
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON RELIABILITY 1

Automating the Assembly of Aviation Safety Cases
Ewen Denney, Member, IEEE, and Ganesh Pai, Member, IEEE

Abstract—Safety cases are among the state of the art in safety
management mechanisms, providing an explicit way to reason
about system and software safety. The intent is to provide con-
vincing, valid, comprehensive assurance that a system is acceptably
safe for a given application in a defined operating environment, by
creating an argument structure that links claims about safety to a
body of evidence. However, their construction is a largely manual,
and therefore a time consuming, error prone, and expensive
process. We present a methodology for automatically assembling
safety cases which are auto-generated from the application of a
formal method to software, with manually created safety cases
derived from system safety analysis. Our approach emphasizes the
heterogeneity of safety-relevant information, and we show how
diverse content can be integrated into a single argument structure.
To illustrate our methodology, we have applied it to the Swift
Unmanned Aircraft System (UAS) being developed at the NASA
Ames Research Center. We present an end-to-end fragment of the
resulting interim safety case comprising an aircraft-level argu-
ment manually constructed from the safety analysis of the Swift
UAS, which is automatically assembled with an auto-generated
lower-level argument produced from a formal proof of correctness
of the safety-relevant properties of the software autopilot.

Index Terms—Safety cases, system safety, software safety, safety
assurance, unmanned aircraft systems, formal methods.

ACRONYMS AND ABBREVIATIONS

AP Autopilot Controller

ATP Automated Theorem Prover

CPDS Common Payload Data System

FHA Functional Hazard Analysis

FMEA Failure Modes and Effects Analysis

FMS Flight Management System

GCS Ground Control Station

GSN Goal Structuring Notation

PHA Preliminary Hazard Analysis

PRA Probabilistic Risk Assessment

PID Proportional-Integral-Derivative

RVM Reflection Virtual Machine

UAS Unmanned Aircraft System

UA Unmanned Aircraft

VC Verification Condition

Manuscript received March 03, 2013; revised November 11, 2013; accepted
March 26, 2014. This work was supported in part by the Assurance of Flight
Critical Systems (AFCS) element of the System-wide Safety Assurance Tech-
nologies (SSAT) project in the Aviation Safety Program of the NASA Aero-
nautics Research Mission Directorate (ARMD), and in part by NASA contract
NNA10DE83C. Associate Editor: S. Shieh.
The authors are with SGT Inc., NASA Ames Research Center, Moffett Field,

CA 94035 USA (e-mail: ewen.denney@nasa.gov; ganesh.pai@nasa.gov).
Digital Object Identifier 10.1109/TR.2014.2335995

I. INTRODUCTION

C ERTIFICATION is a core activity during the develop-
ment of many safety-critical systems in which assurance

must be provided that the system (and its software) will operate
safely, and as intended, by demonstrating compliance with the
applicable regulations to a government authority.
In aviation, regulations such as the federal aviation regula-

tions, standards and guidelines, e.g., ARP 4761 [1], recommend
or prescribe the means for compliance, offering guidance on
best practice engineering methods, analysis techniques, and as-
surance processes.
For software in particular, assurance largely involves an ap-

peal to the satisfaction of a set of process objectives set forth in
guidance documents such as DO-178C [2]. A fundamental lim-
itation, however, is that a correlation has not been demonstrated
between the application of best practice methods and processes,
and the achievement of a specified level of safety integrity [3].
Furthermore, the rationale connecting the recommended assur-
ance processes to system safety is largely implicit [4]. Con-
sequently goals-based safety arguments, also known as safety
cases, are increasingly being considered in emerging standards
and national guidelines as an alternative means to show that crit-
ical systems are acceptably safe, e.g., the ISO 26262 functional
safety standard for automotive systems [5], and the U.S. Food
and Drug Administration draft guidance on the production of
infusion pump systems [6].
A safety case is “a structured argument supported by a body of

evidence that provides a compelling, comprehensible and valid
case that a system is safe for a given application in a given op-
erating environment” [7]. Safety cases1 are among the state of
the art in technologies for safety management, with their de-
velopment already being a common practice for the certifica-
tion of defense, rail, and nuclear systems [8]. Their use has
also emerged in aviation, e.g., in the safety of flight operations
[9]. We can document a safety case in a variety of ways, in-
cluding as formatted reports containing a combination of tex-
tual descriptions and diagrams. Graphical notations, such as the
Claims-Argument-Evidence notation [10], and the Goal Struc-
turing Notation (GSN) [11], have emerged over the past decade
providing a graphical syntax to document the argument struc-
ture embodying a safety case. In our work, and in this paper, we
have used the (GSN).
For the most part, argument structures are constructed man-

ually, making the safety case development process more time
consuming, error prone, and expensive. They also quickly be-
come difficult to manage, comprehend, and evaluate during it-
erative systems and software development due to the volume of

1Although we use the terms argument structure and safety case interchange-
ably in this paper, a safety case is the argument structure together with all the
documents to which it refers.

0018-9529 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON RELIABILITY

information that must be assimilated. For instance, the prelim-
inary safety case for co-operative airport surface surveillance
operations [12] is about 200 pages, and is expected to grow
as the interim and operational safety cases are created. Due to
the increased number of requirements that software must sat-
isfy, safety cases that reason about software details specifically
are likely to grow super-linearly with the size of the underlying
software.
Upon considering the prevalence and importance of domain-

specific content, this problem is compounded. Safety case size,
the diversity of its content, and the level of assurance, espe-
cially pose challenges for aviation systems. To reflect a compre-
hensive safety assessment, aviation safety cases need to recon-
cile heterogeneous content, such as physical formulae from the
system design, maintenance procedures during system opera-
tion, and software. Especially for software, the heterogeneity of
evidence, context, and assumptions is evident when considering
non-formal sources such as simulation runs, unit tests, artifacts
from formal verification such as the results of model-checking,
proofs of correctness, and the variety of tools used to generate
them. Each of these sources provides a different level of assur-
ance, which in turn affects the trustworthiness of the evidence in
the safety case, and consequently the confidence that can be jus-
tifiably placed in the top-level claim. For instance, we can use
evidence from formal verification, such as proofs of correctness,
to raise the level of assurance that can be claimed for mathe-
matical and safety-critical software, typically found in aviation
systems. In fact, compared to other non-formal sources of evi-
dence, proofs are acknowledged to provide the highest level of
such assurance.
Thus, there is a need both for increased automation in the

creation and assembly of safety arguments from heterogeneous
sources, and for integrating formal reasoning along with com-
paratively non-formal reasoning to improve the level of assur-
ance that can be provided. Towards this end, our paper makes
the following contributions.
1. We give a methodology for automatically assembling a
safety case, integrating system safety analysis and the ap-
plication of formal reasoning to software. We illustrate
our approach by applying it to a real aviation system, the
Swift Unmanned Aircraft System (UAS) being developed
at NASA Ames.

2. Our approach highlights the heterogeneity of safety-rele-
vant information. We characterize this inherent diversity,
identifying a varied set of elements that contributes to a
comprehensive safety argument (relevant for aviation in
general, and to the example system in particular). We also
illustrate how some of these elements are integrated into a
single argument structure for the example system.

3. Specifically, our method automatically combines a man-
ually created, aircraft-level safety case fragment derived
from system safety analysis, with an auto-generated,
lower-level safety case derived from formally verifying
the safety-related properties of the autopilot software.

4. We give fragments of the resulting end-to-end safety case,
i.e., a safety argument containing safety claims made at
the system level justified by, and linked to, low-level soft-
ware implementation details. In particular, we explicitly
highlight the contribution of software assurance to system

safety assurance. To our knowledge, few if any such exam-
ples [13], [14] exist in practice, or in the literature.

II. RELATED WORK

This paper builds upon, and substantially extends, our pre-
vious work [13], [14], [33] in integrating formal and non-formal
methods to create aviation safety cases. In particular, this paper
describes the underlying safety assurance methodology in
greater detail; additionally, using an argument architecture and
its modular realization, the paper more extensively highlights
our structured approach to creating the assurance argument
for the Swift UAS. We also consider more elements in the
overall safety assurance, transitioning the preliminary safety
case in our previous work to an interim safety case. The
argument presented in this paper also better illustrates the
logical dependencies between heterogeneous items of safety
information, e.g., the logical dependency between the claims
related to software, the reliability of input sensors, calibration
data, and the results of reviews (See Section VII.D). In [34],
first-order logic has been applied to derive safety cases using
formal methods in model-based development; whereas in [35],
a lightweight method is given for automating the assembly of
safety arguments using safety data from the early stages of
development, i.e., hazards and requirements.
Existing approaches for systematically developing safety ar-

guments in general [20], [36], and specifically for software [37],
are based on goals-based argumentation frameworks, which in-
dicate the role of safety processes and evidence selection in cre-
ating the system or software safety case. Our work is different
from existing approaches in the notion of argument assembly
with which we not only automatically generate certain argument
fragments, but also automatically assemble them in the appro-
priate locations of the overall system-level argument.
Formal methods have also been applied in other incarnations

of goal-based argumentation, so-called assurance cases [38],
and dependability cases [39], while the role of diversity and
uncertainty in safety and dependability cases has been addressed
in [19], [40], and [41].

III. THE SWIFT UNMANNED AIRCRAFT SYSTEM

A. System Description

The Swift Unmanned Aircraft System (UAS), under develop-
ment at NASA Ames, is our running example to illustrate our
approach for system and software safety assurance. The UAS
consists of the electric Swift Unmanned Aircraft (UA), a pri-
mary and secondary Ground Control Station (GCS), and com-
munication links.
The UA can fly autonomously by following a mission, i.e.,

a pre-programmed or uploaded nominal flight plan. Effectively,
this is a sequence of commands determining a set of waypoints
from take-off to landing. A pilot on the ground can also control
the UA during take-off and landing, or can intercept the flight
plan at any time. Additionally, the UA can be operated semi-
autonomously in the pilot-in-control and computer-in-control
modes.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DENNEY AND PAI: AUTOMATING THE ASSEMBLY OF AVIATION SAFETY CASES 3

Fig. 1. LAND command induced landing profile for the Swift UAS [13].

B. Software System Architecture

The software system architecture is layered. A physics li-
brary and the Reflection Virtual Machine (RVM) execute atop
the base layer, which is the Windows XP Embedded operating
system, and which itself runs on the UA hardware. The RVM is
a multi-component, event-driven, real-time, configurable soft-
ware framework supporting the operation of several loosely-
coupled software modules.
The flight software is itself one such module running on the

RVM, as a collection of interconnected modules, one of which
is the autopilot. The two main sub-modules of the autopilot are
the Flight Management System (FMS), and the Autopilot Con-
troller (AP), each of which regulate the aircraft control surfaces
(ailerons and elevators), and in turn the aircraft movement, i.e.,
forward motion, rotation around the lateral (pitch), longitudinal
(roll), and vertical (yaw) axes. In addition to these features, the
software contains script files describing mission configurations
such as flight plans, and mission-specific parameters.

C. Operation and Control

A flight plan consists of a sequence of pre-programmed or up-
loaded commands [14]. Based on the current state and the com-
mand being evaluated, the control system periodically updates
the control surface positions. The relevant calculations occur in
either of the two directional modes, each of which in turn has
several cases of relevant computations.
Fig. 1 illustrates the Swift UAS landing profile when a LAND

command [14] is issued. In the autopilot software, the phases
shown appear as mode transitions. During the flight path, the
flight software only invokes some of the cases for the FMS lat-
eral and longitudinal modes. The software defines the transi-
tion criteria, using system parameters that are set via scripts.
Based on the issued command, the FMS determines an appro-
priate mode to be set in the AP, and evaluates different cases of
calculations, e.g., for the LAND command, a specific mode is set
in the FMS so as to update the lateral control surfaces (aileron).
Proportional-Integral-Derivative (PID) controllers (loops) per-
form the value computations; as such, each PID loop will affect
either a lateral, longitudinal, or speed control surface. Its result
is a value that will be output to (or used in a calculation of the
eventual output to) the actuator of a single control surface.
Thus, to adjust the aileron, the flight software determines

the change to the current heading, after which it derives a

Fig. 2. Logical dependencies in aileron control computation [13].

new heading from the aircraft state (i.e., its current position,
its source, and destination waypoints). We further illustrate
this adjustment next, giving a single computation sequence
through the FMS and AP modules, executed under specific
mode and command conditions, the outcome of which is the
aileron value, and a consequent change in the aircraft heading.
For more details on the operation and control, refer to [14].

D. Low-Level Computations

To realize the adjusted values of the aileron control surface
when a LAND command is given, a sequence of low-level com-
putations, specified as mathematical definitions, are executed in
software (Fig. 2). Effectively, PID loops derive a value in sev-
eral of the computation steps, which is then used in conjunction
with the aircraft state in the subsequent computation step. For
the aileron, the cross-track, heading, roll angle, and the aileron
PID loops are relevant.
Specifically, first, geometric calculations determine the cur-

rent UA position and heading, relative to the source to destina-
tion vector, i.e., the imaginary line connecting the source and
the destination waypoints (shown in Fig. 2, as the input vari-
ables , and ). The distance of the
UA from this line is the crosstrack error, which is the param-
eter passed to the PID loop that determines the heading change
needed, i.e., the delta heading, to reach the destination way-
point. The desired heading computation then takes into account
both the source to destination vector and the delta heading. From
the difference in the current and desired headings, i.e., the error,
a new desired roll can be determined. To initiate the change in
the roll (and hence the heading), the aileron is to be moved by an
amount to produce the desired roll. The aileron PID loop which
computes this value takes the roll error, i.e., the difference be-
tween the current and desired aircraft roll, as a parameter. The
variable m_aileron_m1p1 contains the computed roll value,
to be routed to the aileron actuator through the RVM.
As is often the case with numerical calculations, the code is

not particularly complex, but uses a variety of mathematical def-
initions with various side conditions, and calls to various library
functions. To verify this code, we need to establish the proper-
ties of interest, give mathematical definitions and equations cor-
responding to the steps of the computations, specify the library



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON RELIABILITY

Fig. 3. Math and function schemas (excerpt).

functions, and axiomatize the domain. Axiomswill typically ex-
press the preservation of properties under geometric translation,
and bounds on physical constants.
Subsequently, we will use domain theory to verify this

sequence of computations (Section VI.B), automatically con-
struct a fragment of the safety case from the verification
(Section VI.C), and then combine the resulting fragment with a
manually created fragment (Section VII.C).

IV. DOMAIN THEORY

Section III.D described the sequence of calculations used to
compute the aileron control variable from several inputs drawn
from the current state of the UA and its flight plan. We take cor-
rectness of this computation to mean that the code implements a
mathematical specification of a given property. This specifica-
tion will be expressed (Section VI.B) as a formal requirement,
and proven using a domain theorymainly formalizing geometric
and navigational equations.
The domain theory consists of annotation and function

schemas (Fig. 3), and axioms (omitted here, see [13], [14]) that
relate to aspects of the software in question. In relation to the
safety assurance process, the domain theory forms part of the
context in which the formalization and subsequent verification
will occur (Fig. 6). These items of context form part of the input
during argument development and its activities (See Fig. 5), as
well as part of the assurance argument produced (See Fig. 16
for an example).
An annotation schema declaratively captures all information

that is required to handle the verification of a programming
idiom, that is, a coding pattern that solves a specific problem.
In AUTOCERT, a schema is specified as a Prolog fact of the

Fig. 4. Grammar of domain-specific terms.

form SchemaType(Name, Explanation, Pattern,
DepVars, DefVar).
The schema name is used for identification purposes. The

explanation describes the schema in natural language terms.
The pattern describes the underlying idiom. The next two slots
contain the schema’s logically dependent and defined variables
(which can be omitted if the defined variable does not appear
in the pattern), together with their respective properties. The
schema type is either function (used for function calls) or
definition (used for other expressions).
Pre-, and post-conditions are expressed as properties on the

schema’s (logically) dependent, and defined variables, respec-
tively. For example, Y::current(T)means that the variable
Y has property current(T), that is, it represents the current
value of some quantityT. Properties represent various scalar and
vector physical quantities, or derived measures based on those.
We define vector quantities with respect to a frame of reference
(used to represent different coordinate systems of various di-
mensions). Fig. 4 gives the grammar of properties of the domain
theory.
Fig. 3 shows an excerpt of example schemas. Here,

calc_error states that if Y and Z represent current and
desired values of some state variable T, then Y-Z computes
the error in T. We compile schemas into low-level patterns that
match against the code (see [15] for details). After matching
against the corresponding code fragment, and inserting pre- and
post-conditions, the tool recursively searches for definitions of
Y and Z, and so on. Similarly, in Fig. 3, initial_heading
matches against code that calls a library function to compute
the heading in radians, where Dst and Src represent the air-
craft position in the ne frame. Also, in Fig. 3, aileron_out
specifies a PID function where the output is the desired value
of the aileron, given the error on the roll as input. We can
extend specifications, schemas, and axioms with additional
non-logical information [16] such as justifications and contexts
(not shown here).
Axioms are first-order formulas that provide the necessary

facts used to prove that the generated Verification Conditions
(VCs) are correct. Axioms can define mathematical properties,
and express assumptions about both the real world and the
system under verification, in this case the code. They mainly
give the definition of geometric properties, and involve adjust-
ments of orientations in radians through different quadrants
based upon logical dependencies on the aircraft state and the
desired value needed to accomplish the movement of the con-
trol surface. Many of these axioms describe how a property is



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DENNEY AND PAI: AUTOMATING THE ASSEMBLY OF AVIATION SAFETY CASES 5

Fig. 5. Safety assurance methodology showing the data flow between the pro-
cesses for safety analysis, safety argumentation, system development, and soft-
ware verification.

preserved under addition or subtraction of . Others describe
the validity of reversing the sign of a value while maintaining
a property.
Like the schemas, axioms and verification conditions also use

properties that denote geometric and navigational concepts, in-
cluding physical quantities such as heading and roll, con-
trol surface settings like aileron and elevator, and frames
of reference such as lla (lat-long-alt) and ne (North-East).
Much of this domain theory will be reflected in the resulting

complete safety case. For instance, the schemas give rise to
the goals (and subgoals) of the safety case. The schemas are
also used to generate verification conditions. The external func-
tions in the code base are represented in AUTOCERT as function
schemas. These are represented as nodes in the safety case. Fi-
nally, the verification conditions are proved by a subset of the
axioms, and the proof is also represented as an evidence node
in the safety case.

V. SAFETY ASSURANCE METHODOLOGY

Fig. 5 shows our overall safety assurance methodology as a
data flow among the different processes and activities applicable
during the development of the Swift UAS. Note that the figure
mainly shows some of the key steps and data relevant for this
paper. Additionally, neither the iterative and phased nature of
the involved activities nor the feedback between the different
processes have been shown.
We emphasize that safety analysis and argumentation (Fig. 5)

are not post-development activities. Rather, they are performed
in conjunction with system development and verification, so
that safety considerations are addressed from the outset. In par-
ticular, safety analysis activities start from concept definition,
and continue through requirements development, design, imple-
mentation, verification, and operation. The data from the later
stages of development and operation serve to refine and vali-
date earlier analyses.

In general, safety analysis drives safety case development.
Safety analysis results are, therefore, at the core of the set of
heterogeneous information available to create the system safety
case. Thus, after performing early-stage safety analysis, we
use the results, which include the identified high-level hazards,
the broad mitigation mechanisms, and safety requirements, to
create a (skeleton of a) high-level, preliminary safety case, by
following the activities for argument development (Fig. 5).
As development progresses, we repeat the safety analysis to
identify lower-level hazards, and the design decisions required
to mitigate those hazards. In turn, we use these data to refine
the preliminary safety case into an interim safety case. During
these steps of safety case refinement, additional constraints on
the evidence required for substantiation become more clear,
e.g., from the safety standards used, the development activities,
and from the safety analysis of the system and its constituent
elements. Additionally, during safety case refinement, we ob-
tain some evidence from design and implementation activities.
Substantiating evidence can be gathered from verification;
and as additional evidence is obtained from operation, the
assumptions made during the development can be validated (or
invalidated), so as to update both the safety analysis, and the
corresponding operational safety case.

A. System Safety Analysis

The system safety process that is being used in the ongoing
development of the Swift UAS, is based on the framework of a
safety risk management plan, such as [17] or [18]. The process
includes safety considerations into system design at an early
stage through hazard identification, risk analysis, and risk man-
agement (labeled as safety analysis in Fig. 5). Hazard identi-
fication and risk analysis are fundamental activities in safety
engineering involving, in brief, (a) identifying those situations
or conditions relevant to the system which, if left uncontrolled,
have the potential to result in an undesirable loss event; and
(b) characterizing the consequences, severity, and likelihood of
such situations and conditions. Broadly, in risk management
we use the results of risk analysis to prioritize and mitigate
risks. We derive the system safety requirements during the early
stages of concept development and requirements formulation.
The lower-level safety requirements, including those related to
software safety, are identified later when the system require-
ments are better understood, and lower-level details are being
designed.
As input to the steps of safety analysis, we use a variety of

data that give insight into potential hazards. During the early
stages of system development, these data include, but are not
limited to, the concept of operations, available design documen-
tation for legacy systems (if applicable), and previously identi-
fied hazards (often captured in a preliminary hazard list). In gen-
eral, additional heterogeneous sources include the following.
1) Procedural, development, and safety standards imposing
design and safety constraints on the system.

2) Procedures (distinct from procedural standards) describing
operations, e.g., for maintenance on range, before, during,
and after flights, including maintenance, and the roles
played by the flight team members.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON RELIABILITY

3) Mathematical theory, e.g., the theory of aerodynamic sta-
bility and control are used to derive parameters, included in
the control laws, that govern the safe operation of aircraft.

4) Assumptions, i.e., simplifying assumptions such as de-
coupled dynamics: linear independence of latitudinal and
longitudinal models, are sometimes made in autopilot
design, which break down when large angles of attack
are considered; such assumptions have significant safety
implications.

5) Vehicle flight logs, e.g., which show the absence of
mishaps for qualification testing, and also the system
behavior under specific flight conditions.

6) Calibration experiments such as those used to calibrate
sensors; the results of such experiments eventually appear
in the control system software.

7) Hardware tests, e.g., static load tests used for determining
actuator sizes, tolerances, endurance, etc.

8) Aircraft models, e.g., geometric, and three-dimensional
CAD models, computational fluid dynamics models,
among others, are used for deriving control parameters,
and for visualizing safety aspects of the avionics.

9) Data-sheets providing component parameters and specifi-
cations used in the aircraft.

10) Simulations which progressively evaluate the hardware,
software and eventually the actual system to be flown.

11) Software models of the sensors, actuators, commands, and
flight management.

12) Range safety calculations providing estimates on the ex-
pected casualty rate based on the area in which the aircraft
is operated.

13) Expert opinion, often including decisions which might not
be explicitly documented.

We believe that the main value of characterizing such hetero-
geneous data is to manage the wider context of safety, e.g., to
identify and manage hazards arising from system interactions.
In particular, although goals-based argumentation is largely
product focused, safety implications also arise from other
related sources, e.g., process and procedural deviations during
operation, incorrect or implicit assumptions, etc.
Once hazards have been identified, we define mitigation mea-

sures to reduce risk to acceptable levels. One specific outcome
of the risk reduction and mitigation step is requirements on
system safety. These requirements take several forms, including
constraints on the design, guidelines, and procedures for main-
tenance, operation, etc. See Section VI.A for an example.

B. Safety Argumentation

The general idea underlying safety argumentation is to create
a structured safety case to systematically justify safety claims,
for instance by justifying that all identified hazards have been
eliminated or mitigated, such that mishap risk has been reduced
to an acceptable level. As shown in Fig. 5, safety argumen-
tation comprises the activities of argument development (the
main focus of this paper) and uncertainty assessment [19] (out
of scope for this paper).
The main activities in argument development are claims

definition, evidence definition and identification, evidence se-

lection, evidence linking, and argument assembly, of which the
first four are adapted from the six-step method for safety case
construction [11], [20]. In particular, we consider the activity of
argument assembly, which is where our approach deviates from
existing methodologies [10], [11] for safety argumentation,
including the six-step method. This activity reflects the notion
of assembling the data produced from the remaining activities
to create a safety case (in our example, fragments of argument
structures for the Swift UAS) containing safety claims and
the supporting evidence, linked through an explicit chain of
reasoning. More specifically, it reflects the notion of assem-
bling lower-level auto-generated argument fragments with
higher-level manually constructed argument fragments. This
combination of bottom-up and top-down argument construction
is a novelty of our approach that further distinguishes it from
other existing approaches.
The activity of argument assembly accounts for (i) the inclu-

sion of argument design criteria such asmaintainability, compli-
ance with safety principles, reducing the cost of re-certification,
modularity,compositionofarguments,etc.;and(ii)automation.
Argument design criteria represent trade-offs made in the ar-

gument architecture, which affect the overall structure and or-
ganization of the elements of the argument. We envisage au-
tomation in argument assembly to include the assembly and
generation of
1) argument fragments from fundamental elements of an ar-
gument, such as claims, evidence, and reasoning;

2) argument modules created using manual, automatic, and
semi-automatic means [13]; and

3) heterogenous data in the overall safety argument.
Specifically in this paper, argument assembly involves, in part,
the automatic creation of an argument structure from formal
software verification (implemented as model transformations),
and its automatic inclusion into a manually created higher-level
argument structure. We describe the specifics of the relevant
transformations in Section VI.C.
Safety argumentation, which is phased with system devel-

opment, is applied starting at the level of the system in the
same way as the system safety process, and then repeated at
the software level. Consequently, the safety case produced itself
evolves with system development. Thus, similar to [21], we can
define a preliminary, interim, and operational safety case to re-
flect the inclusion of specific artifacts at different points in the
system lifecycle. Alternatively, we can also define finer grained
versions, e.g., at the different milestones defined in the plan for
system certification.
The argument structure of the Swift UAS, which we present

subsequently in this paper, embodies a fragment of an interim
safety case.

C. Software Verification

Asmentionedearlier,weuseour softwareverificationmethod-
ology (Fig. 6) to create the lower levels of the software safety
argument. Fig. 6 shows some of the data (boxes) and verification
activities (annotated arrows) involved, aswell as the connections
to thewider systemsafetyprocess (dottedarrows).



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DENNEY AND PAI: AUTOMATING THE ASSEMBLY OF AVIATION SAFETY CASES 7

TABLE I
EXCERPT FROM SWIFT UAS HAZARD ANALYSIS

Fig. 6. Software verificationmethodology [13].

To verify the flight software in the Swift UAS, we formally
verify the implementation against a mathematical specification,
and test low-level library functions against their specifications.
In this paper we concentrate on formal verification using
AUTOCERT [22], whereas testing and verification using other
tools is deferred to future work.
The specification formalizes software requirements which, in

turn, we derive from system requirements during the safety anal-
ysis. A logical domain theory (i.e., a set of axioms and func-
tion specifications; also see Section IV) provides the context
for formal verification. Axioms can be subjected to increasing
levels of scrutiny, going from simply assuming their validity, to
inspections, up to testing them against a computational model
which, itself, is inspected [23].

VI. METHODOLOGY APPLICATION

A. Hazard Analysis

During hazard identification, Preliminary Hazard Analysis
(PHA), and Functional Hazard Analysis (FHA) for the Swift
UAS, we systematically identified and documented the known
hazards, and brainstormed for new hazards, in close coopera-
tion with the Swift UAS engineering team. We used documents

related to the concept of operations, preliminary design, oper-
ating procedures, as well as other heterogeneous information
(as identified in Section V.A). We also applied Failure Modes
and Effects Analysis (FMEA) as part of bottom-up reasoning
for hazard identification.
The hazard categories identified include environmental haz-

ards (e.g., unexpected air traffic in the range), energy release
hazards (e.g., thermal runaway of the onboard lithium polymer
battery), failure hazards (e.g., subsystem failures from unreli-
able, unavailable or incorrectly constructed components), devi-
ations from procedures (e.g., incorrect application of pre-flight
checklists), operational hazards (e.g., unanticipated pitch down
during landing), as well as interactions (e.g., miscommunication
between operator and air traffic control).
Table I shows an excerpt of the hazard analysis, for the de-

scent phase of the UA induced by the LAND command (Fig. 1).
We show (a small subset of) some of the relevant failure haz-
ards in the avionics software (specifically, the autopilot), as well
as a hazard related to the flight control surfaces, which pose a
safety risk during descent. Each of the failure hazards identi-
fied here may be considered as the aggregation of the various
failure modes of the corresponding component, although we do
not show the FMEA in this paper. Several of the columns in the
actual analysis, such as the effects on the immediate sub-systems
and the wider system, potential causes,mitigation measures and
corrective actions, etc., have been hidden here, to make the table
readable. The hazard risk levels are determined qualitatively as a
combination of the hazard severity and likelihoods, by applying
a risk classification matrix, e.g., as in [18]. The table also shows
the consequent definition of (some of) the relevant safety re-
quirements which, when correctly implemented, are expected
to mitigate the hazards and reduce risk.
Some of the requirements shown are applicable at the system

level, while others are relevant for the software. There are also
relations between (some) system-level safety requirements



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON RELIABILITY

Fig. 7. Breakdown of autopilot functionality, giving low-level functional re-
quirements related to software safety requirements.

and software (safety) requirements, due to the contribution
of software to the system hazard. For instance, in Table I,
the software safety requirement for the autopilot to produce
the correct values of the control surfaces during descent
(SAFR_AVCS_001) can be derived from the system safety
requirement for the control surfaces to be within their specified
ranges during descent (SAFR_FLTCS_001). In fact, the former
is also a functional requirement of the autopilot (SR-3(d) in
Fig. 7, which lists an informal, high-level hierarchy of func-
tional requirements for the autopilot module).
The autopilot functional requirements must be satisfied for

the correct and safe operation of the autopilot. This decompo-
sition, based on the structure of the code defining the autopilot
module and its subsystems, was created by a software engineer
familiar with the autopilot software. We used this decomposi-
tion as a guide when creating the autopilot software safety argu-
ment (described subsequently in this paper, in Section VII.C.3).
Roughly speaking, the correctness of the autopilot module is

logically dependent on showing the correctness of the under-
lying subsystems, i.e., the FMS and AP, which the autopilot de-
pends upon and initializes. The FMS interprets the list of com-
mands that are supplied, and the transition between these com-
mands must be correctly executed. The AP must then correctly
compute the output for each aircraft control surface (based upon
the new modes set by the FMS in the previous step). The cor-
rectness of the autopilot requires that each subsystem properly
communicate any state transitions, and then operate appropri-
ately on that resulting state.

B. Formal Verification

In the previous section, we derived several low-level require-
ments. Following our running example, we now concentrate
on the aileron and elevator control variable calculations, and
formalize and verify them against the software. Fig. 8 shows

Fig. 8. Specification (excerpt): formal assumptions and requirements [13].

a specification fragment consisting of assumptions about the
current aircraft state and flight plan, and requirements on sig-
nals to the control surfaces. Note that the formal specification
(Fig. 8) only concerns a small part of the behavior covered by
the larger informal specification (Fig. 7). More specifically, the
requirements SR-3(d)-i and SR-3(d)-ii, in Fig. 7, are the re-
quirements formalized in Fig. 8, while the informal assumptions
are implicit. Both the informal assumptions and requirements,
and their formalized equivalents will eventually appear as as-
sumptions, and claims, respectively, in the assurance argument
(Fig. 15, and Fig. 16).
currACPos is the current aircraft position in theNorth-East

frame of reference, whereas srcWpPos, and dstWpPos are
the current, and next waypoints, respectively, in the flight plan.
The purpose behind the axioms, schemas, and domain theory in
general is to ultimately prove properties of the code via verifi-
cation conditions. Given these assumptions on the aircraft state,
we must show that the code that implements the descent phase
of the LAND command (Fig. 1) correctly modifies the aileron
and elevator. To do so, we verify the code against its specifica-
tion using AUTOCERT, which infers logical annotations on the
code under verification, using the annotation schemas (Fig. 3).
AUTOCERT then applies a verification condition generator,

which uses the annotations and function specifications to gen-
erate a set of VCs, logical conjectures which are sent to a suite
of Automated Theorem Provers (ATPs) along with the axioms.
Most VCs conjecture that the regulation of a variable within
some bounds maintains a given property. In Fig. 8, for the re-
quirement ,
51 verification conditions were generated. Of these 51, most
conjectured that the regulation of a variable maintained a given
property. The regulation involved the quadrant adjustments of
radian values or the reversing of the sign based on the cur-
rent aircraft state. All 51 were proved using a suite of 5 ATPs.
For the second requirement

, 13 VCs were generated. In the same way
as for the first requirement, the VCs correspond to the main-
tenance of a given property under regulation through quadrant
adjustments or sign reversals. All 13 of the verification condi-
tions were verified using the same suite of 5 provers.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DENNEY AND PAI: AUTOMATING THE ASSEMBLY OF AVIATION SAFETY CASES 9

In effect, AUTOCERT checks the implementation against a
formal specification in several steps, ensuring the following
points. (a) Individual code fragments correctly implement
mathematical equations because, in general, there can be a
large semantic gap between mathematics and implementation.
Concepts can be fused together or separated throughout the
code. (b) The sequence of implemented equations links together
correctly to meet a higher-level requirement. (c) Sufficient as-
sumptions are given, and are necessary (i.e., are actually used).
Specifications consist of low-level assumptions and require-

ments. An example of a low-level (informal) requirement might
be that the code shall compute the rotation matrix. The corre-
sponding formal requirement would state that the code must im-
plement a particular mathematical concept. The formal verifica-
tion of this requirement then traces that mathematical concept
to a sequence of lines of code, and reveals its logical depen-
dency on other requirements and assumptions. Such low-level
requirements often need to be verified during reviews, and can
require the tracing and decomposition details provided by the
formal analysis.
Each branch of the formal verification and corresponding

auto-generated argument shows the logical slice of the system
dataflow that is relevant to meeting that requirement. The
formal argument has two kinds of verification steps: that a
mathematical concept is implemented, and logically depends
on other mathematical concepts or assumptions; and a side con-
dition, i.e., a verification condition (VC), holds. The former are
interesting, but the latter less so, and could for most purposes
be safely hidden.
In fact, there are two levels of proof. AUTOCERT is an infer-

ence tool that matches implementation in the code to mathe-
matical concepts, thus allowing formal requirements to be de-
composed, and to be traced to code. It is the upper-level proof
(the tracing relations comprising decompositions and logical de-
pendencies that establish that lower-level requirements entail
higher-level requirements) that is represented graphically in the
argument structure. However, the (lower-level) proofs of VCs
using automated theorem provers (external to AUTOCERT) are
considered evidence.

C. Transformation

In principle, there are two ways in which a formal method can
be integrated with the construction of a safety case: (i) the output
of AUTOCERT can be transformed into a safety case fragment, or
(ii) safety case fragments can be transformed into formal spec-
ifications that are then input to AUTOCERT. We consider these
two cases, in turn.
1) From Formal Proofs to Argument Structures: Recall that

Fig. 2 illustrated the sequence of calculations used to compute
the aileron control variable from several inputs drawn from the
current aircraft state and the flight plan. AUTOCERT generates a
document (in XML) with information describing the formal ver-
ification of requirements. The core of this document is the chain
of information relating requirements back to assumptions. Each
step in the document is described by (i) an annotation schema
for the definition of a program variable, (ii) the associated VCs
that must be shown for the correctness of that definition, and (iii)
the variables on which that variable, in turn, logically depends.

The goals (and subgoals) of the argument structure have been
derived from the applied annotation schemas. The subgoals cor-
respond to the schema’s logically dependent variables, and the
VCs related to each goal. An argument for a VC is a proof, gen-
erated using a subset of the axioms, which forms the evidence
connected to the VC goal.We include the prover used as context.
We also create goals out of function specifications from external
libraries used in the software and its verification. Arguments for
these goals can be made with evidence such as testing or inspec-
tion. Each subgoal derived from an annotation schema is a step
in the verification process.
The transformation also creates assumption nodes that re-

late to code variables (e.g., x represents altitude), which are at-
tached to goals. In principle, assumptions can be placed any-
where in scope of the goal corresponding to the formal require-
ment. One choice is to attach all the formal assumptions directly
to the goal requirements, which can be done by repeating the as-
sumptions at each goal which uses them or by using cross-ref-
erences for repeated nodes. Another choice is to attach assump-
tions to the most recent common ancestor of all formalized re-
quirements. Our algorithm attaches them at the corresponding
goal requirements.
During the process of merging the manually created argu-

ment structure with the auto-generated ones, we replace distinct
nodes of the former with the tree fragments generated from
AUTOCERT. Specifically, we graft the top-level goals of the
latter onto the appropriate lowest-level nodes of the former. We
annotate these nodes with unique comments, autocert:id,
to relate them to a tree in the automatically created file, meaning
that the goal with tag autocert:id is to be solved with
AUTOCERT.
2) From Argument Structures to Formal Specifications:

Often, an argument structure fragment may be created before
the software verification is completed. Here, we can annotate
nodes with autocert:id, where id identifies formal state-
ments that are to be extracted in a formal specification. Based
on the type of node in which the identifier occurs, the tool infers
whether the labeled node is a requirement or an assumption.
After running AUTOCERT on the generated specification, we
can graft the resulting proofs back into the argument structure.
In the autopilot case, the nodes representing the aileron and

elevator control verification would have text representing both
an informal description of the system requirement being veri-
fied, and the corresponding formal requirement, resulting in the
specification in Fig. 8.

VII. SWIFT UAS SAFETY ARGUMENT

A. Goal Structuring Notation

Fig. 9 shows the main elements of the Goal Structuring No-
tation (GSN) [11], which we use to document the Swift UAS
safety case.
An argument structure in GSN contains a top-level goal

stating the safety claim, e.g., a given system is acceptably
safe. We develop goals into sub-goals using strategies, and this
procedure is continued until there are elementary claims that
can be connected to solutions, i.e., the available evidence. The
structure also specifies the assumptions made, the justifications



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON RELIABILITY

Fig. 9. Goal structuring notation (GSN) for safety case argument structures.

Fig. 10. Argument architecture for the Swift UAS.

if any, e.g., for the strategies used or the sub-claims created,
as well as the context in which the claims, strategies, and so-
lutions are valid. We link goals, strategies, and solutions using
the is-solved-by relation (shown with the filled arrowhead),
while context, assumption, and justification elements require
an in-context-of relation (shown with the hollow arrowhead).
Note that GSN nodes can also contain pointers to more detailed
information, and the description of a GSN node summarizes
these details.2 For example, detailed definitions can be given
externally, and linked to by a context node whose description
could simply be an identifier.
GSN provides a graphical annotation for goals and strate-

gies to indicate that they are to be developed, i.e., they are in-
complete. GSN additionally contains notations for modularity,
e.g., to reference elements in different modules using so-called
away nodes. For instance, in Fig. 9, AG1 is an away goal, with

denoting the reference to the relevant
module.

B. Argument Architecture

The argument architecture (Fig. 10) for the Swift UAS safety
case describes the organization of the underlying argument to
satisfy various attributes such as compliance, comprehensi-
bility, validity, maintainability, etc. Our main concern was to
assure that all hazards, and system contributions to hazards,

2Also note that that the node coloring shown is aesthetic and specific to our
toolset. Presently, it does not provide semantics like the links do.

Fig. 11. Module diagram of the Swift UAS safety case, reflecting a part of the
argument architecture.

identified in the safety analysis (Section V.A), have been
acceptably managed.
We adopt a hazard-directed style of argumentation, where we

develop the system safety claim by addressing hazards arising
from the system organization, its interactions, and its operations.
We develop the resulting claims first over the operating phases,
subsequently over the hierarchical system architecture and its
interactions, and eventually over lower-level components. The
intent is to trace hazard mitigation through the safety argument,
in part, to the behavior of system components. For instance, to
assure software safety, the safety case includes explicit correct-
ness arguments to demonstrate that software contributions to the
identified system hazards are acceptable.
In this paper, we mainly present an end-to-end slice of the

overall safety case (highlighted in boldface in Fig. 10, and
shown in Fig. 11 as a modular organization), which corre-
sponds to the system operation during descent (Section III.C),
including the low-level computations performed in the autopilot
(Section III.D). It traces the system safety claim to the identified
hazards, the corresponding safety requirements (Section VI.A),
and to the evidence from formal verification (Section VI.B).
The system safety claim, that the Swift UAS is acceptably

safe in the context of a specific mission, in a specific configura-
tion, on the defined range where it is to be operated, under spe-
cific weather conditions, is made in a system-level argument. As
shown, we link this claim first to an aircraft-level argument in
the descent phase of operation, then through the aircraft system
architecture to the avionics software, and eventually to a failure
hazard of the autopilot module. We demonstrate the mitigation
of this hazard through a correctness argument in which the sup-
porting evidence comprise proofs of correctness, that the PID
controllers for the aileron and elevator control surfaces produce
the required values.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DENNEY AND PAI: AUTOMATING THE ASSEMBLY OF AVIATION SAFETY CASES 11

Fig. 12. System-level argument fragment for the Swift UAS.

C. Manually Created Safety Argument

The manually created argument fragment mainly concerns
the airborne system, i.e., the UA. We construct this argument
based on the hazard analysis (Section VI.A), and it is layered
according to the argument architecture (Fig. 10).
In Fig. 11, the manually created argument fragment corre-

sponds to the arguments contained in modules M1 through
M17, whereas modules M18 and M19 contain the auto-gener-
ated fragments (described in Section VII.D). In this paper, we
mainly present the system-level argument (module M1), and
the argument for the software (modules M13, M16 and M17);
more details on the overall argument are in [14].
1) Module M1. System-Level Argument: The system safety

claim, i.e., that the Swift UAS is acceptably safe, is made in
the context of a specified mission, a particular configuration,
the location and site of operation, and the weather conditions
during operation (Fig. 12). Acceptable safety is as defined in
NASA procedural requirements for range safety, NPR 8715.5A
[24], to which we also refer in the context of the safety claim.
We develop this claim by argument over identified hazards, and
subsequently over the physical architecture of the system and its
interactions (since the argument shown is a slice, the argument
over operational hazards is hidden in this view).

The result is claims about the system components, i.e., the
GCS, the communication infrastructure, the airborne system
(the UA), and the relevant interactions. As shown, we use an
away goal AG1 for the claim of mitigating hazards posed by
the UA, to indicate that it is developed in a different module,
i.e., in the aircraft level argument (corresponding to module
M2 in Fig. 11, and labeled as in
Fig. 12). Therein, we develop the claim of mitigating hazards
posed by the UA, first by argument over the operating phases,
and then in general by argument over hierarchical breakdown
over the system architecture, i.e., the fuselage systems and
the Common Payload Data System (CPDS), into a claim of
mitigating (avionics) software failures during descent. (See
[14] for more details).
2) Module M13. Avionics Software Argument: The argument

structure for justifying the claim of mitigating avionics software
failures during descent uses three strategies (Fig. 13): (i) S6, va-
lidity of the input to software, (ii) S7, satisfaction of software
safety requirements, and (iii) S9, correctness over the (soft-
ware) architectural breakdown. Note that these strategies rep-
resent one set of strategies that we chose for assurance. Other
strategies, such as argument over the set of identified failures or
failure modes, can also be used.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON RELIABILITY

Fig. 13. Argument fragment for the avionics software in the Swift UAS.

Fig. 13 shows how the claim of mitigating avionics software
failures during descent is traced to the identified high-level func-
tional safety requirements, which appear as specific goals.
• G4: The autopilot executes safe maneuvers for all com-
mands during descent.

• G5: The autopilot interprets all commands correctly during
Descent.

• G6: The autopilot maintains accurate state information
during descent.

Additionally, the argument traces themitigation of software fail-
ures during descent to the reliability of the input sensors (shown
as the away goal AG1, in Fig. 13).
Note that arguing correctness is not always required when

making and justifying a safety claim. However, for the Swift
UAS, the correctness of the avionics software is itself safety
related, i.e., incorrect behavior is unsafe behavior. Because
the claims given here are informal, and although we refer
to correctness, this should be understood to be informal. We
make this context explicit in the argument fragment, in part,
through the definition of correctness of the software compo-
nents (C6).
In the particular case of the autopilot, which is part of the

avionics software, and also forms a part of the failsafe system
for contingency management, its correct behavior (in reference
to its informal specification given in Fig. 7) is required to as-
sure safety. We show this requirement as the away goal AG2
in Fig. 13, referencing the module (cor-

responding to the module M16, in Fig. 11) that contains the au-
topilot software argument, which we describe next.
3) Module M16. Autopilot Software Argument: The main

claim in the argument for the autopilot software is that its be-
havior during descent is correct (G14, in Fig. 14). We apply four
strategies to develop this claim: (i) S1, validity of the specifica-
tion; (ii) S2, correctness of the implementation; (iii) S3, satis-
faction of higher-level requirements; and (iv) S13, validity of
the mapping between state variables and aircraft data. We apply
the strategies S1 and S2, over the constituent modules of the au-
topilot, i.e., its software hierarchy.
Fig. 14 also shows how the argument for the autopilot

software explicitly captures logical dependencies between
correct software behavior, and heterogeneous information.
Specifically, to support the main claim in the argument, we
need to show, in part, that the functionality contained in its
modules is also correctly specified. Thus, for the claim that
the computation of angle of attack is correctly specified (G15),
we use the data from wind tunnel calibration experiments of
the pitot probe (air data sensor), and reviews of the software
specification conducted against the theoretical formula for
angle of attack, as supporting evidence (nodes E3 and E4,
respectively). Furthermore, to support the main claim (of the
autopilot software argument), we also need to show, in part,
that the autopilot controller (AP) implementation is correct
(shown as the away goal AG1 in Fig. 14, referencing module

, which corresponds to
module M17 in Fig. 11).



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DENNEY AND PAI: AUTOMATING THE ASSEMBLY OF AVIATION SAFETY CASES 13

Fig. 14. Argument fragment for the Swift UAS autopilot module.

Here, it is worth noting that the argument structure mirrors,
to an extent, the (informal) breakdown of autopilot functionality
(Fig. 7). For example, the main requirement of autopilot correct-
ness (Fig. 7) maps3 to several corresponding claims in the safety
case, one of which is the claim of autopilot correctness during
descent (Goal G6, in Fig. 14). Subsequently, the claims about
correct implementation (and valid specification) of the autopilot
class (goal nodes G3, G2), the FMS class (goal nodes G4, G1),
and the AP class (goal nodes AG1, G5) in Fig. 14, respectively,
map to the informal requirements SR-(1), SR-(2), and SR-(3) in
Fig. 7.
There are similar such claims for the correctness of the au-

topilot for other flight phases, but these have not been shown
in the paper mainly because we focus on a slice of the overall
argument, and on the descent phase. Furthermore, not all the
requirements in Fig. 7 have been transferred to the argument
structures because, in part, our main focus for the paper was on
those requirements relevant for the slice we considered.

3Note that the wording of the requirements differs slightly from the wording
of the claims in the safety case, e.g., in the latter we differentiate between the
implementation and the specification, whereas in the former, as shown in Fig. 7,
this distinction is not made.

4) Module M17. Autopilot Controller Argument: The main
goal in the autopilot controller (AP) argument (Fig. 15) is that its
implementation is correct. To demonstrate that this claim holds,
our strategy is to show the correct implementation of its code
blocks, one of which implements the PID controllers for the
elevator and aileron control surfaces (shown in Fig. 15, as the
away goals AG1 and AG2 respectively).
Once again, it is worth highlighting the correspondence be-

tween the claim in goal node G4, the low-level software safety
requirement it represents (SAFR_AVCS_001 in Table I), and
the system safety requirement (SAFR_FLTCS_001 in Table I)
from which the software safety requirement was, in turn, de-
rived. Additionally, the claim in goal node G4 in Fig. 15 cor-
responds to the informal requirement SR-3(d) in Fig. 7, while
the sub-claims in the away goals AG1, and AG2, respectively,
correspond to the sub-requirements SR-3(d)i.
Furthermore, because these requirements were formally spec-

ified (Fig. 8), we can create formalized claims for AG1 and AG2
(described next). After formalizing the claims, we auto-generate
the supporting argument fragments (reflectingmodulesM18 and
M19 in Fig. 11), and then auto-assemble them into the argument
architecture.Now,wedescribe theauto-generatedargument.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON RELIABILITY

Fig. 15. Argument fragment for the autopilot controller containing claims
about PID controllers for the UA control surfaces.

D. Automatically Generated Safety Argument

First, we formalize the claims in the leaf nodes of Fig. 15, i.e.,
that the implementations of the PID controller for the aileron
and the elevator control variables are correct. The formaliza-
tion step is the point where we relate variables and constants to
physical artifacts, and justify this correspondence. Effectively,
we relate our formal model to the world here.
Fig. 16 shows how this task has been accomplished. Themain

(informal) claim is that the implementation of the PID con-
troller is correct for the aileron control variable (Goal G122 in
Fig. 16, corresponding to away goal AG2 in Fig. 15). We apply
the strategy of formalization (S19) in the context of the relevant
domain theory, using the AUTOCERT specification language. Of
the resultant sub-claims, one of them (Goal AC1) is the formal-
ized statement of the informal claim, i.e., the formula produced
by translating the informal requirement using the chosen formal
language. Any formal argument relies on explicit assumptions
about the artifact under verification, and in this case the assump-
tions relate to aircraft state variables. Assumptions on goals are
typically about the system (e.g., the system operated correctly),
whereas assumptions on strategies are typically about the assur-
ance (e.g., the hazard is analysis complete). Here, the assump-
tions relate to code variables, and so refer to the system (e.g.,
represents altitude), and are therefore attached to goals.
In principle, assumptions can be placed anywhere in scope of

the goal corresponding to the formal requirement. One choice
is to attach all the formal assumptions directly to the formal-
ized claims. To do so, we could repeat the assumptions at each

goal which uses them or by use cross-references for repeated
nodes. Another choice is to attach assumptions to the most re-
cent common ancestor of all formalized requirements. Our al-
gorithm attaches them at the corresponding goal requirements,
e.g., formalized assumption FA1 attached to formalized claim
AC1. Although all the relevant assumptions (see Fig. 8) are to
be attached, we have only shown one due to space constraints.
In addition to the reliance on explicit assumptions, a formal

argument also relies on the validity of the formalization, that is,
on the correspondence between the formal artifacts we reason
with, and the physical artifacts they model, to engender confi-
dence. In Fig. 16, we express this result as a supporting claim
(G123) after applying the strategy of formalization (S19).
The argument structure used to justify the formalized claim

shows the structure of the verification (only one step has been
shown in the formal verification). To auto-generate the argu-
ment structure, we use the verification information produced by
the AUTOCERT tool [22]. In particular, AUTOCERT decomposes
the formal equivalent of the claim under consideration into
a number of sub-claims and side conditions, i.e., VCs, via
repeated property decomposition. Then, automated theorem
provers can discharge these formulas. AUTOCERT assumes that
low-level library functions meet their specifications, and does
not verify their bodies. Therefore, evidence of this assumption
has to be provided through an alternative means, e.g., by
testing, or from an inspection.
The fragment outlines the sequence of intermediate compu-

tations in the code used to establish the relevant goal, which is
typically a property on a variable. Some of these intermediate
steps correspond to lower level goals.
As mentioned earlier, Fig. 16 only shows the initial steps

of the auto-generated argument to support the (formal equiv-
alent of the) claim on the aileron control variable, output
m_aileron_m1p1, whose property is stated in the goal AC1.
This property is the condition that must be shown to hold for the
argument to hold. The strategy used asserts that the correctness
of the claim is shown by decomposition of the correctness prop-
erty, where the notion of decomposition is that embodied within
AUTOCERT. The context (AC6) clarifies that the decomposition
is of the correctness property at line 542, which is in reference
to the original source code.
Next, we see the VC that must be shown to achieve this main

claim (AC18) is also a goal (albeit incomplete, as no proofs
have been generated). The claim in AC28 represents a logi-
cally dependent variable of a schema, m_rollError_rad,
and its property; though there may be multiple logically de-
pendent variables in general, here it is the case that the aileron
control variable, output m_aileron_m1p1, is directly
logically dependent only on the variable m_rollError_rad.
This goal also represents the start of a recursive instance of the
argument structure tree, which exhibits similar reasoning until
it reaches the system assumptions or axioms.
As mentioned earlier, ATPs discharge the VCs, wherein the

proof provides the evidence, and the prover provides context.
Thus, the solution node AC16 indicates that a proof was suc-
cessfully found (using the theorem prover Vampire-0.6), and the
content of this node shows the path to the proof object rather
than the proof itself. The argument structure also needs to rep-



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DENNEY AND PAI: AUTOMATING THE ASSEMBLY OF AVIATION SAFETY CASES 15

Fig. 16. A step in the auto-generated argument structure fragment for the aileron PID controller, after formalization of an informal claim.

resent any assumptions that have been made about library func-
tions, and the methods, if any, that have been used for verifica-
tion; this information is obtained from a separately specified file.
Finally, the provers use various domain theories to discharge
VCs; the full text of the list of domain theories includes such
theories as arithmetic reasoning and transformation geometry.
Note that the properties being decomposed here can be traced

to specific lines of code given in the context nodes, e.g., AC6,
AC34, and so on. Additional context nodes (C71, AC4, AC32,
etc.) also indicate the schemas that have been applied, i.e., the
formulas that have been used. When the safety case is being
evaluated, those formulas will need to be inspected by a domain
expert for validity.

The argument could be restructured so that there is a single
context node referencing the entire domain theory, which an
expert would then need to inspect, rather than checking each
individual formula at each decomposition step. However, it
is important to know for traceability where the mathematical
concepts, i.e., low-level requirements, have been implemented
in the code. By making the decomposition structure explicit, as
in Fig. 16, the automated fragment provides this traceability,
although the entire fragment can be thought of (and for-
mallyrepresented) as a single hierarchical item of evidence
[25]. Although we could replace the argument underneath goal
node AC1 with a logically equivalent decomposition, low-level
traceability information is lost when the decomposition struc-



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

16 IEEE TRANSACTIONS ON RELIABILITY

Fig. 17. Fragment of a draft safety case narrative relating to the correct imple-
mentation of the aileron PID loop [14].

ture is not made explicit. The steps are similar for the elevator
control variable.
Fig. 17 shows a fragment of an automatically created safety

case narrative, corresponding to a step in the auto-generated
fragment.4 We also automatically create such an argument frag-
ment (or its narrative) for the elevator control surface (refer
to [14] for details). The narrative report is generated from the
same verification information used to generate the (formally
constructed part of) the argument. It can be seen as a textual
rendering of the formal argument, which highlights certain key
tracing information, including traces from (i) high level require-
ments to low level requirements, (ii) requirements to assump-
tions, (iii) requirements to code, (iv) requirements to concepts
(mathematical concepts used to meet requirements), and (v) re-
quirements to evidence (such as proofs). These reports are in-
tended to serve as aids during code reviews.

E. Automatically Assembled Safety Case

Once the automatically generated safety case fragment has
been created, it must be merged with the manually created frag-
ment (described earlier in Section VII.C). To do this (as men-
tioned earlier in Section VI.C), we use unique identifiers, and as-
sociate the top-level goals in the auto-generated argument with
the relevant incomplete goals from the manually created frag-
ment, i.e., for each top level requirement from the AUTOCERT

4Creation of the narrative, in fact, is logically independent of whether the
argument fragment is manually created or auto-generated; for more details, see
[26], and [27]. Note also that the report lists several assumptions that were not
used in the corresponding formal specifications.

Fig. 18. Bird’s eye view of an end-to-end slice of the overall system safety case
for the Swift UAS.

verification, we match nodes in the auto-generated fragment
with nodes in the manually created fragment via the identifier.
Then, to complete the argument started in the manually created
safety case, we graft the two auto-generated argument trees onto
the appropriate, manually created nodes.
Fig. 18 shows a bird’s eye view of the resulting end-to-end

slice (an open box equivalent of the module diagram in Fig. 11),
comprising the manually created fragment, and the automati-
cally generated fragment, both of which were created, and then
automatically assembled using our toolset AdvoCATE [27].

VIII. DISCUSSION

It is important to note that, because the Swift UAS is under
development, its safety case (and the argument fragment that we
have presented) is interim in the safety case lifecycle. To fully
justify the top-level claim of system safety, we also require (re-
peated) evidence of safe flight and other evidence from opera-
tion (which is contingent on mission specific configurations and
weather conditions). This evidence forms part of the operational
safety case, which we have yet to create. We make the following
observations about the use of our methodology and the develop-
ment of safety arguments in general, following which we outline
some avenues for further enhancing our work.

A. Observations

1) Heterogeneity: Safety cases are necessarily heteroge-
neous in nature. Even in arguments that address software
concerns alone, heterogeneous evidence needs to be consid-
ered. For example, in Fig. 14, one leg of the argument fragment



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DENNEY AND PAI: AUTOMATING THE ASSEMBLY OF AVIATION SAFETY CASES 17

assures correct computation of the aircraft angle-of-attack. The
evidence includes, among other things, wind-tunnel testing of
the air-data (pitot) probe, because a calibration constant rele-
vant to the pitot probe appears as a parameter in the code. While
software verification evidence for this function, as required
by traditional certification processes, would mainly need to
show that the code implements the specification, the assurance
argument goes further: it highlights that the claim (of correct
computation of angle of attack) also relies on the evidence that
the sensor is appropriately calibrated.
2) Improving Comprehension: One of the primary motiva-

tions for creating a safety case is to communicate safety infor-
mation to the relevant stakeholders. Hence, we believe that a
safety case should not be viewed as a static, unchanging arti-
fact. Rather, as a formal record of that which has been done (and
continues to be done) to make a system safe, it is the means for
continually monitoring and assuring safety throughout the life-
cycle of a system. We also believe that a graphical argument
structure is intuitively superior at communicating to a regulator,
the claims, assumptions, justifications, and evidence that have
been assimilated for assuring that a system is acceptably safe.
The argument structure is an index into this compendium of in-
formation, providing both a global overview, and a way to navi-
gate to supporting information and examine the details (with ap-
propriate tool support). The argument structure can also be rep-
resented textually (cf. Fig. 17); however, we want a structured
formalism which shows the decomposition down to low-level
requirements, and eventually to evidence.
With the specific case of encoding the reasoning underlying a

deductive verification as a GSN argument structure, as given in
thispaper, thereareacoupleofadvantages ingraphicallyshowing
the existing level of detail: (a) a unified notation, i.e., the GSN, is
available to reviewbothhigh-level systemclaimsandlower-level
software claims, assumptions, context and evidence; and (b) the
autogenerated argument structure (e.g., Figs. 16 and 18) high-
lights the exact reasoning used and the traceability from require-
ments to code, giving abasis togaugewhether theoutput from the
verification tool is trustworthy. Demonstrating traceability from
high-level requirements to low-level requirements, and eventu-
ally to source code, is typically mandated by aviation safety as-
surance standards. Thus, this traceability information, which we
capture in the auto-generated argument, is useful to identify those
mathematical concepts that havebeenused, andwhere those con-
cepts have been captured in the code.
Effectively, a graphical argument structure can explicitly

highlight the logical and stochastic interdependence between
system elements and software in the safety assurance case, so
as to better explain the contribution of software to system safety
concerns. Nevertheless, there is a need to hide some details and
to manage the size of the argument. For instance, a regulator
may not wish to see the very low-level details of some formal
verification, such as the proof of a VC. In this case, there are at
least two ways to modularize or abstract argument structures: (i)
using GSN modules (Fig. 11), and (ii) automated hierarchical
abstraction [25], which can substantially reduce the number
of nodes that are shown in a graphical view. Hierarchy and
modularization are orthogonal concerns to the work presented
in this paper, and out of scope.

Automation can also assist in creating instance arguments
from their corresponding abstract argument patterns [28].
Effectively, a safety analyst then deals with the abstract safety
argument, which is smaller and more manageable. In fact, the
style of decomposition used during the verification of low-level
requirements (see Fig. 16) can be formally defined as the
AUTOCERT property decomposition pattern [29]. We have also
implemented an architecture decomposition pattern, which is
to be used when the decomposition style is over sub-systems,
wherein the successive steps of the decomposition emphasize
assume-guarantee contracts between sub-systems. This de-
composition could also, in principle, be replaced with a logical
equivalent, but we believe the derived contracts are very useful
in providing insight into the assurance of the system.
How a safety argument is initially structured is likely to play

an appreciable role in its comprehensibility and complexity. For
instance, in the Swift UAS safety case, one of the main strate-
gies in the aircraft-level argument (module M2 in Fig. 11) is to
argue that hazards across all operating phases have been miti-
gated. This argument is followed by the argument over the ar-
chitectural breakdown of the airborne system (e.g., in module
M5 in Fig. 11). This approach allows us to address, at the outset,
those hazards whose risk is probabilistically dependent on the
mission phase, e.g., failure of the nose wheel actuator may not
be hazardous during the cruise phase, but it is a hazard during
landing.
An alternative organization is to develop the relevant claim,

first by argument over the architectural breakdown, and then
over the relevant operating phases. We believe that this ap-
proach facilitates the creation of a safety argument which may
be both easier to maintain and better modularized. In general,
such choices are tied to argument design criteria (Section V.B),
and need careful consideration early during the development of
the safety argument.
3) Reducing Errors, and Improving Confidence: There are

a variety of errors in safety case construction that could be
eliminated by automation. For example, syntactic errors can
be eliminated by simple syntax checking, and acyclicity in
arguments can be checked by ensuring that there are no loops
in the argument structure. The specific type of errors that are
reduced here are logical fallacies in those parts of the argument
that have been auto-generated from deductive verification.
Logical fallacies in an argument can be avoided by verifying
the argument, or by constructing it automatically from artifacts
(which, of course, need their own appropriate verification). In
this work, we present one approach to automatic construction
of argument fragments. The approach also requires explicit
specification of assumptions and formal requirements, and can
reveal both missing assumptions, and unused assumptions.
There is a need for a quantitative assessment framework

[30] to support decision making and argument assessment, e.g.,
whether an argument is valid and covers sufficient information,
whether the evidence supplied is trustworthy, and the amount
of confidence that can be justifiably placed in the claims made
along with the supporting arguments. This work corresponds to
the activity of uncertainty assessment, in our methodology.
There are a variety of ways to deal with sources of doubt in

a safety case. Our previous work [19] identifies one way for-



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

18 IEEE TRANSACTIONS ON RELIABILITY

ward using Bayesian probabilistic reasoning, for a quantitative
consideration of uncertainty in argument structures. Confidence
arguments provide another way to deal with some sources of
doubt within the safety case, by creating an argument structure
justifying the reduction of assurance deficits. Other ways to im-
prove confidence in an assurance case also exist, such as elimi-
native induction, and the use of Dempster-Shafer theory.
Additionally, we have identified an initial set of metrics that

we believe will support this need [14]. In brief, these include
coverage measures for hazards, higher-level and lower-level
safety requirements, measures of (internal) completeness, along
with simple measures of argument structure size. In large safety
cases, such metrics can conveniently summarize the state of the
safety argument during system evolution. An implicit assump-
tion underlying the coverage measures that we have defined
is that the argument chains in the safety case are themselves
valid. Manually created, inductive arguments can be systemat-
ically reviewed for identifying argument fallacies, as in [31],
which is part of our ongoing work to improve confidence in
the Swift UAS safety case. Assessing argument validity, and in-
cluding this notion into the coverage measures, appears to be a
promising mechanism also to support decision making.

B. Enhancements

Although we have only verified one small part of the system,
we can potentially do much more. Although the AUTOCERT tool
is aimed at one specific kind of analysis, we intend to com-
bine the results of other kinds of formal verification. AUTOCERT
provides a proof that source code complies with a mathemat-
ical specification. As part of its analysis, AUTOCERT reverse en-
gineers the code, sifting through potentially overlapping frag-
ments to create links from the code to high-level functional de-
scriptions of concepts used in requirements. The functional de-
scriptions are specified by annotation schemas, and AUTOCERT
works by inferring annotations at instances of these patterns. It
then generates the chain of reasoning which allows the require-
ments to be concluded from the assumptions, where each link
in that chain corresponds to a particular implementation pattern.
It thus provides a decomposition of the argument which lends
itself naturally to inclusion in a safety case. However, not all
mathematical properties are best specified in such a composi-
tional dataflow style, and we plan to actively investigate inte-
grating results from other tools.
As our work progresses and matures, we anticipate devel-

oping recommendations for a safety case methodology that is
aligned with NASA standards and procedures. Now, we list
some specific lines of work that we believe are worth pursuing.
1) Additional Formal Verification: The low-level claims that

we verified were based on functional and physical unit cor-
rectness. There are other properties that should be checked in
the avionics software, such as runtime safety and physics-based
bounds. One possible way to do this is to combine results and
reasoning from different (verification) tools, as has been illus-
trated for the AUTOCERT tool in this work.
2) Additional Automation and Assembly: Our hazard anal-

ysis has been conducted manually. However, there is poten-
tial for automation, especially when considering hazard iden-
tification guided from definitions of the system boundaries, as

well as from its functional and physical decompositions, i.e.,
we hypothesize that it is possible to automate some part of the
hazard analysis, in particular via the systematic enumeration of
the combinations of system components or their interactions at
the defined system boundaries. We believe that this will amelio-
rate the integration of safety cases into existing processes.
3) Inclusion of Formal Verification Knowledge: There are

many different ways of converting formal verification knowl-
edge into safety case fragments; the structure of the safety case
is driven by both the safety methodology, and the verification
methodology.
Examples of high-level choices include whether to decom-

pose over all requirements, versus all scenarios, or all code
branches. Rather than hard-coding these design choices in
the transformation, they could be represented declaratively
using templates. This approach would give us control over the
structure of the generated safety case, and let us more easily
investigate and compare different structures.
There are also choices in how to layout the generated safety

case. We have chosen to duplicate shared VCs, but they could
be shared as a directed acyclic graph.
4) Alignment With NASA Standards, Requirements, and

Guidelines: NASA has numerous safety-relevant procedural
requirements, standards, and guidelines at both the software
and system levels. It will be important to develop a safety
case methodology which is aligned with these. We also plan
to continue our work on uncertainty assessment in argument
structures [19], both with respect to its theoretical basis and its
application to our target system, so as to be compatible with
NASA’s efforts in Probabilistic Risk Assessment (PRA) [32].
5) Safety Case Manipulation: The inclusion of automati-

cally generated fragments, and all relevant sources of informa-
tion, will lead to increasingly large safety cases. Existing mech-
anisms for managing large argument structures are limited, and
we believe they should be amenable to manipulation in various
automated ways. The Query-View-Transformation (QVT) stan-
dard for model manipulation could be applied here.
We also believe that introducing hierarchy into safety cases,

i.e., hicases [25], is a promising approach that could reduce
the burden of review. There is also a natural fit with automat-
ically generated cases, as hierarchical structuring can also be
generated automatically. Indeed, there are additional forms of
meta-information that can also be generated to aid review.

IX. CONCLUSION

We have shown that it is feasible to automatically assemble
auto-generated fragments of safety cases derived from a
formal verification method, i.e., proofs of correctness using
AUTOCERT, with manually created fragments derived from
safety analysis. We illustrated our approach describing an
end-to-end slice of the overall safety case for the Swift UAS.
Our intent was to show how heterogeneous safety aspects, es-
pecially those arising from formal, and non-formal reasoning,
can be communicated in a unified way to support certification
activities, rather than to claim safety improvement.
Several aspects of our work distinguish it from the existing

literature and our previous work.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DENNEY AND PAI: AUTOMATING THE ASSEMBLY OF AVIATION SAFETY CASES 19

1. The safety argument that we have created (Fig. 18) pro-
vides a level of detail that goes significantly beyond the
state of the practice. Typically, argument structures leave
several details implicit or informal, rarely going down to
the level of software implementations. Making safety-rel-
evant data and its connections to requirements explicit is
highly worthwhile because a safety case serves primarily
as a form of communication. We believe This explicit con-
nection is also useful, as a form of book-keeping used to
track and trace the data relevant for system safety assur-
ance. Indeed, feedback from the Swift UAS engineers indi-
cated that they viewed the assurance argument as an infor-
mation log providing a transparent record that safety con-
cerns have received sufficient consideration [42].

2. We have demonstrated the feasibility of automated as-
sembly of manually developed safety case fragments
with those generated automatically. However, we believe
much more can be done to increase the degree of rigor
and formality. Thus far, safety cases have not generally
combined manually developed and auto-generated frag-
ments. When automation is applied, it tends to be used to
provide evidence as a monolithic black box, rather than
as a full-fledged argument fragment that can be separately
and rigorously examined.
Although there exists skepticism about the value of cre-
ating such detailed arguments (particularly the criticisms
that a proof need not be further examined in the form of
an argument structure, and that such structures are exces-
sively detailed to be amenable to review), we believe that
it can be addressed in a straightforward manner with the
appropriate abstractions. From the feedback to this work
given by the Swift UAS engineers, we have already iden-
tified the need for abstraction mechanisms to manage the
complexity of argument structures [42]. More recently, we
have defined hierarchical structures, hicases, which can be
applied to abstract argument fragments precisely to address
the concern of hiding details. Hicases can be applied or-
thogonally to themodular abstraction shown in Fig. 11. See
[25] for more details.

3. We have combined traditional safety analysis techniques
with formal methods; although formal methods have been
used in safety cases, much of the existing work does not
deal with the wider context of safety or with argument
generation.

4. Safety is inherently heterogeneous; we have characterized
the diversity of the information sources pertinent to safety,
and shown how it can be explicitly reflected in the cre-
ated argument fragments. Furthermore, we view formal
and non-formal sources not as opposites but as comple-
mentary, and equally relevant.

5. We have highlighted how software is considered in the
system context with explicit justification for the constituent
parameters and specifications, when viewed from a safety
perspective.

We have implemented our approach for argument develop-
ment in AdvoCATE, our toolset for assurance case automation
[27]. The core of the system is a graphical safety case editor,
integrated with a set of model-based transformations that pro-

vide functionality for manually creating argument structures,
translating and merging pre-existing structures from other
formats, and for incorporating automatically generated content
from external formal verification tools, as described in this
paper. The tool also provides additional automation capabili-
ties, such as auto-generation of textual narratives and tabular
representations, computing metrics, and the creation of to-do
lists.
We believe that the work presented here is a promising step

towards increased safety assurance, particularly in UAS. The
need to manage and reconcile diverse information in both the
system and software safety cases becomes apparent from the
perspective of not only safety, but also compliance to airworthi-
ness requirements for operating a UAS [43], where the overar-
ching goal is to show that a level of safety equivalent to that of
manned operations exists. Safety analysis is imperative to deter-
mine the required regulations, and whether existing regulations
are sufficient or how they ought to be augmented. Research on
the generation of safety cases thus affords the development of a
framework for assuring safety in tandem with the identification
of UAS-relevant hazards.

ACKNOWLEDGMENT

We thank Corey Ippolito and Mark Sumich for providing the
necessary domain information. We also thank the anonymous
reviewers for their insights, which helped to improve this paper.

REFERENCES

[1] S-18, Aircraft And SystemDevelopment And Safety Assessment Com-
mittee, ARP 4761, Guidelines and Methods for Conducting the Safety
Assessment Process on Civil Airborne Systems and Equipment, Dec.
1996, Society of Automotive Engineers (SAE).

[2] Software Considerations in Airborne Systems and Equipment Certi-
fication, RTCA SC-205 and EUROCAE WG-71, DO-178C/ED-12C,
Dec. 2011.

[3] F. Redmill, “Safety integrity levels—Theory and problems, lessons
in system safety,” in Proc. 18th Safety-Critical Systems Symp., 2000,
Springer-Verlag.

[4] I. Dodd and I. Habli, “Safety certification of airborne software: An
empirical study,” Rel. Eng. Syst. Safety, vol. 98, no. 1, pp. 7–23, 2012.

[5] Road Vehicles-Functional Safety, ISO 26262, International Organiza-
tion for Standardization (ISO), Nov. 2011.

[6] Draft Guidance, United States Food and Drug Administration, FDA,
Guidance for Industry and FDA Staff—Total Product Life Cycle: In-
fusion Pump—Premarket Notification, Apr. 2010.

[7] UKMinistry of Defence (MoD), SafetyManagement Requirements for
Defence Systems, 2007, Defence Standard 00-56, Issue 4.

[8] R. Bloomfield and P. Bishop, “Safety and assurance cases: Past, present
and possible future—An Adelard perspective,” in Proc. 18th Safety-
Critical Systems Symp., Feb. 2010.

[9] EUROCONTROL—European Organisation for the Safety of Air
Navigation, Preliminary Safety Case for Enhanced Traffic Situational
Awareness During Flight Operations, PSC ATSA-AIRB, Dec. 2012
[Online]. Available: http://www.eurocontrol.int/articles/cascade-doc-
uments

[10] P. Bishop and R. Bloomfield, “A methodology for safety case develop-
ment,” in Industrial Perspectives of Safety-Critical Systems: Proc. 6th
Safety-critical Systems Symp., F. Redmill and T. Anderson, Eds., Feb.
1998, Springer.

[11] Goal Structuring Notation Working Group, GSN Community Standard
Version 1, Nov. 2011 [Online]. Available: http://www.goalstructuring-
notation.info/

[12] EUROCONTROL—European Organisation for the Safety of Air Nav-
igation, Preliminary Safety Case for ADS-B Airport Surface Surveil-
lance Application, PSC ADS-B-APT, Nov. 2011 [Online]. Available:
http://www.eurocontrol.int/articles/cascade-documents



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

20 IEEE TRANSACTIONS ON RELIABILITY

[13] E. Denney, G. Pai, and J. Pohl, “Heterogeneous aviation safety cases:
Integrating the formal and the non-formal,” in Proc. 17th IEEE Int.
Conf. Engineering of Complex Computer Systems (ICECCS), Paris,
France, Jul. 2012, pp. 199–208.

[14] E. Denney, G. Pai, and J. Pohl, Automating the Generation of Hetero-
geneous Aviation Safety Cases, NASA Ames Research Center, Tech.
Rep. NASA/CR-2011-215983, Aug. 2011.

[15] E. Denney and B. Fischer, “Generating customized verifiers for au-
tomatically generated code,” in Proc. Conf. Generative Programming
and Component Engineering (GPCE’08), Nashville, TN, USA, Oct.
2008, pp. 77–87, ACM Press.

[16] N. Basir, E. Denney, and B. Fischer, “Building heterogeneous safety
cases for automatically generated code,” in Proc. Infotech@Aerospace,
St. Louis, MO, USA, 2011.

[17] Office of Safety and Mission Assurance, NASA General Safety Pro-
gram Requirements, NPR 8715.3C, NASA, Mar. 2008.

[18] U.S. Department of Transportation, Federal Aviation Administration,
System Safety Handbook, FAA, Dec. 2000.

[19] E. Denney, G. Pai, and I. Habli, “Towards measurement of confidence
in safety cases,” in Proc. 5th Int. Symp. Empirical Software Engi-
neering and Measurement, Sep. 2011, pp. 380–383.

[20] T. Kelly, “Arguing safety: A systematic approach to managing safety
cases,” Ph.D. dissertation, Univ. York, York, U.K., 1998.

[21] T. Kelly, “A systematic approach to safety case management,” in Proc.
Soc. Autom. Eng. (SAE) World Congr., Mar. 2004.

[22] E. Denney and S. Trac, “A software safety certification tool for auto-
matically generated guidance, navigation and control code,” in IEEE
Aerospace Conf. Electronic Proc., Big Sky, MT, USA, 2008.

[23] K. Y. Ahn and E. Denney, “A framework for testing first-order logic
axioms in program verification,” Softw. Qual. J., pp. 1–42, Nov. 2011.

[24] Office of Safety and Mission Assurance, NPR 8715.5A, Range Flight
Safety Program, NASA, Sep. 2010.

[25] E. Denney, G. Pai, and I. Whiteside, “Hierarchical safety cases,” in
Proc. 5th NASA Formal Methods Symp., G. Brat, N. Rungta, and A.
Venet, Eds., May 2013, vol. 7871, pp. 478–483, ser. LNCS, Springer-
Verlag.

[26] E. Denney and B. Fischer, “A verification-driven approach to trace-
ability and documentation for auto-generated mathematical software,”
in Proc. Automated Software Engineering (ASE’09), 2009.

[27] E. Denney, G. Pai, and J. Pohl, “AdvoCATE: An assurance case au-
tomation toolset,” in Proc. SAFECOMP 2012 Workshops, F. Ortmeier
and P. Daniel, Eds., Sep. 2012, vol. 7613, ser. LNCS, Springer-Verlag.

[28] E. Denney and G. Pai, “A formal basis for safety case patterns,” in
Proc. Computer Safety, Reliability and Security (SAFECOMP2013), F.
Bitsch, J. Guiochet, and M. Kaniche, Eds., 2013, vol. 8153, pp. 21–32,
ser. LNCS.

[29] E. Denney and G. Pai, “Evidence arguments for using formal methods
in software certification,” in Proc. 2013 IEEE Int. Symp. Software Re-
liability Engineering Workshops (ISSREW), Nov. 2013, pp. 375–380.

[30] A.Wassyng, T. Maibaum,M. Lawford, and H. Bherer, “Software certi-
fication: Is there a case against safety cases?,” in Foundations of Com-
puter Software, Modeling, Development and Verification of Adaptive
Systems, ser. LNCS. New York, NY, USA: Springer-Verlag, 2011,
vol. 6662, pp. 206–227.

[31] W. Greenwell, J. Knight, C. M. Holloway, and J. Pease, “A taxonomy
of fallacies in system safety arguments,” in Proc. Int. System Safety
Conf., 2006.

[32] M. Stamatelatos et al., “Probabilistic risk assessment,” NASA Office
of Safety and Mission Assurance, Procedures and Guide for NASA
Managers and Practitioners 1.1, Aug. 2002.

[33] E. Denney, C. Ippolito, R. Lee, and G. Pai, “An integrated safety and
systems engineering methodology for small unmanned aircraft sys-
tems,” in Proc. Infotech@Aerospace, Garden Grove, CA, USA, 2012,
no. AIAA 2012–2572.

[34] N. Basir, E. Denney, and B. Fischer, “Deriving safety cases for hi-
erarchical structure in model-based development,” in Proc. 29th Int.
Conf. Computer Safety, Reliability and Security (SafeComp’10), Vi-
enna, Austria, 2010.

[35] E. Denney and G. Pai, “A lightweight methodology for safety case
assembly,” in Proc. 31st Int. Conf. Computer Safety, Reliability and
Security (SAFECOMP 2012), F. Ortmeier and P. Daniel, Eds., Sep.
2012, vol. 7612, pp. 1–12, ser. LNCS, Springer-Verlag.

[36] P. Bishop and R. Bloomfield, “A methodology for safety case devel-
opment,” in Industrial Perspectives of Safety-Critical Systems: Proc.
6th Safety-critical Systems Symp., F. Redmill and T. Anderson, Eds.,
1998, Springer.

[37] R. Weaver, “The safety of software—Constructing and assuring ar-
guments,” Ph.D. dissertation, Dept. Comput. Sci., Univ. York, York,
U.K., 2003.

[38] E. Lee, I. Lee, and O. Sokolsky, “Assurance cases in model-driven
development of the pacemaker software,” in Proc. 4th Int. Symp.
Leveraging Application of Formal Methods, Verification and Valida-
tion (ISoLA), Oct. 2010, vol. 6416, pp. 343–356, ser. Lecture Notes in
Computer Science (LNCS).

[39] Y.Matsuno, H. Takamura, and Y. Ishikawa, “Dependability case editor
with pattern library,” in Proc. 12th IEEE Int. Symp. High-Assurance
Systems Engineering (HASE), 2010, pp. 170–171.

[40] B. Littlewood and D. Wright, “The use of multilegged arguments to in-
crease confidence in safety claims for software-based systems: A study
based on a BBN analysis of an idealized example,” IEEE Trans. Softw.
Eng., vol. 33, no. 5, pp. 347–365, May 2007.

[41] R. Bloomfield, B. Littlewood, and D. Wright, “Confidence: Its roles in
dependability cases for risk assessment,” in Proc. 37th Annual IEEE/
IFIP Int. Conf. Dependable Systems and Networks (DSN), 2007.

[42] E. Denney, I. Habli, and G. Pai, “Perspectives on software safety case
development for unmanned aircraft,” in Proc. 42nd Annual IEEE/IFIP
Int. Conf. Dependable Systems and Networks (DSN 2012), Boston,
MA, USA, Jun. 2012, pp. 1–8.

[43] Federal Aviation Administration, Unmanned Aircraft Systems (UAS)
Operational Approval, Jan. 2013, National Policy N 8900.207, U.S.
Department of Transportation.

Ewen Denney (M’09) earned a B.Sc. (Hons) in computing science and math-
ematics from the University of Glasgow (1993), an M.Sc. with Distinction in
computer science from Imperial College (1994), and a Ph.D. degree in computer
science from the University of Edinburgh (1999).
He is a Senior Computer Scientist at SGT Inc., NASAAmes Research Center,

with the Robust Software Engineering group, in the Intelligent Systems Divi-
sion (Code TI), where he has worked on automated code generation and safety
certification in the aerospace domain, developing AI-based systems for the au-
tomated generation of code for scientific computation, and the certification of
autocode.
Dr. Denney has served on numerous program committees and scientific ad-

visory boards. He has chaired and co-chaired several conferences, including
Software CertificateManagement (2005), the inaugural NASA FormalMethods
Symposium (2009), Proof Carrying Code and Software Certification (2009),
Generative Programming and Component Engineering (2011), Assurance Cases
for Software-intensive Systems (2013), and Automated Software Engineering
(2013). He is the author of more than 60 publications on formal methods and
safety assurance. He is a member of the IEEE Computer Society, the AIAA, and
the ACM.

Ganesh Pai (S’97–M’07) holds a B.E. degree in electronics engineering (2000)
from the University of Bombay, an M.S. degree in electrical engineering (2002)
from the University of Virginia, and a Ph.D. degree in computer engineering
(2007), also from the University of Virginia.
He is a Research Scientist at SGT Inc., NASA Ames Research Center, with

the Robust Software Engineering group in the Intelligent Systems Division
(Code TI), where he works on safety assurance of flight-critical systems and
software. Prior to his current role, from May 2007 to March 2011, he was
a Senior Engineer with the Fraunhofer Institute for Experimental Software
Engineering (IESE), Germany. His research interests lie in the broad areas of
systems and software engineering with a focus on dependability and safety.
Dr. Pai has served on the program committees of a series of workshops on

Software Engineering for Embedded Systems, the NASA Formal Methods
Symposium (2013), as co-chair of the workshop on Assurance Cases for Soft-
ware-intensive Systems (2013), and on the organizing committee of Automated
Software Engineering (2013). He is a member of the IEEE Computer Society,
and the AIAA.


