptions of a strategy
– sc : S → P(K), the contexts of a strategy
– sj : S → P(J), the justifications of a strategy

We say that g′ is a subgoal of g whenever there exists an s ∈ gs(g) such that g′ ∈ sg(s).
Then, define the descendant goal relation, g � g′ iff g′ is a subgoal of g or there is a
goal g′′ such that g � g′′ and g′ is a subgoal of g′′. We require that the � relation is a
directed acyclic graph (DAG) with roots R.6

4.2 Mapping Requirements Specifications to Safety Cases

We now show how a requirements specification (as defined above) can be embedded in a
safety case (or, alternatively, provide a safety case skeleton). Conversely, a safety case can
be mapped to an extension of a requirements specification. It is an extension because there
can be additional sub-requirements for intermediate claims, as well as entries/columns
accounting for additional context, assumptions and justifications. Moreover, a safety case
captures an argument design that need not be recorded in the requirements.

In fact, the mapping embodies the design decisions encapsulated by a specific argu-
ment design, e.g., argument over an architectural breakdown, and then over hazards. A
given requirements specification can be embedded in a safety case (in many different
ways), and we define this as a relation. Based on definitions 1 – 5, intuitively, we map:

– hazard, requirement, causes �→ goal, sub-goal
– allocated requirements �→ sub-goals
– mitigation, verification method �→ strategy
– verification allocation �→ evidence
– requirement source, allocated artifact �→ goal context

We want to characterize the minimal relation which should exist between a require-
ments specification and a corresponding partial safety case. There are various ways of
doing this. Here, we simply require a correspondence between node types, and that
“structure” be preserved.

We define x ≤ x′ whenever (i) x →s x, or (ii) x →f x, or (iii) x →h x, or
(iv) x = r, x′ = al, 〈r, so, al, vm, va〉 ∈ RTs and al ∈ RTf , or (v) x = h, x′ = sr,
〈h, c,m, sr〉 ∈ HT and sr ∈ (RTs ∪ RTf).

Definition 6. We say that a partial safety case, S = 〈G,S,E,A,K, J, sg, gs, gc, sa,
sc, sj〉, extends a requirements specification, R = 〈HT,RTs, RTf 〉, if there is an
embedding (i.e., injective function), ι, on the base sets of R in S, such that:

6 Note that we do not require there to be a unique root. A partial safety case is, therefore, a forest
of fragments. A (full) safety case can be defined as a partial safety case with a single root, but
we will not use that here. Informally, however, we refer to partial safety cases as safety cases.



A Lightweight Methodology for Safety Case Assembly 7

– ι(H ∪ C ∪Rs ∪Rf ) ⊆ G
– ι(V ∪M) ⊂ S

– 〈r, so, al, vm, va〉 ∈ (RTs ∪ RTf) ⇒

⎧
⎪⎨

⎪⎩

ι(so) ∈ gc(ι(r)),

ι(vm) ∈ gs(ι(r)),

ι(va) ⊆ sg(ι(vm)) ∩ E

– x ≤ x′ ⇒ ι(x) � ι(x′)

Whereas goal contexts may be derived from the corresponding requirements sources,
strategy contexts, assumptions and justifications are implicit and come from the map-
ping itself, e.g., as boilerplate GSN elements (See Fig. 3, for an example of a boilerplate
assumption element). Note that we do not specify the exact relations between the indi-
vidual elements, just that there is a relation.

4.3 Architecture of the Argument

The structure of the tables, and the mapping defined for each table, induces two patterns
of argument structures. In particular, the pattern arising from the transformation of the
HT can be considered as an extension of the hazard-directed breakdown pattern [12].
Thus, we argue over each hazard in the HT and, in turn, over the identified hazards in a
hierarchy of hazards. Consequently, each defined goal is further developed by argument
over the strategies implicit in the HT, i.e., over the causes and mitigations.

Similarly, the pattern induced by transforming the SRT and FRT connects the argu-
ment elements implicit in the tables, i.e., requirements (goals), and verification methods
and verification allocations (strategies), respectively. Additionally, it includes strategies
arising due to both the hierarchy of requirements in the tables, and the dependencies
between the tables. Specifically, for each requirement, we also argue over its allocation,
e.g., the allocation of a functional requirement to a system requirement, and its chil-
dren, i.e., lower-level requirements. The links between the tables in the requirements
specification define how the two patterns are themselves related and, in turn, how the
resulting safety case fragments are assembled.

4.4 Transformation Rules

One choice in the transformation is to create goals and strategies that are not marked
as undeveloped (or uninstantiated, or both, as appropriate), i.e., to assume that the
completeness and sufficiency of all hazards, their respective mitigations, and all re-
quirements and their respective verification methods, is determined prior to the trans-
formation, e.g., as part of the usual quality checks on requirements specifications. An
alternative is to highlight the uncertainty in the completeness and sufficiency of the
hazards/requirements tables, and mark all goals and strategies as undeveloped. We pick
the second option, i.e., in the transformation described next, all goals, strategies, and
evidence that are created are undeveloped except where otherwise indicated.

We give the transformation in a relational style, where the individual tables are pro-
cessed in a top-to-bottom order, and no such order is required among the tables.



8 E. Denney and G. Pai

Hazards Table: For each entry in the HT (Fig. 2),
(H1) For an entry {Hazard} in the Hazard column with no corresponding entries,

{Cause} in the Cause/Mode column, {Mitigation} in the Mitigation column,
or {Requirement} in the Safety Requirement column, respectively,
(a) Create a top-level goal “{Hazard} is mitigated”, with the hazard identi-

fier as context. Here, we are assuming that this top-level entry is a “con-
tainer” for a hierarchy of hazards, rather than an incomplete entry.

(b) The default strategy used to develop this goal is “Argument over identi-
fied hazards”, with the associated assumption “Hazards have been com-
pletely and correctly identified to the extent possible”.

(H2) For each lower-level entry, {Hazard}, in the hierarchy,
(a) Create a sub-goal, “{Hazard} is mitigated”, of the parent goal.
(b) The way we further develop this sub-goal depends on the entries {Cause},

{Mitigation} and {Requirement}; specifically,
i. For one or more causes, the default strategy is “Argument over

identified causes”, with “Causes have been completely and correctly
identified to the extent possible” as an assumption, and “{Cause}
is managed” as the corresponding sub-goal for each identified cause.
Then develop each of those sub-goals using “Argument by
{Mitigation}” as a strategy.7

ii. For no identified causes, but one or more mitigations specified, create
an “Argument by {Mitigation}” strategy, for each mitigation.

iii. When no cause/mitigation is given, but a safety requirement is spec-
ified, then create a strategy “Argument by satisfaction of safety re-
quirement”.

iv. If neither a cause, mitigation nor a safety requirement is given, then
assume that the entry starts a new hierarchy of hazards.

(c) The entry in the Safety Requirement column forms the sub-goal “{Safety
Requirement} holds”, attached to the relevant strategy, with the require-
ment identifier forming a context element.

System/Functional Requirements Tables: For each entry in either of the SRT/FRT
(Fig. 2),
(R1) The contents of the Requirements column forms a goal “{System Require-

ment} holds” if the SRT is processed, or “{Functional requirement} holds”
if the FRT is processed. Additionally, if the entry is the start of a hierarchy,
create a strategy “Argument over lower-level requirements” connected to this
goal. Subsequently, for each lower-level entry in the hierarchy, create a goal
“{Lower-level requirement} holds” from the content of the Requirements col-
umn.

(R2) (a) the Source column forms the context for the created goal/sub-goal. Ad-
ditionally, if the source is a hazard, i.e., (an ID of) an entry {Hazard} in
the HT, then the created goal is the same as the sub-goal that was created
from the Safety Requirement column of the HT, as in step (H2)(c).

7 An alternative strategy could be “Argument by satisfaction of safety requirement”, assuming
that the entry in the Safety Requirement column of the HT is a safety requirement that was
derived from the stated mitigation mechanism.



A Lightweight Methodology for Safety Case Assembly 9

(b) the Allocation column is either a strategy or a context element, depending
on the content. Thus, if it is

i. an allocated requirement (or its ID), then create and attach a strategy
“Argument over allocated requirement”; the sub-goal of this strategy
is the allocated requirement8.

ii. an element of the physical architecture, then create an additional con-
text element for the goal.

(c) the Verification method column, if given, creates an additional strategy
“Argument by {Verification Method}”, an uninstantiated sub-goal con-
nected to this strategy9, and an item of evidence whose content is the
entry in the column Verification allocation.

We now state (without proof), that the result of this transformation is a well-formed
partial safety case that extends the requirements specification.

5 Illustrative Example

Fig. 3 shows a fragment of the Swift UAS safety case, in the GSN, obtained by apply-
ing the transformation rules (Section 4.4) to the HT and FRT (Fig. 2), and assembling
the argument structures. Note that a similar safety case fragment (not shown here) is
obtained when the transformation is applied to the SRT and FRT.

We observe that (i) the argument chain starting from the top-level goal G0, to the
sub-goals G1.3 and G2.1 can be considered as an instantiation of the hazard-directed
breakdown pattern, which has then been extended by an argument over the causes and
the respective mitigations in the HT (ii) the argument chains starting from these sub-
goals to the evidence E1 and E2 reflects the transformation from the FRT, and that,
again, it is an instantiation of a specific pattern of argument structures, and (iii) when
each table is transformed, individual fragments are obtained which are then joined based
on the links between the tables (i.e., requirements common to either table). In general,
the transformation can produce several unconnected fragments. Here, we have shown
one of the two that are created.

The resulting partial safety case can be modified, e.g., by including additional con-
text, justifications and/or assumptions, to the goals, sub-goals, and strategies. In fact, a
set of allowable modifications can be defined, based on both a set of well-formedness
rules, and the activities of argument development (Fig. 1). Subsequently, the modifica-
tions can be mapped back to (extensions of) the requirements specification.

Fig. 4 shows an example of how the Claims definition and Evidence linking activities
(Fig. 1) modify the argument fragment in Fig. 3. Specifically, goal G2 has been fur-
ther developed using two additional strategies, StrStatCheck and StrRunVerf, resulting
in the addition of the sub-goals GStatCheck and GRunVerf respectively. Fig. 5 shows
the corresponding updates (as highlighted rows and italicized text) in the HT and SRT
respectively, when the changes are mapped back to the requirements specification. Par-
ticularly, the strategies form entries in the Mitigation column of the HT, whereas the

8 This will also be an entry in the Requirements column of the FT.
9 A constraint, as per [8], is that each item of evidence is preceded by a goal, to be well-formed.



10 E. Denney and G. Pai

G0
[Propulsion System Hazards] 

is mitigated

C0.1
HR.1.3

S0
Argument over 

identified hazards

G2
[Incorrect programming 
of KD motor controller] 

is mitigated

G1
[Motor overheating] 

is mitigated
C2.1

HR.1.3.7

C1.1
HR.1.3.1

S1
Argument over 

identified causes

S2.1
Argument over 

identified causes

G1.2
[Failure during operation] 

is managed

G1.1
[Insufficient airflow] is 

managed

G2.1.1
[Improper procedures to 

check programming 
before fight] is managed

S2
Argument by 
[Monitoring]

S3
Argument by 
[Checklist]

G1.3
[CPU/Autopilot system must be 

able to monitor engine and motor 
controller temperature] holds

G2.1
[Engine software will be checked 
during pre-deployment checkout] 

holds

C1.3.2
HR.1.3.1

C1.3.1
RF.1.1.4.1.2

C1.3.3
Engine Systems

C2.1.2
HR.1.3.7

C2.1.1.
RF.1.1.4.1.9

C2.1.3
Pre-deployment 

checklist
S6

Argument by 
[Checklist]

S7
Argument by 
[Checklist]

G6.1
{To be instantiated}

G7.1
{To be instantiated}

E1
Pre-flight 
checklist

E2
Pre-

deployment 
checklist

A0.1
Hazards have been 

completely and 
correctly identified to 
the extent possible.

A2.1
Causes have been 

completely and 
correctly identified to 
the extent possible

A1.1
Causes have been 

completely and 
correctly identified to 
the extent possible

Fig. 3. Fragment of the Swift UAS safety case (in GSN) obtained by transformation of the hazards
table and the functional requirements table

G2
[Incorrect programming 
of KD motor controller] 

is mitigated

C2.1
HR.1.3.7

S2.1
Argument over 

identified causes

G2.1.1
[Improper procedures to 

check programming 
before fight] is managed

StrStatCheck
Argument by 

[Static Checking]

GStatCheck
[Software checks that 

programmed parameter 
values are valid] holds

SRunVerf
Argument by 

[Runtime Verification]

GRunVerf
[Software performs runtime 

checks on programmed 
parameter values] holds

Fig. 4. Addition of strategies and goals to the safety case fragment for the Swift UAS

sub-goals form entries in the Safety Requirement and Requirement columns of the HT
and the SRT respectively. Some updates will require a modification (extension) of the
tables, e.g., addition of a Rationale column reflecting the addition of justifications to
strategies. Due to space constraints, we do not elaborate further on the mapping from
safety cases to requirements specifications.



A Lightweight Methodology for Safety Case Assembly 11

Hazards Table

ID Hazard Cause / Mode Mitigation
Safety
Requirement

HR.1.3 Propulsion system hazards
HR.1.3.1 Motor overheating Insufficient airflow Monitoring RF.1.1.4.1.2

Failure during operation
Improper procedures to check 
programming before flight

Checklist RF.1.1.4.1.9

- Static checking GStatCheck
- Runtime Verification GRunVerf

Incorrect programming of 
KD motor controller

HR.1.3.7

System Requirements Table

ID Requirement Source Allocation
Verification
Method

Verification
Allocation

RS.1.4.3 Critical systems must be redundant AFSRB RF.1.1.1.1.3
RS.1.4.3.1 The system shall provide independent and redundant channels to the pilot AFSRB
GStatCheck Software checks that programmed parameter values are valid HR.1.3.7
GRunVerf Software performs runtime checks on programmed parameter values HR.1.3.7

Fig. 5. Updating the requirements specification tables to reflect the modifications shown in Fig. 4

6 Conclusion

There are several points of variability for the transformations described in this paper,
e.g., variations in the forms of tabular specifications, and in the mapping between these
forms to safety case fragments. We emphasize that the transformation described in this
paper is one out of many possible choices to map artifacts such as hazard reports [9] and
requirements specifications to safety cases. Our main purpose is to place the approach
on a rigorous foundation and to show the feasibility of automation.

We are currently implementing the transformations described in a prototype tool10;
although the transformation is currently fixed and encapsulates specific decisions about
the form of the argument, we plan on making this customizable. We will also imple-
ment abstraction mechanisms to provide control over the level of detail displayed (e.g.,
perhaps allowing some fragments derived from the HT to be collapsed).

We will extend the transformations beyond the simplified tabular forms studied here,
and hypothesize that such an approach can be extended, in principle, to the rest of the
data flow in our general methodology so as to enable automated assembly/generation
of safety cases from heterogeneous data. In particular, we will build on our earlier work
on generating safety case fragments from formal derivations [1]. We also intend to
clarify how data from concept/requirements analysis, functional/architectural design,
preliminary/detailed design, the different stages of safety analysis, implementation, and
evidence from verification and operations can be transformed, to the extent possible,
into argument structures conducive for assembly into a comprehensive safety case.

We have shown that a lightweight transformation and assembly of a (preliminary)
safety case from existing artifacts, such as tabular requirements specifications, is fea-
sible in a way that can be automated. Given the context of existing, relatively mature
engineering processes that appear to be effective for a variety of reasons [14], our view
is that such a capability will ameliorate the adoption of, and transition to, evidence-
based safety arguments in practice.

10 AdvoCATE: Assurance Case Automation Toolset.



12 E. Denney and G. Pai

Acknowledgements. We thank Corey Ippolito for access to the Swift UAS data. This
work has been funded by the AFCS element of the SSAT project in the Aviation Safety
Program of the NASA Aeronautics Mission Directorate.

References

1. Basir, N., Denney, E., Fischer, B.: Deriving safety cases for hierarchical structure in model-
based development. In: 29th Intl. Conf. Comp. Safety, Reliability and Security (2010)

2. Bishop, P., Bloomfield, R.: A methodology for safety case development. In: Proc. 6th Safety-
Critical Sys. Symp. (February 1998)

3. Davis, K.D.: Unmanned Aircraft Systems Operations in the U.S. National Airspace System.
FAA Interim Operational Approval Guidance 08-01 (March 2008)

4. Denney, E., Habli, I., Pai, G.: Perspectives on Software Safety Case Development for Un-
manned Aircraft. In: Proc. 42nd Annual IEEE/IFIP Intl. Conf. on Dependable Sys. and Net-
works (June 2012)

5. Denney, E., Pai, G., Habli, I.: Towards measurement of confidence in safety cases. In: Proc.
5th Intl. Symp. on Empirical Soft. Eng. and Measurement, pp. 380–383 (September 2011)

6. Denney, E., Pai, G., Pohl, J.: Heterogeneous aviation safety cases: Integrating the formal and
the non-formal. In: Proc. 17th IEEE Intl. Conf. Engineering of Complex Computer Systems
(July 2012)

7. Dodd, I., Habli, I.: Safety certification of airborne software: An empirical study. Reliability
Eng. and Sys. Safety. 98(1), 7–23 (2012)

8. Goal Structuring Notation Working Group: GSN Community Standard Version 1 (November
2011), http://www.goalstructuringnotation.info/

9. Goodenough, J.B., Barry, M.R.: Evaluating Hazard Mitigations with Dependability Cases.
White Paper (April 2009), http://www.sei.cmu.edu/library/abstracts/
whitepapers/dependabilitycase hazardmitigation.cfm/

10. International Organization for Standardization (ISO): Road Vehicles-Functional Safety. ISO
Standard 26262 (2011)

11. Kelly, T.: A systematic approach to safety case management. In: Proc. Society of Automotive
Engineers (SAE) World Congress (March 2004)

12. Kelly, T., McDermid, J.: Safety case patterns – reusing successful arguments. In: Proc. IEE
Colloq. on Understanding Patterns and Their Application to Sys. Eng. (1998)

13. NASA Aircraft Management Division: NPR 7900.3C, Aircraft Operations Management
Manual. NASA (July 2011)

14. Rushby, J.: New challenges in certification for aircraft software. In: Proc. 11th Intl. Conf. on
Embedded Soft, pp. 211–218 (October 2011)

15. Scolese, C.J.: NASA Systems Engineering Processes and Requirements. NASA Procedural
Requirements NPR 7123.1A (March 2007)

http://www.goalstructuringnotation.info/
http://www.sei.cmu.edu/library/abstracts/whitepapers/dependabilitycase_hazardmitigation.cfm/
http://www.sei.cmu.edu/library/abstracts/whitepapers/dependabilitycase_hazardmitigation.cfm/

	A Lightweight Methodology for Safety Case Assembly
	Introduction
	Context
	Safety Argumentation Approach
	Towards a Lightweight Methodology
	Process Idealizations
	Mapping Requirements Specifications to Safety Cases
	Architecture of the Argument
	Transformation Rules

	Illustrative Example
	Conclusion


