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Abstract 

A key requirement when obtaining regulatory authorization to conduct certain kinds of unmanned aircraft system 
(UAS) operations in civil airspace, e.g., beyond line-of-sight, and over congested areas, is to create and submit a 
safety case. Central to modern safety cases is a notion of argument, i.e., an explicit chain of reasoning linking the 
required safety substantiating evidence to the overall safety objectives and assertions. In this paper, we present a 
methodology for the principled development of structured arguments, supporting both top-down and bottom-up ar-
gument development approaches. We use the goal structuring notation (GSN) to present the arguments created, and 
leverage our toolset, AdvoCATE, for automation support. Our methodology focuses on the data flow between its six 
constituent activities building upon, and extending, our earlier work on a lightweight approach for assembling safety 
arguments from the artifacts of an integrated systems and safety engineering process for small UAS. We have ap-
plied some of the activities to create assurance arguments for real aviation systems, which in turn, has informed the 
development of the methodology. We give two examples of applying our methodology to UASs, addressing aspects 
of operational safety assurance in one example, and airworthiness in the other. 

Introduction 

Creating and submitting a safety case is both an accepted best practice and a regulatory requirement in many safety-
critical industries. In the aviation sector, however, safety cases have been used largely by the military (ref. 1), where 
safety targets representing an acceptable level of risk are established, and the safety case provides the requisite as-
surance that those targets have been satisfied. In contrast, civil aviation uses a combination of highly prescriptive 
normative regulations, which mandate concrete product requirements and compliance processes, and so-called per-
formance-based regulations specifying minimum operating performance standards (MOPS). Nevertheless, safety 
cases have been used for risk management and safety assurance of a variety of civil aviation systems, e.g., those 
supporting flight-crew operations in terminal-area airspace (ref. 2), and air-traffic management operations during en-
route flight (ref. 3). With respect to unmanned aircraft systems (UASs), the requirement to produce a safety case 
ultimately depends on the governing regulatory authorities and applicable policies (refs. 4–6), besides the UAS type, 
configuration, and type of operations. Nonetheless, certain kinds of operations, e.g., beyond line-of-sight (BLOS), in 
congested airspace, or at night, currently do require a convincing safety case (refs. 5–7) for flight authorization to be 
granted. It has also been suggested that safety cases may be appropriate for airworthiness assurance of certain types 
of UAS (ref. 8), e.g., those possessing non-standard equipment, or novel design/safety features. 

A safety case is a specialization of the more general notion of assurance case, which can be used to provide assur-
ance of broad system concerns including dependability, safety, and security. In particular, a safety case is a compre-
hensive, defensible, and valid justification of the safety of a system for a given application in a defined operating 
environment. This concept is compatible with (and largely similar to) what is considered to be a safety case in many 
relevant aviation standards and guidance documents. Indeed, common to all are the requirements to explicitly state 
the overall safety assertions and objectives, i.e., the safety claims, and supply the safety substantiating evidence. 
However, each also supplies its own context/application-specific interpretation of the exact purpose and nature of 
the safety case (refs. 1, 5, 6, 9, 10), together with the required components, expected content and presentation for-
mat. Associated with safety cases is an additional notion of argument—i.e., a chain of reasoning connecting the 
claims and the evidence—although, depending on the standard/guidance document used, arguments may be either 
explicitly required (refs. 1, 5, 10), or implicitly created (ref. 6). The motivation to use structured arguments for UAS 
safety assurance is twofold: first, they enable the explicit tracing of safety and airworthiness considerations, from 
concept, to requirements, to evidence of risk mitigation and control; secondly, they are useful as a centralized organ-
izing component of the diverse assurance information aggregated by a UAS safety case.  
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Figure 1 — Simple example of a structured argument and a notation for its presentation. 

Additionally, arguments have been shown to make it easier to comprehend and critically review a safety case (ref. 
11). To further improve clarity in presenting arguments, graphical notations such as the goal structuring notation 
(GSN) have emerged, which has not only seen some usage in both civil and military aviation (refs. 1, 2), but also has 
undergone standardization (ref. 12). Recently, GSN has been provided with formal foundations (refs. 13–15). 

We have previously defined a lightweight approach for assembling safety arguments—using the artifacts of an inte-
grated systems and safety engineering process for small UAS (refs. 16, 17)—which we extend in this paper. We first 
describe a generic methodology for the principled creation of (safety) assurance arguments, after which we describe 
its application to two real UAS examples: i) addressing the safety of a ground-based detect-and-avoid (GBDAA) 
capability, which was used in transit operations with fixed-wing UASs; and, ii) airworthiness assurance (in particu-
lar, type design assurance), of an unmanned rotorcraft system (URS) whose operational concept includes BLOS and 
night operations. Our methodology supports both top-down, and bottom-up development of arguments, uses the 
GSN to present the arguments created, and leverages automation support through our toolset AdvoCATE (ref. 18).  

Structured Arguments 

An argument is a connected series of propositions used in support of the truth of an overall proposition. The latter is 
usually termed as a claim, whereas the former represents a chain of reasoning connecting the claim and the evidence. 
Our vision of a safety case is a structured, and evolving, argument that comprises explicit safety claims, assimilates 
heterogeneous safety-substantiating evidence, and presents the reasoning required to conclude that a system will be 
safe for a defined application and operating environment. We present the elements of a safety case as an argument 
structure, i.e., a diagrammatic presentation of the underlying argument using the goal structuring notation (GSN). 
Figure 1a shows an argument as a directed acyclic graph of different GSN nodes and links; the different node types 
shown—i.e., goal, strategy, assumption, justification, and solution—represent the core argument elements, whereas 
the links specify support or contextual types1 of relationships between the nodes. GSN also has, among other ab-
stractions, notational extensions for modularity, e.g., module references, and away nodes, though we will not cover 
those here.2  

In general, nodes refer to external items including a) artifacts such as hazard logs, requirements documents, design 
documents, various relevant models of the system, etc.; b) the results of engineering activities, e.g., safety, system, 
and software analyses, various inspections, reviews, simulations, and verification activities including different kinds 
of system, subsystem, and component-level testing, formal verification, etc.; and c) records from ongoing opera-
tions, as well as prior operations, if applicable. Nodes additionally contain metadata drawn from domain ontologies 
that provide supplementary and relevant domain-specific semantic information. Figure 1b gives a simple illustrative 
example of an argument structure in the core GSN (retaining the layout of Figure 1a, to aid understanding).    

                                                
1 Links with filled arrowheads show the support relationship; links with the hollow arrowhead show the contextual relationship. 
2 For more details on GSN and its extensions, see reference 12. 

(a) Core (non-modular) GSN) (b) Example argument in GSN 



 

 

 

Figure 2 — Methodology for developing (safety) assurance arguments, comprising six distinct activities. 

In Figure 1b, we state the top-level claim—i.e., “Failures of the LiPo battery system are acceptably tolerated”—in 
the goal node G1, and in context of the failure modes and effects analysis (FMEA) of the LiPo battery system 
(shown as the context node C1). We decompose this claim using two strategies, S1 and S2, which provide comple-
mentary arguments, i.e., over the identified failure modes, and of redundancy, respectively. The latter relies on an 
assumption of independence in failures of the redundant batteries (assumption node A1), but has not been further 
developed (indicated by the ‘!’ node annotation). The use of the former has been justified (in the justification node 
J1), and results in two sub-goals: G2 (concerning the acceptable mitigation of thermal runaway), and G3 (concern-
ing the elimination of short circuits in the battery system), respectively. The former remains to be developed, while 
the latter is addressed by the evidence node E1, i.e., short circuit analysis.  

Argument Development Methodology 

Overview:  Our process for (safety) assurance argument development (Figure 2) is concurrent, and iterative, with the  
processes for domain modeling/analysis, safety analysis, and system development/verification (shown in Figure 2, 
as providing inputs to the argument development process). The processes are periodically synchronized at the mile-
stones defined during the plan for system development and certification (ref. 16). At each milestone, we produce an 
argument structure that reflects (at that point in the system development process) the inclusion of the specific arti-
facts available, and the state of the safety argument (and, consequently, system safety). Safety argument evolution 
can, then, be characterized by the series of interrelated argument structures produced at the various milestones. 
Thus, a preliminary safety argument (shown in Figure 2, as an output of the argument development process) would 
correspond to a milestone at the end of the concept definition and requirements analysis phase, whereas an architec-
tural safety argument would correspond to the milestones at the end of the phases of system architecture develop-
ment and system design. As shown in Figure 2, our methodology for argument development comprises six distinct 
activities; namely: i) argument design/assembly, ii) claims definition, iii) claims refinement/composition, iv) evi-
dence definition/selection, v) argument analysis, and vi) argument improvement. The activities i) – iv) can be con-
sidered as the core process for argument development, while the remaining two activities play a supporting role.  

We focus mainly on the data flow, rather than control flow, since the order in which the activities are performed will 
be tailored to the specific needs of the project and domain. In general, argument development can be performed in a 
top-down, or a bottom-up manner. The former entails a definition of a high-level argument organization (and the 
constituent top-level claims), followed by successive refinement into lower-level details. In contrast, the latter is 
concerned with assembling an argument based upon the inferences that can be drawn from the available and existing 
lower-level details (i.e., the evidence). In practice, however, it is not uncommon to utilize a combination of both top-
down and bottom-up argument development. Next, we describe each activity of the argument development process.  

•  Qualified claims  

•  Evidence assertions 

•  Argument structure fragments 

•  Argument architecture 

Argument Analysis 
 
•  Assess confidence  
•  Verify argument properties 
•  Validate argument 
•  Evaluate metrics 

Argument Improvement 
 
•  Address counter evidence 
•  Address argument defeaters 
•  Reduce assurance deficits 
•  Fix property violations 

•  Counter evidence 
•  Defeaters, assurance deficits  
•  Property violations 

Claims Definition  
 
•  State safety claims 
•  Elaborate context 
•  State assumptions 
•  Provide justifications 
•  Add metadata 

Argument Design / Assembly 
 
•  Define argument architecture 
•  Select / compose / instantiate patterns 
•  Define modules and/or hierarchy 
•  Compose argument fragments 
•  Refactor arguments 
•  Add metadata  

Evidence Definition / Selection 
 
•  Define / identify solution 
•  Select solution 
•  Infer evidence assertions 
•  Elaborate context 
•  Add metadata  

Claims Refinement / Composition 
 
•  Select / define refinement strategies 
•  Select / define composition strategies 
•  Elaborate context 
•  State assumptions 
•  Provide justifications 
•  Select patterns and instantiate 
•  Add metadata 

Safety Case 
(Argument) 

Development 

Domain Modeling / Analysis 
•  Concept of operations 
•  Stakeholder needs 
•  Regulatory requirements 
•  Domain model, e.g., ontology, ... 

System Development / Verification 
•  Requirements (Function, system,  

hardware, software) 
•  Design Artifacts, e.g., models 
•  Executable e.g., code 
•  Verification artifacts, ... 
 
Safety Analysis 
•  Safety requirements, goals 
•  Hazards, failure modes, ... 
•  Risk levels 
•  Risk control strategies, ... 

Safety arguments  
•  Preliminary  
•  Intermediate / architectural 
•  Implementation 
•  Operational 



 

 

Argument Design/Assembly:  In a top-down development of safety arguments, first we define an argument architec-
ture, which specifies a high-level and abstract organization of the overall structure/elements of the argument. One 
approach to realize the argument architecture is to select and compose argument patterns—i.e., abstractions repre-
senting various styles of argument (ref. 13)—taking into account system assurance concerns, the types of claims 
requiring support, and argument design criteria such as compliance with safety principles, reducing the cost of re-
certification, modular organization, maintainability, etc. We instantiate patterns using domain- and system-specific 
data (which may, itself, be generated using a tool, e.g., for formal verification), to produce fragments of instance 
arguments. We can directly compose instance arguments (to be consistent with pattern composition), or there may 
be a need to introduce manually-created, intermediate, glue arguments. Based on the project needs, we can then 
specify a modular organization of the argument architecture, which can be beneficial in a number of ways, e.g., to 
reflect the modularity inherent in the system, to manage safety argument size, to constrain the impact of changes 
during argument evolution, as well as to support distributed development. Furthermore, we can also introduce a hi-
erarchical organization in argument fragments to reflect the natural hierarchy of claims, or the refinement of an ab-
stract argument fragment into a more detailed argument.  

During both top-down and bottom-up development, we use the argument fragments produced from pattern instantia-
tion, along with those produced from the remaining activities (e.g., claims refinement/composition, and evidence 
definition/selection, as shown in Figure 2) to assemble an argument consistent with its architecture. As both the sys-
tem and its assurance argument evolve, we refactor the argument to improve its comprehensibility, and the con-
sistency with its architecture and/or argument design criteria (e.g., maintainability). Essentially, the activity of ar-
gument design/assembly is one wherein we combine top-down and/or bottom-up argument development, together 
with tasks for improving argument understandability and supporting argument evolution. 

Claims Definition:  We define safety claims based upon the system development phase and the available artifacts, 
e.g., using safety requirements identified through hazard analyses. We additionally state the context in which the 
claims can be interpreted and determined to be valid, along with any relevant assumptions and the necessary justifi-
cations. Note that the assumptions made can be both about the system for which assurance is sought, and the envi-
ronment in which the system operates. We will refer to the combination of claim, its associated context, justifica-
tions and assumptions as a qualified claim. For example, in a safety argument, a qualified correctness claim about a 
software function would be accompanied with its specification as context, an assumption (or an auxiliary claim sup-
ported by evidence) that the specification is valid, and a justification of the bearing of the correctness of that func-
tion on system safety. The results of the claims definition activity are propositions—specified at an appropriate level 
of abstraction—concerning system, subsystem, and component properties, which have been determined through 
safety analysis to have a (direct or indirect) bearing on system safety, e.g., the reliability of a hardware fail-safe, the 
correctness of a software switch, etc. When a claim concerns low-level assertions about evidence items, we distin-
guish them as evidence assertions. 

Claims Refinement/Composition:  The core task of this activity is to define and/or select the appropriate strategies to 
link related claims. Then, we specify the associated rationale, i.e., the appropriate justifications, assumptions, as well 
as the relevant context related to a reasonable use of a strategy. Specifically, claims refinement is an iterative and 
successive decomposition of higher-level, abstract claims into their lower-level refinements, performed in top-down 
argument development. For example, to develop a claim of subsystem reliability into sub-claims about the reliability 
of the constituent components, we can use a strategy of reasoning over cut-sets, i.e., the unique combinations of 
components whose failure leads to subsystem failure; the subsystem architecture serves as associated context, and 
the subsystem failure analysis provides the requisite justification for using the strategy. Since argument patterns 
specify an abstraction of the argument obtained from applying these activities to specific types of claims, an addi-
tional approach to implement the activity of claims (definition and) refinement, is pattern instantiation. 

In a bottom-up development, the strategies chosen must aggregate or compose, rather than refine, lower-level claims 
into higher-level claims. Typically, this is required when solutions (such as the result of a specific verification) are 
available from which evidence assertions can be inferred, and which must be linked to the higher-level claims re-
quiring support. For example, low-level assertions of successful unit testing can be used to (partially) support a 
software fitness claim through a strategy of (unit) test-driven verification applied to the individual software units. 
That strategy would also be accompanied with a description of the appropriate context, and the justifications of the 
relevance of that strategy. In general, the result of claims refinement/composition is a collection of fragments of 
argument structures, whose leaf nodes are qualified claims, evidence assertions, or solutions. 



 

 

Evidence Definition/Selection:  The result of the evidence definition/selection activity is a collection of argument 
structure fragments in which claims have been supported by solutions, or solutions provide evidence assertions that 
must be composed to support higher-level claims. During top-down development, we specify evidence requirements 
in the early phases of system development and during safety analysis. As we develop the system, we refine the evi-
dence requirements and choose/produce those solutions that provide the requisite degree of assurance. For example, 
a (higher-level) claim of software fitness may be supported by a proof of correctness, as well as through other verifi-
cation evidence, such as testing, static analysis, etc. In general, the choice of the evidence to be used depends upon 
the evidence assertion obtained from claims refinement, and the degree of assurance required. Thus, a lower-level 
assertion of functional correctness would be better supported by a proof, whereas an assertion of reliability would 
necessitate software testing for a specified duration in an environment representative of actual operations. When 
solutions are available, from which evidence assertions can be inferred, then evidence selection also involves deter-
mining whether the available solutions meet the evidence requirements, are trustworthy, and are appropriate for the 
claims that require support.  

Argument Analysis:  Argument analysis involves a number of tasks whose goal is to analyze the soundness, or co-
gency, of the argument structures produced; namely: 
a)  Property verification: We specify (structural) argument properties and verify them to evaluate the quality of the 

argument structure. Properties can reflect concerns such as well-formedness, e.g., the argument structure contains 
no cyclic links, internal completeness, i.e., all paths from all claims in the argument structure lead to evidence, as 
well as more general structural constraints required by best practices, e.g., a specific type of claim has at least 
two or more independent paths to, and/or forms of, supporting evidence. 

b)  Argument validation: We evaluate the argument structure for fallacies (ref. 20), i.e., possible flaws in the reason-
ing; assurance deficits (ref. 21), i.e., knowledge gaps that lower confidence in claims; and defeaters (ref. 22), i.e., 
ways to attack an argument. Additionally, we examine the elements of the argument structure for relevance and 
consistency, following which we identify counter-evidence that may either undermine the solutions provided 
and/or reduce the strength of the argument. 

c)  Confidence assessment: This task supports safety-related decision making by characterizing the confidence that 
can be placed in an argument. The goal is to evaluate the credibility of safety claims on the basis of the strength 
of the argument and the veracity of the evidence supplied. Currently, a number of ways are available to evaluate 
confidence, e.g., qualitatively, by using so-called confidence arguments (ref. 21), through the use of probabilistic 
models—such as Bayesian networks—which specify a joint distribution over the underlying sources of argument 
uncertainty (ref. 23), or through belief combination (ref. 24). 

d)  Metrics-based assessment: Metrics computed on argument structures, such as size, or coverage (ref. 18), are use-
ful to gauge the progress of the safety argument through its evolution. Specifically, metrics provide a convenient 
summary of the state of the argument development process and, thereby, a means to gauge whether synchroniza-
tion with the remainder of the processes is feasible at a given milestone. For instance, to synchronize an architec-
tural safety case with, say, a milestone of design review, we can compute metrics that measure the extent to 
which higher-level system safety claims have been developed into lower-level subsystem/component-level 
claims. Here, an underlying assumption is that decision models exist to interpret the computed values of a metric 
against the acceptability thresholds established for process control.  

Argument Improvement:  Whereas argument analysis is a retrospective activity, argument improvement uses the 
results of argument analysis for (proactively) improving the argument through the following sub-tasks, namely:  
a) including the counter-evidence identified, b) resolving the identified argument defeaters, c) reducing the identi-
fied assurance deficits, d) modifying the argument structure to address fallacies, and e) fixing property violations, if 
any. No specific order is imposed on the tasks, each of which represents a source of change to the argument struc-
ture. Thus, improving an argument amounts to determining the exact changes to be made, their nature, and their 
scope. In general, changing the argument amounts to editing the argument by adding, removing, or replacing argu-
ment fragments, e.g., as proposed in references 25 and 26. Sub-tasks a) and b) in particular may require the defini-
tion of notational extensions to GSN (refs. 21, 22, 26). 

Through our toolset for assurance case automation, AdvoCATE (refs. 13–15, 18), automation support exists for a 
number of tasks during argument development, e.g., pattern instantiation, hierarchisation, modular organization, 
property verification, and metrics-based assessment. The latter two tasks in particular leverage, and extend, the que-
rying capability of the tool (ref. 27) which, in turn, i) relies on enriching the argument with (domain-specific) 
metadata, and ii) permits the generation of views, i.e., fragments of an argument that satisfy a specific query.  



 

 

 

Figure 3 — Excerpt of modular argument architectures, and a fragment of the GBDAA safety argument. 

Application to Unmanned Aircraft Systems 

We briefly describe two examples where we have applied our methodology to create (safety) assurance arguments 
for real UASs and their operations. Due to space limits, we mainly focus on describing the core argument develop-
ment process, i.e., the activities of argument design, claims definition, claims refinement/composition, and evidence 
definition/selection, whereas the supporting activities of argument analysis and improvement are not covered.  

Safety of Ground-based Detect-and-Avoid:  In late 2013, an earth science mission funded by the National Aero-
nautics and Space Administration (NASA) employed a ground-based detect-and-avoid (GBDAA) capability—i.e., 
an alternative means of compliance to the so-called see-and-avoid requirements3 of the federal aviation regulations 
(FARs), through the use of ground-based, or airborne sensors, e.g., radar—during UAS transit operations. As such, 
FAA approval of UAS operations utilizing detect-and-avoid capabilities currently requires a safety case. We were 
part of the team involved in creating the associated safety case that the FAA approved (ref. 7). Though that safety 
case did not require (and therefore did not contain) explicit safety assurance arguments, we have retrospectively 
created them as an exercise in combining top-down and bottom-up argument development. In part, that exercise has 
informed the development of our methodology to created structured assurance arguments. In brief, the safety case 
provided assurance that UAS transit operations could be safely conducted by using GBDAA instead of visual ob-
servers, by asserting that i) the functional requirements of the GBDAA system, i.e., for detection and avoidance, 
were met through evidence comprising airspace analysis and flight testing; and that ii) any additional hazards intro-
duced by the GBDAA system could be acceptably managed by defining (and executing) specific operational proce-
dures, as well as by leveraging existing hazard controls afforded by the current air-traffic management system. Es-
sentially, this reflects the (initial) high-level architecture of the argument underlying the safety case.  

Argument Design (Define Argument Architecture):  Figure 3a gives a modular view of this initial argument archi-
tecture. Here, the module node top-level contains the broader claim of the safety of UAS transit operations, in which 
the GBDAA capability represents one safety mechanism to address a mid-air collision (MAC) hazard. Other mecha-
nisms include airspace deconfliction, and temporal and/or spatial separation of concurrent flight operations. The 
arguments within the modules DetReq and AvdReq provide assurance that the functional requirements on the 
                                                
3 Specifically, 14 CFR Part 91, Subpart B, §91.111, §91.113, and §91.115. 
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GBDAA system are met. Likewise, the argument module GBDAAHazMit contains the argument that addresses the 
claims of mitigating the hazards introduced by the GBDAA capability. 

Applying Claims Definition, Claims Refinement/Composition, and Evidence Definition/Selection:  Concurrently 
with argument architecture definition, we perform the activities of claims definition, and claims refinement (Figure 
2), where we develop the concrete arguments in each module. For example, in the module top-level, we refine the 
objective of safe UAS transit operations into sub-claims concerning the operational requirements on detection and 
avoidance. In turn, we allocate those sub-claims to the GBDAA system, and further develop them in the argument 
modules DetReq and AvdReq respectively. Figure 3b gives a fragment of the overall assurance argument (not 
shown) in the module DetReq, whose main safety objective is the satisfaction of the detection requirements of UAS 
transit operations by the GBDAA sensor component (i.e., the ground-based radar). We apply, and automatically 
instantiate4, the requirements-breakdown argument pattern (ref. 13) to develop that safety objective into lower-level 
claims concerning the individual detection requirements. For instance, one such claim concerns the requirement of 
sufficient surveillance coverage; refining that lower-level claim eventually results in a sub-claim (goal node G10 in 
Figure 3b) of sufficient overlap between the three-dimensional (3D) airspace volume covered by radar surveillance, 
i.e., the surveillance volume, and the airspace volume(s) where a credible threat of MACs exists, i.e., the threat vol-
ume(s). We support the claim of sufficient overlap between the surveillance and threat volumes, in part through an 
argument over individual threat volumes, and eventually through (analytical) evidence comprising 3D airspace 
modeling and visualization showing the degree of overlap between the relevant airspace volumes. In Figure 3b, this 
reasoning is conveyed by the argument legs containing the goal nodes G12 and G13 supported by the solution nodes 
E5 and E6 respectively. Through an examination of the FARs (as well as from individuals who were familiar with 
the operational airspace) it had also been determined that a procedural mitigation was already in place to address 
certain kinds of air traffic threats (solution node E7). The argument leg including the nodes S8, G16, E7, C12, J4 
and A3 (Figure 3b) was then created in a bottom-up manner, and determined to provide an effective mitigation to 
intruder aircraft arising from an uncovered area of the threat volume (goal node G14).  

Argument Design (Refactor Arguments):  After performing the activities of claims definition, claims refine-
ment/composition, and evidence definition/selection, the modules DetReq and AvdReq each contained claims (and 
complete arguments, where appropriate) for equipment reliability, adequacy of characterizing the different airspace 
volumes, and airworthiness. Additionally, there were contextual dependencies between the arguments across the two 
modules, e.g., the argument for assuring that a specific avoidance procedure is successful requires, as context, the 
reliable detection of threats in a specific flight phase. We refactored the arguments into modules addressing equip-
ment reliability (EqpRel), airspace volume definition (AirspaceVolDef), and ownship airworthiness (SierraAW). 
Figure 3c shows the resulting refactored argument architecture identifying these additional modules and the contex-
tual dependency. Thus, there is a refinement of both the argument and its (modular) architecture where changes or 
updates to one affect the other, reflecting a combination of both top-down, and bottom-up argument development.  

Airworthiness/Safety Assurance of an Unmanned Rotorcraft:  Airworthiness refers to the fitness of an air vehicle for 
safe operations and, in general, it can be considered to be a reliability barrier to (flight) safety hazards. A key aspect 
of UAS airworthiness assurance, which considers the entire system including the ground-based components, is to 
establish that the UAS configuration conforms to a type design (i.e., all relevant system design documentation), 
which is to be, itself, approved against a certification basis, i.e., the relevant airworthiness standards and regulations. 
As part of a NASA project, we are part of a team undertaking the development of a certification basis for a class of 
unmanned rotorcraft systems (URSs), where we are applying our methodology for developing structured arguments. 
Our goal is to provide a common framework to i) organize the preliminary safety case, ii) communicate the deriva-
tion of requirements on airworthiness and operational safety, in particular those relevant for type design assurance, 
and iii) eventually record how those requirements have been met by a specific URS design5. The initial concept con-
siders daytime operations for applications such as precision agriculture. Future concepts extend this to include oper-
ations at nighttime, in reduced visibility conditions, and BLOS, for diverse applications including pipeline monitor-
ing, etc. The rotorcraft characteristics—e.g., a turbine-powered tandem rotor configuration, a maximum takeoff 
weight (including payload) of 1000 lb., a physical envelope of 21 ft. x 13 ft. x 5.5 ft., a (payload dependent) endur-
ance up to 5 h., and a maximum airspeed of 105 knots—warrant airworthiness determination, since operations over 
any populated areas pose an appreciable safety risk in the presence of in-flight failures. 

                                                
4 Using our toolset for assurance case automation, AdvoCATE (ref. 18). 
5 Although, this aspect is out of scope for the work presented here.  



 

 

 

Figure 4 — Excerpt of modular argument architecture for URS airworthiness/operational safety assurance 

Argument Design:  Using the URS concept of operations, we first conduct an operational hazard assessment to iden-
tify operational hazards, followed by a functional hazard analysis to identify a class of threat events, i.e., the events 
contributing to a hazard, including URS and operator functional failures/deviations. Thereafter, we define a barrier 
model specifying an abstract safety architecture, i.e., the combination of proactive and reactive hazard controls 
meant to manage operational hazards. The former are concerned with preventing the identified threat events, where-
as the latter attempt to mitigate/contain consequence events when hazard prevention is unsuccessful. For example, 
during operations at higher altitudes, a ‘loss of control with a deviation from the flight path’ is a hazard with poten-
tially catastrophic worst-case consequences including an energetic uncontrolled descent and collision into populated 
terrain. The safety architecture to manage this hazard comprises a) proactive barriers, such as elements of airworthi-
ness to minimize in-flight failures, vertical and lateral containment systems to reduce exposure by creating a geo-
fence around the intended operational area, as well as b) reactive barriers, such as autorotation to contain energetic 
descent, or engine malfunctions, and automated flight termination to mitigate geo-fence breaches.  

In general, we can use barriers to manage multiple hazards, threat events, and consequence events. We encode the 
safety reasoning underlying the barrier model in the form of a tiered argument architecture, where each tier address-
es a specific assurance concern. In particular, the highest tier addresses the mitigation of operational hazards; the 
middle tier refines that concern into the prevention of threat events, the mitigation of consequence events, and the 
introduction of the relevant existing regulations, whereas the lowest tier addresses the relevant proactive/reactive 
barriers, common-mode barrier breaches, and eventually specifies particular safety objectives. Of those objectives, 
the subset that pertains to airworthiness, in particular to type design assurance, comprise the requirements to be in-
cluded in the certification basis. Figure 4a shows a modular representation of the top-level argument architecture. 

Claims Definition and Claims Refinement:  Each module (Figure 4a) contains arguments whose claims reflect the 
concerns being addressed by the relevant tier. Thus, the operational safety risk management argument module, M0, 
(which represents the top-tier) addresses the overall claim that the intended URS operations have acceptable risk 
using an argument of acceptably managing the risk associated with the constituent hazardous activities. Subsequent-
ly, we use an argument of operational hazard mitigation to develop the top-level claim of module M0, into claims 
concerning a) the prevention of all identified threat events, e.g., functional hazards, and b) the mitigation of all 
known consequence events. We further refine each of those claims in the threat events prevention argument module, 
M2, and the consequence events mitigation argument module, M3, respectively (Figure 4a). Additionally, the argu-
ment structures contained in the FARs – inclusion of existing regulations argument module, M1, relates the claims 
derived from the existing FARs—in particular, 14 CFR Part 27, as well as parts 21, 23, 91, 135, and 137—to the 
identified operational hazards. Together the modules M1–M3 represent the middle tier of the argument architecture.  

(a)  Fragment of modular 
argument architecture  

(b) Fragment of argument structure in module M3  
(consequence events mitigation) 

(c) Fragment of argument structure 
in module M5 (reactive barriers) 
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Likewise, the modules M4–M6 address the concerns of the lowest tier of the argument architecture, i.e., claims re-
garding proactive/reactive barriers, and the associated safety objectives. Figures 4b and 4c show, respectively, frag-
ments of the arguments contained within the modules M3 and M5. As shown, the former addresses the mitigation of 
the identified consequence events, one of which is an energetic uncontrolled descent (goal node G14). We employ a 
mitigation barrier, in particular (rotorcraft) impact management, referring to the barrier model in context (shown as 
the away context node C8, indicating a reference to a context node C8 declared in module M0). We develop the re-
sulting sub-claim (i.e., the away goal node G10 of Figure 4b) in the module M5 (shown in Figure 4c, as the public 
goal node G10) into lower-level claims concerning an automated flight termination system and an autorotation ca-
pability (goal nodes G16 and G17, respectively), by argument over the allocated hazard controls. Eventually, we 
specify a safety objective pertaining to autorotation (goal node G18 in Figure 4c), which is reflected in the URS cer-
tification basis (referenced through the associated context node C9). In general, the lowest tier of the argument ar-
chitecture contains similar safety objectives which, upon aggregation, represent the certification basis for URS type 
design assurance.  

Concluding Remarks 

We have described a methodology for the principled construction of (safety) assurance arguments that takes, as in-
put, the artifacts produced from domain modeling, safety analysis, and system development/verification to produce, 
as output, an evolving argument that aims to capture the safety state of the system. Our methodology is compatible 
with, but distinctly different from, other contemporary methodologies for safety argument development, such as the 
six-step method (refs. 12, 19, 28). In particular, our approach explicitly defines a high-level argument architecture 
(that may/may not be modular), and leverages automated pattern instantiation (ref. 13) along with pattern composi-
tion for argument assembly. Additionally, our approach combines top-down, and bottom-up argument development, 
focusing on the data flow, rather than control flow, of the activities for argument development. We have applied our 
methodology to two real example UAS, one of which has dealt with the safety assurance of transit operations (and, 
in the process, informed the development of our methodology); the other has addressed flight safety and airworthi-
ness, in particular design assurance requirements to be included in a type certification basis.  
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