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Abstract. Querying a safety case to show how the various stakeholders’ con-
cerns about system safety are addressed has been put forth as one of the bene-
fits of argument-based assurance (in a recent study by the Health Foundation,
UK, which reviewed the use of safety cases in safety-critical industries). How-
ever, neither the literature nor current practice offer much guidance on querying
mechanisms appropriate for, or available within, a safety case paradigm. This pa-
per presents a preliminary approach that uses a formal basis for querying safety
cases, specifically Goal Structuring Notation (GSN) argument structures. Our ap-
proach semantically enriches GSN arguments with domain-specific metadata that
the query language leverages, along with its inherent structure, to produce views.
We have implemented the approach in our toolset AdvoCATE, and illustrate it
by application to a fragment of the safety argument for an Unmanned Aircraft
System (UAS) being developed at NASA Ames. We also discuss the potential
practical utility of our query mechanism within the context of the existing frame-
work for UAS safety assurance.
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1 Introduction

A safety case essentially provides an audit trail, which can assist in convincing the vari-
ous stakeholders of a system, including regulators, that the system is acceptably safe [1].
One of the motivations to use structured arguments in developing a safety case is to pro-
vide a means to explicitly justify safety considerations from concept, through require-
ments, to the evidence of risk mitigation/control. Additionally, argument structures are
intended to make a safety case easier to comprehend and, thereby, more efficient to re-
view critically [2]. To improve clarity in presenting the underlying reasoning, the Goal
Structuring Notation (GSN) [3] provides a graphical syntax with which to specify the
appropriate argument structures.

Previously [4], we identified the need to present role-specific information to subject-
matter experts to improve the comprehensibility of a safety argument. Furthermore, as
a system evolves through its lifecycle, so should its safety case, i.e., system changes,
assumptions that are validated/invalidated, and observations of safety performance, for
example, should translate into updates of the safety case so that the system and its safety
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case are mutually consistent. We believe that one of the first steps to address these needs
is through an approach for safety case queries. Although the potential to query a safety
case has been put forth previously as one of the benefits of using safety cases, and as a
way for stakeholders to understand how safety concerns have been addressed [5], to the
best of our knowledge there is scant guidance on a principled way for querying safety
cases.1

The application domain motivating our work is Unmanned Aircraft Systems (UASs).
We are interested in creating a framework for argument-based assurance of airworthi-
ness and flight safety of UAS, which augments the existing processes and reuses the
artifacts produced to the extent possible, so as to ease its adoption in practice. A broad
goal is to be able to address the requirements from the relevant regulations/standards.
An additional goal is to be able to support safety case development. In general, safety
engineers and system developers need to understand and communicate what they (or
others) have already done, that which remains to be done, and how different parts of the
argument may relate to each other and to the system.

These issues are also critical for safety/assurance case assessors. To determine safety
case fitness for purpose, it is necessary to involve all the relevant stakeholders so that
they may understand the (safety) claims made, and challenge the reasoning and evi-
dence presented. However, safety cases typically contain heterogeneous reasoning [6]
and a wide variety of evidence, e.g., the mandated work products which show compli-
ance to the relevant regulations and standards, the results of analyses (safety, system,
and software), various inspections, audits, reviews, simulations, verification activities
including various kinds of subsystem/system tests, and, if applicable, also the evidence
of safe performance from prior operations. In other words, safety cases can easily amass
a large amount of information. For example, the preliminary safety case for ADS-B air-
port surface surveillance applications [7] is about 200 pages long. Thus, partly due to
the size and diversity of information contained in a safety case it may not be straight-
forward (or possible) for all stakeholders to locate and/or understand all the arguments
presented along with their different elements.

In this paper, our main contribution is a preliminary approach (Section 2), and a
formal basis for querying GSN safety case argument structures (Section 3). We define
queries as properties of GSN nodes, constructed from unary and binary relations, and
take the result of executing a query to be an argument structure view, rather than simply
the list of nodes which satisfy the query. We also describe the Argument Query Lan-
guage, AQL2, and give formal semantics for both queries and views based on an earlier
semantics for argument structures. We have implemented the approach in our toolset
AdvoCATE [8], and illustrate its application on a fragment of a safety case argument
structure for the Swift UAS, under development at NASA Ames (Sections 4 and 5).

In this first implementation, we have limited ourselves to querying the argument
structure, rather than the entire assembly of artifacts comprising a safety case. Next,
we describe our approach for querying and how it can help to address the problem of
accessing (and understanding) the rich variety of information contained in a safety case.

1 However, we acknowledge that existing safety case tools may provide a search functionality
to locate the information of interest.

2 In Islamic philosophy, ’aql is the use of logical inquiry as a basis for law.
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Fig. 1. Methodology for querying safety cases using AdvoCATE: Enrich GSN argu-
ment structures with metadata drawn from domain ontologies and use Argument Query
Language (AQL) queries to create views. The dotted lines give the role of each element
in relation to the others, while the solid lines give the role of the tool.

2 Methodology

We describe our approach mainly with respect to the GSN argument structures created
using our tool AdvoCATE (although the principles can be applied more generally).
AdvoCATE already offers several features: filtering and searching the argument, and
showing/hiding sub-arguments relative to a node. The search mechanism allows a string
search on different node fields (e.g., identifier, description, etc.), which can also be
filtered by node type. However, our requirement is to develop a mechanism to query
arguments in a much richer way, making use of both syntactic (i.e., structural) and
semantic information. Fig. 1 shows our methodology for using the Argument Query
Language (AQL) to query safety case argument structures and create views.

2.1 Semantic Enhancement

The main idea is first to semantically enrich the GSN nodes in the argument structure.
Thus, in addition to the descriptive text, e.g., the actual claim for a goal node, we asso-
ciate nodes with metadata, given as a set of attributes.
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For example, we can use metadata to relate nodes containing informal claims, with
those containing the formal equivalents. We can also use metadata to indicate an asso-
ciation between an instance node in an argument, and the source node in the pattern
from which it was generated. Another type of metadata can be used to indicate that
a node is linked to some external artifact(s). More generally, we can use metadata to
give provenance information, such as representing how a node was constructed (e.g.,
via some formal method) or tracing information (e.g., to a system or standard).

In general, metadata are meant to reflect a variety of domain knowledge. Thus, we
use different domain ontologies, which capture the relevant concepts and their inter-
relations in a domain, to give the semantics of the attributes. For example, from a
requirements ontology, we can provide attributes to goal nodes that reflect not only
concepts such as requirement, formal requirement, safety requirement, etc., but also
relations such as formalizes or is allocated to. Then, by drawing from a system orga-
nization ontology, we can add more information about the specific system, subsystem
or component to which the requirement applies. In the absence of an ontology, we can
rely on terminological information, such as a glossary from a standards document, or
procedural guidance documents.

2.2 Sources of Queries

We see queries and views as a means to express, respectively, specific questions relevant
for argument structure creation, review, or modification, and their responses. Potential
sources of queries, besides the experience of the safety engineer or the assessor, in-
cludes domain knowledge, such as that contained in regulations, standards, guidance
documents, artifact documentation, documentation for processes and procedures, etc.
To illustrate, we give some scenarios:

Supporting Safety Argument Development and Change: When developing a safety
argument for a complex system, arguments addressing all parts of the system may not
all be created at the same time. These present some simple query needs, e.g., determin-
ing the claims that remain to be supported or how/if high-risk hazards have been ad-
dressed. Similarly, a developer may want to view specific fragments, e.g., how a formal
method was applied to develop a claim or how a specific pattern has been instantiated.
Furthermore, when redesign/replacement of some components is required, we can use
queries also to identify those argument fragments that ought to be updated to reflect the
revised safety analysis, and, in turn, to understand the impact of those changes on the
overall safety argument.

Addressing Traceability Concerns: In general, demonstrating traceability is a re-
quirement during certification, e.g., as part of the software approval process [9]. An
important form of traceability is to show how requirements from regulations, standards
and other relevant guidance documents are linked to the appropriate evidence items. For
instance, item 5.b.(5) of the safety checklist in FAA Order 8130.34B, Appendix D [10],
requires describing how software requirements are validated and the means for software
verification. In addition to providing descriptive text—as is the case in practice—we be-
lieve that an informative response also could include an appropriate slice or view of the
airworthiness assurance argument structure, showing the claims relevant to software
requirements, the applicable context under which validity can be claimed, the relevant
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assumptions and justifications, the strategies for verification and validation (e.g., formal
verification, and inspection against domain knowledge, respectively), and how these
have been applied to refine the claims made.

Supporting Assessment and Review: As part of the different milestones of the sys-
tems engineering process [11], engineering artifacts (as well as the safety case) are to
be reviewed and accepted before development proceeds. Simple queries on the safety
argument can be used to determine whether the relevant obligations have been met. For
example, during a Preliminary Design Review (PDR), we can query the safety case to
establish whether or not all the identified safety requirements have been allocated.

2.3 Components of Queries and Views

For this paper, we mainly focus on queries that operate on GSN arguments although,
eventually, we want to expand the scope of queries to include the entire safety case.

Conceptually, queries in AQL comprise a combination of properties of both the se-
mantic and the syntactic information in the argument structure. As described earlier
(Section 2.1), metadata, i.e., attributes on nodes, provide a way to access the semantic
information. To access the structure, AQL queries contain expressions referencing GSN
syntax. The language (described subsequently in Section 3) itself consists of a selection
of atomic queries that can be grouped with the usual logical connectives (and, or, xor,
not), as well as the path quantifiers [] (all), and ⟨ ⟩ (some), to specify query rela-
tions. The language also contains constructs to access structure in terms of the relative
arrangement of nodes, e.g., above, below, directly above, etc.

Taken together, we can express some relatively complex queries in the form of con-
cepts that AdvoCATE can understand, so that an informal, natural language query in
the domain can be expressed as a formal AQL query over the GSN argument struc-
ture. Here, we note that the translation of an informal query into a formal one, and the
resulting view generated, depends on the purpose of the query. For instance, consider
querying for an incomplete argument. If the purpose were simply to locate a set of unde-
veloped nodes, so that the safety case author(s) can further develop them, it suffices to
specify a formal query whose result is exactly the set of undeveloped nodes of interest,
e.g., goals nodes marked to be developed. Alternatively, if the purpose were to assess,
say, whether or not a claim has been supported by evidence, or the extent to which it
has been developed, then a view containing greater details is more useful. Then, we can
specify an appropriate formal query in AQL which will result in an argument structure
view containing any goal or strategy not immediately (or eventually) followed by other
goals, strategies or evidence (See Section 5 for a concrete example).

The outcome of executing a query on an argument structure is an argument structure
view. A view is a diagram showing the fragment(s) of the (source) argument that sat-
isfy the query. In our implementation, we collapse those nodes that do not satisfy the
query into concealment nodes (C-nodes, for short), which we annotate with the number
of hidden nodes. A C-node can be (temporarily) expanded to show the corresponding
fragment in the source argument. To reduce visual clutter, by default we only show C-
nodes that appear between two regular nodes. So, for example, if a context node does
not satisfy a query, it does not appear in the view. One consequence is that if the root
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node does not satisfy the query, the view will consist of several unconnected fragments,
though this preference can be changed.

We allow multiple views for a given argument structure, reflecting the application of
different queries. The views and the queried structure are kept consistent with each other
in our implementation, so that a change in any one of the views/argument structure is
either propagated to the rest or, in the case of an inconsistent change (due to independent
unsaved edits, say), the user is alerted.

3 Foundations

3.1 Metadata

Metadata is associated with individual nodes (rather than globally with the entire ar-
gument). Each node has a set of associated attributes, which are declared and can be
parameterized over parameters of specific types. Nodes have instances of attributes
with values that comply with the type of the parameter (which can itself depend on
the node). In general, we draw these parameter values from a domain ontology (See
Fig. 3 in Section 5, for an example). The grammar of an attribute declaration is:

attribute ::= attributeName param*
param ::= String | Int | Nat | nodeID | sameNodeTypeID | goalNodeId | strategyNodeId |

evidenceNodeId | assumptionNodeId | contextNodeId | justificationNodeId |
userDefinedEnum

The type of a parameter can either be:
– a basic type, i.e., a string (String), an integer (Int), or a natural number (Nat)
– a node type, which can be used as parameters in three different ways:

• NodeID: any kind of node
• sameNodeTypeID: the parameter must be the identifier of a node of the same

type as the node with the attribute.
• Specific node parameter types, which allow specification of a node of a given

type: assumptionNodeID, contextNodeID, evidenceNodeID, goalNodeID, justifi-
cationNodeID, strategyNodeID.

– A user-defined enumeration (userDefinedEnum): for example, we can define the
parameter types

severity ::= catastrophic | hazardous | major | minor | noSafetyEffect
likelihood ::= frequent | probable | remote | extremelyRemote |

extremelyImprobable
to define the parametrized attribute risk(severity, likelihood). Then, we can give an
attribute instance as: risk(severity(catastrophic), likelihood(extremelyImprobable)).
We will just use “attribute” when it is clear from the context whether we mean
attribute instance or attribute declaration. Note that we do not force the values of
different enumerations to be distinct.

3.2 Syntax and Semantics

Query Syntax. Queries are defined with respect to a signature given by the declared
metadata. Henceforth, we will assume that this signature is fixed, and let A range over
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attribute instances and N range over node identifiers. We will also use F to indicate a
node field and write F has v where F is one of the fields id, type (t), description (d),
attributes (m), status (s), and v is an appropriately typed concrete value.

The node identifier (id) and description (description) must be strings; node type is one
of goal g, strategy s, evidence e, context c, assumption a, and justification j; attributes
takes an attribute instance(A), and status takes tbd (to be developed). For the fields id
and type, has means equality; for the field description, has means sub-string, and for
the fields attributes and status, has means set membership.

Definition 1 (Pre-query). A pre-query is a term constructed according to the following
grammar:
Q ::= true | F has v | isAbove | isBelow | isDirectlyAbove | isDirectlyBelow |
Q(N) | notQ |Q andQ′ | ⟨Q⟩Q′

Now we define well-formedness rules on pre-queries, which will allow us to define
queries. We give these as inference rules for the arity of a query:

F has v : 1
v well-typed for F

isBelow : 2 isAbove : 2 isDirectlyBelow : 2 isDirectlyAbove : 2

Q : 2
Q(N) : 1

Q : n
notQ : n

Q : n Q′ : n
Q andQ′ : n

Q : 2 Q′ : n
⟨Q⟩Q′ : n

Here Q : n means that query Q is well-formed and represents a property of n node
arguments. An inference rule states that if the hypotheses hold (i.e., the queries above
the line are well-formed with the specified arities) then the conclusion holds (i.e., the
stated query below the line is well-formed with given arity).

Definition 2 (Query). We define a query to be a pre-query Q such that Q : 1 according
to the pre-query well-formedness rules.

We do not need to supply all the parameters in an attribute instance in a query. For
example, we can write attributes has risk(likelihood(probable)) to mean: find a node with
an attribute risk whose likelihood is probable and with any severity. We can abbreviate
this further by writing attributes has risk(probable), which will look for any parameter
with value probable, or even attributes has risk with which to find nodes tagged with
any risk values. We can omit the second argument of a top-level quantifier, in which
case it is taken to be true. For example, a root node can be queried by not⟨isBelow⟩,
which is equivalent to not⟨isBelow⟩true. A derived syntax for queries is given as:

false = not true
(or) Q orQ′ = not (notQ and notQ′)

(xor) Q xorQ′ = (Q andQ′) or (notQ and notQ′)
(all) [Q ]Q′ = not ⟨Q ⟩ notQ′

Semantics of Queries. In order to give semantics to queries, we first give semantics to
argument structures.
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Definition 3 (Safety Case Argument Structure). A safety case argument structure is
a 3-tuple ⟨N, f,→⟩ where N is a set of nodes; fX (where X ∈ {t, d,m, s}) gives
the node fields: type, description, attributes, status; and → is the connector relation
between nodes. Various restrictions3 must be placed on → to ensure that an argument
structure is well-formed. We have ft : N → {s, g, e, a, j, c} gives node types, fd :
N → string gives node descriptions, fm : N → A∗ gives node instance attributes,
and fs : N → P({tbd}) gives node development status.

Note that, here, we equate nodes with their identifiers. Also, it is possible to give
many variants on this definition (as we have done previously [12], [13]), depending
on the information that we want to associate with the argument. Here, we include all
information that is relevant to the definition of the queries. Next, we give semantics to
queries, as:
N ! true
N ! id has v ⇐⇒ N = v N,N ′ ! isAbove ⇐⇒ N →+ N ′

N ! type has v ⇐⇒ ft(N) = v N,N ′ ! isBelow ⇐⇒ N ′ →+ N
N ! description has v ⇐⇒ v substring fd(N) N,N ′ ! isDirectlyAbove ⇐⇒ N → N ′

N ! attributes has v ⇐⇒ v ∈ fa(N) N,N ′ ! isDirectlyBelow ⇐⇒ N ′ → N
N ! status has v ⇐⇒ v ∈ fs(N) N ! Q(N ′) ⇐⇒ N,N ′ ! Q

For compound query terms, we need to give rules for either one or two nodes. Write
N̄ to mean either N1 or N1, N2. Then,

N̄ ! not Q ⇐⇒ N̄ ̸! Q
N̄ ! Q andQ′ ⇐⇒ N̄ ! Q and N̄ ! Q′

For quantifiers, it is simpler to give the two cases separately:

N ! ⟨Q ⟩Q′ ⇐⇒ ∃N ′ such that N,N ′ ! Q and N ′ ! Q′

N,N ′ ! ⟨Q ⟩Q′ ⇐⇒ ∃N ′′ such that N,N ′′ ! Q and N ′′, N ′ ! Q′

Semantics of Views. There are two (equivalent) ways to define views, depending on
whether we treat concealment nodes as a special kind of node or as part of a link.
Though each definition has some advantages, the simplest is to use nodes.

Definition 4 (Argument View). An argument view is a 5-tuple ⟨N,C, f, γ,→⟩ where
N is the set of argument nodes, C is the set of C-nodes, f gives node fields for N ,
γ : C → nat+ gives C-node counts, and the connector relation → is subject to the
same restrictions as in Definition 3 (that is, if x, x′ ∈ N and x → x′, then there are
restrictions on the types of x, x′ to prevent illegal links). Moreover, if x′ ∈ C then
ft(x) ∈ {g, s}; if x ∈ C, then x′ can have any type; we cannot have both x, x′ ∈ C.

In practice, to reduce clutter, the tool allows additional restrictions to be placed when
creating C-nodes. For the examples in this paper (Section 5), we also require that ∀γ ∈
C . ∃n, n′ ∈ N .n → γ → n′. We can also relax this condition so that C-nodes are
added as root. The last condition prevents C-nodes at the edge of the view, since they
can only appear between regular nodes (as mentioned in Section 2.3). Next, we relate
views to arguments.

3 See [12] for details.
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Definition 5 (A-view). Let A = ⟨NA, fA,→A⟩ and V = ⟨NV ,C, fV , γ,→V ⟩ be an
argument and a view, respectively. We say that V is an A-view if NV ⊆ NA, NA∩C =
∅, fV = fA " NV , →A" NV ⊆→V , and there exist mappings f : NA → NV ∪ C and
g : NV ∪ C → A such that g; f = id, and f ; g(x) →∗

A x.

The latter condition forces the map from a C-node to be to the root of a concealed sub-
DAG. Note that, in general, f is partial and so, therefore, is f ; g. However, g and g; f
are total.

Now, we define the views which result from queries. First, we need to define those
fragments of an argument which are concealed by a query. Let Q be a query and define
SQ = {n ∈ N |n ̸! Q and ∃n1, n2 . (n1 → n → n2 and n1, n2 ̸! Q)}. A path, p, is
a sequence of connected nodes. If p connects nodes n and n′ we write p : n →∗ n′.
Then, define the relation RQ as n RQ n′ ⇐⇒ ∀p : n →∗ n′ . ∀n′′ ∈ p . n′′ ̸! Q.

R relates nodes which are in the same concealed fragment. It is easily seen that RQ

is an equivalence relation, and so we can form the partition SQ\RQ, i.e., the set of
concealed fragments.

Definition 6 (Q-view). Given argument A = ⟨N, f,→⟩, and query Q, we define the
Q-view of A as ⟨Nv,C, fv, γ,→v⟩, where the components are defined as follows:
(a) Nv = {n ∈ N | n ! Q}
(b) Let SQ\RQ = {H1, . . . , Hm}, and defineC as a fresh set of elements {c1, . . . , cm}.
(c) fv = f " Nv

(d) c(ci) = |Hi|
(e)

n →v n′ ⇐⇒

⎧
⎨

⎩

n, n′ ∈ N and n → n′, or
n ∈ N,n′ = ci ∈ C and ∃n′′ ∈ Hi . n → n′′, or
n = ci ∈ C, n′ ∈ N and ∃n′′ ∈ Hi . n′′ → n′

We now state (without proof) that queries give rise to well-formed views. Recall that
we assume that queries and arguments are defined over a common attribute signature.

Theorem 1. Let Q and A be a query and argument, respectively. Then, the Q-view of
A is an A-view.

4 Implementation

We have implemented the query/view mechanism in our toolset, AdvoCATE [8]. The
tool stores the views associated with a diagram as special properties of the diagram,
in particular as two lists in the diagram file itself: (a) all the view names associated
with the diagram, and, (b) correspondingly, the query that maps to each name. In the
interface, views appear by name as sub-items in the project explorer, under the corres-
ponding diagram, e.g., as shown in Fig. 2. The figure also shows how node attributes are
displayed (in the properties panel) along with other node fields. We draw the attributes
from a domain-specific grammar, an excerpt of which is given in Fig. 3.

Although not shown in Fig. 2, we have implemented some additional usability fea-
tures, such as the ability to open multiple views simultaneously in separate tabs, i.e.,
multiple canvases. The end-user can save changes either to the argument structures,
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Fig. 2. Screenshot of AdvoCATE: (a) queries appear as sub-items of the argument struc-
ture file, in the project explorer panel on the left (b) the canvas is used to create GSN
argument structures using the palette on the right, which provides the different GSN
nodes and links (c) queries are run by entering them in the query text-box in the toolbar.

the queries, or both. Users will also be shown the current query, and can edit it further
before saving. When any change is made either to the source diagram or a view, it is
reflected in all views and the original diagram.

Due to space limitations, we only briefly describe the algorithm underlying the
query/view mechanism. Let A be an argument structure, Q be a well-formed query,
N be a node in A, and τ be a table of query results. If τ contains the result of applying
Q to A then, using the function computeView(A,Q), create a view as the conjunc-
tion of the nodes and links in τ . Then, according to the restrictions of Definition 4,
create and link C-nodes to hide all nodes in A absent in τ . Otherwise use the func-
tion satisfiesQuery(A,Q,N) on all nodes of A to locate those nodes that satisfy
Q, store the result to τ , and call computeView(A,Q) to create the view as earlier. The
satisfiesQuery(A,Q,N) function recursively evaluates the syntax tree of Q, iter-
atively locating the nodes in A such that the function returns true. We now state the
correctness of the algorithm (without proof) as:

If satisfiesQuery(A,Q,N) returns true then N ! Q and
If computeView(A,Q) = V then V is the Q-view of A

Query execution is reasonably fast, taking under a second to process large diagrams
containing upwards of 500 nodes.
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requirement(id, hierarchyLevel, assuranceConcern)
formalClaim(id), informalClaim(id), hazard(id)

id ::= int | string
hierarchyLevel ::= highLevel | lowLevel
assuranceConcern ::= functional | safety | reliability | availability | maintenance

requirementAppliesTo(elementLevel, elementType, element)
elementLevel ::= system | subsystem | component | module | function | model | signal
elementType ::= hardware | software
element ::= aileron | elevator | flaps | propulsionBattery | avionicsBattery | actuatorBattery |

avionics | autopilot | FMS | AP | aileronPIDController | elevatorPIDController |
propulsion | engine | propeller | engineMotorController | actuator |
flightComputer | wing | actuatorMotorController pilotReceiver | IMU

references(variable)
variable ::= aileronValue | pitchAttitude | flareAltitude | vRef | vNE | thrust | vS1

regulation(part)
part ::= 14CFR23.73 | 14CFR23.75

risk(severity, likelihood)
severity ::= catastrophic | hazardous | major | minor | noSafetyEffect
likelihood ::= frequent | probable | remote | extremelyRemote | extremelyImprobable

isFormalizedBy(sameNodeTypeID)

Fig. 3. Excerpt of domain specific grammar for metadata

5 Application

We illustrate our query mechanism and its utility by application to a fragment of the
Swift UAS safety argument (See Fig. 4a for a bird’s eye view): in particular, we de-
scribe some queries based on the motivating scenarios described earlier (Section 2.2)
and show the resulting views. The argument structure (in Fig. 4a) concerns, in brief,
the mitigation of a specific safety hazard—unanticipated nose pitch down during des-
cent and landing—that can result in a loss of the aircraft and damage to the runway.
The argument develops the root claim of hazard mitigation into sub-claims concerning
the various contributory system functions, including software/hardware, components,
and operations, which are then linked to the evidence, e.g., available from experimental
data, procedures, and verification activities. In preparation for querying the argument,
we added metadata to the nodes using user-defined enumerations (see Section 3) and a
domain-specific grammar (Fig. 3).

Requirements address an assurance concern at a particular level of hierarchy, and can
be applied to system elements of various types. As motivated earlier, (Section 2.2), an
assessor might want to examine whether traceability exists from hazards to all relevant
system safety requirements, high-level and low-level requirements, down to software
requirements. We can specify such a traceability query in AQL in a straightforward
way, as shown in Fig. 4b. As mentioned earlier (Section 3.2), some of the parameters
of the metadata can be omitted in the query. The resulting (bird’s eye) view (Fig. 4c)
contains goal nodes with metadata about the hazard and requirements to which they
are related. These goal nodes, in turn, are linked using C-nodes. Fig. 4d shows the top
right leg of the view (Fig. 4c), showing traceability from a high-level requirement on the
avionics system, to the high-level and low-level avionics software requirements relevant
for the mitigation of the descent phase hazard.

Note that we can create the view shown in Fig. 4d by constraining the traceability
query, e.g., by including attributes about the avionics software. We can further constrain
the query to only consider hazards with a certain risk level. For example, by including
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(a) Bird’s eye view of a fragment of the Swift UAS safety case in GSN. 
type has goal and (attributes has hazard or (attributes has requirement(safety) and  

attributes has requirementAppliesTo(system)) or attributes has requirement(highLevel) or  
attributes has requirement(lowLevel) or attributes has requirementAppliesTo(software)) 

(b) AQL traceability query.

(c) Bird’s eye view showing the result of a
traceability query applied to Fig. 4a.

(d) Goal and C-nodes showing links from a
high-level requirement to software require-
ments for the avionics.

Fig. 4. GSN argument fragment for the Swift UAS, AQL query and the resulting view



306 E. Denney, D. Naylor, and G. Pai

(type has goal) and (attributes has regulation(14CFR23.73) or attributes has regulation(14CFR23.75)) 
or <isBelow>(attributes has regulation(14CFR23.73) or attributes has regulation(14CFR23.75)) 

(a) Query in AQL to locate references to regulatory requirements.

(b) View resulting from the query in Fig. 5a, showing disconnected argument structure fragments.

Fig. 5. AQL query and view showing those parts of the argument fragment of Fig. 4a
referencing regulatory requirements

[isAbove] (not (type has goal or type has strategy) or <isAbove>(type has goal or  
type has strategy or type has evidence)) and (<isAbove> type has evidence or type has evidence) 

(a) AQL query using only structural references.

(b) View produced by applying the query in Fig. 6a to the fragment in Fig. 4a.

Fig. 6. Query and View: All nodes from which all paths lead to evidence
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the AQL expression attributes has risk(severity(catastrophic), likelihood(remote)) in the
query of Fig. 4b, we can generate a view (not shown here) of traceability to only those
hazards whose likelihood of occurrence is remote, and whose severity is catastrophic.

Another query on the argument structure can be to identify those parts that address
concerns from regulations, standards, and guidance documents. For example, Part 23
of the Federal Aviation Regulations (FARs) specifies requirements concerning aircraft
performance during landing, e.g., approach speeds (14 CFR §23.73), the conditions
to be met for accomplishing a safe landing within the required landing distance (14
CFR §23.75), etc. To formulate an appropriate query, first we locate all goal nodes with
the attributes regulation(14CFR23.73) or regulation(14CFR23.75), using the grammar
of Fig. 3. Then, to determine the extent to which the corresponding claims have been
addressed in the argument, we locate those fragments whose roots are the located goal
nodes and show the entire structure to highlight the relevant context, assumptions and
justifications, if any, and the reasoning used. Fig. 5a and Fig. 5b show the relevant AQL
query and its corresponding view respectively. From the latter, we can infer that there
are claims in the structure that reference the regulatory requirements, but that they are
yet to be fully developed. To determine the exact extent of how the regulations are met,
an assessor could navigate to, and examine, the external documentation referenced from
the nodes shown in the view.

Thus far, our queries have shown how we use simple combinations of structure and
metadata to produce views that address domain specific scenarios: namely, establishing
if and how some regulatory requirements have been addressed, and showing the trace-
ability concerns that may be required by assurance standards. However, we can also use
AQL to specify more complex queries that produce meaningful views and operate on
the structure alone. One such example concerns querying for those fragments which are
completely developed, i.e., all nodes from which all paths lead to an evidence node.

In fact, this query gives a way to determine the internal completeness of an argument
structure from a purely structural standpoint. That is, the property that—assuming valid
reasoning from premises to conclusions, and not considering the confidence needed to
accept a claim/argument—there exists no claim (i.e., goal node) in the argument such
that a path from it does not end in evidence. We specify this query in AQL as given in
Fig. 6a, and the resulting view is shown in Fig. 6b. Thus, an argument structure that is
identical to the view produced by applying this query is internally complete.

To understand this query (Fig. 6a), we include some basic notions for explanation
purposes: An end node here is a goal or strategy with no goals or strategies beneath it,
effectively making it the end of an is supported by chain. A middle node here is a node
with goals or strategies beneath it; since only goals or strategies satisfy this condition,
all middle nodes are goals or strategies). There are three types of nodes the query seeks
to find: (i) end nodes that have some evidence node beneath them; (ii) middle nodes
that only have other middle nodes and nodes of type (i) beneath them; (iii) the evidence
nodes at the end of the argument. To express these three possibilities, we combine the
three using the or operator, and simplify. Note that the simplification includes facts
(expressed in AQL), e.g., an evidence node can never be above a goal.

Queries can also be used to identify parts of argument that, though complete, might
not engender sufficient confidence. For example, goals associated with high risk may
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need to be supported by particular forms of evidence. We can then use an appropriate
query to identify those argument fragments that do not meet these criteria.

6 Concluding Remarks

We have described a methodology and a formal foundation to query safety cases. Speci-
fically, we have described how to enrich GSN argument structures with domain-specific
metadata, and how to produce argument structure views by querying arguments using
the Argument Query Language (AQL). We have implemented and tested a prototype of
our query/view mechanism in our toolset, AdvoCATE. Using a fragment of the Swift
UAS safety case argument structure as a driving example, we have demonstrated the
creation of a simple set of domain concepts, its use in querying an argument, and how
queries can produce specific perspectives on that argument.

The closest counterpart to our work proposes multi-view safety cases [14] and also
operates on GSN argument structures. Here, a view is produced from, effectively, an
a priori encoding of the elements of the argument that correspond to a specific, static,
stakeholder viewpoint, e.g., a process view. In contrast, our notion of view is dynamic
since it is determined upon evaluating the query applied to the argument structure.
Queries have been used in safety-critical applications by [15], wherein visual queries
are applied to traceability information models to show traceability. Our work is com-
paratively much broader in scope and considers a variety of queries (Section 2.2)
including, and in addition to, traceability in safety assurance. For instance, a useful
perspective to present during software approval would be showing, say, only the soft-
ware aspects in an argument, or the software contributions to different hazards. We can
specify these kinds of queries and generate the relevant views in a straightforward way.

Query languages exist for a variety of frameworks, e.g., databases, knowledge bases,
ontologies, etc. For example, SQWRL [16] is an ontology query language, which offers
richer logical expression than AQL (currently) does, but is more generic. PrQL [17] is
a specialized proof query language with some similarities to AQL, though it targets a
different domain. The data comprising a safety case, potentially, can be organized into
a (relational) database and then queried. However, we are unaware of approaches/tools
that either query argument structures in this manner, or are similar to ours.

We believe that our approach for querying safety cases can be useful to address
stakeholder-specific concerns, and can help in argument comprehension by locating
and displaying the relevant information of interest. However, we can do more to further
improve the practical usefulness of our approach. For instance, currently we specify
attributes through an interface in which the end-user relies on an external ontology or
glossary of terms. We plan to integrate an ontology tool and import the relevant ontolo-
gies. In addition to enriching the underlying domain theory, we can enhance the query
language in several ways: First, we can make several simple extensions to the atomic
predicates on which the query language is built, e.g., distinguishing the different link
types, in context of and is supported by. Next, a more significant extension would be
the implementation of named queries, i.e., allowing queries (as opposed to views) to
be saved to a library and referenced by name within other queries. This would greatly
simplify the use of larger, more complex queries. We will also provide a range of use-
ful library queries by default, e.g., finding undeveloped nodes. The current query/view
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mechanism is limited to the core GSN, and it works primarily on the argument struc-
ture. We intend to develop suitable interfaces to linked artifacts, which will allow us to
query the entire assembly of artifacts comprising a safety case.
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