
Composition of Safety Argument Patterns

Ewen Denney and Ganesh Pai

SGT / NASA Ames Research Center
Moffett Field, CA 94035, USA.

{ewen.denney,ganesh.pai}@nasa.gov

Abstract. Argument structure patterns can be used to represent classes of safety
arguments. Such patterns can become quite complex, making use of loops and
choices, posing a potential challenge for comprehension and evaluation, offset-
ting the likely gains that might follow from creating arguments using them. We
show how complex patterns can be constructed by composition of simpler pat-
terns. We provide a formal basis for pattern composition and show that this notion
satisfies certain desirable properties. Furthermore, we show that it is always pos-
sible to construct complex patterns by composition in this way. We motivate this
work with example patterns extracted from real aviation safety cases, and illus-
trate the application of the theory on the same.

Keywords: Argumentation, Composition, Patterns, Safety cases, Unmanned air-
craft systems

1 Introduction

Over the past few years, we have been involved in engineering a number of real safety
cases for unmanned aircraft system (UAS) operations: initially, those concerning NASA
Earth science missions [1] and, more recently, increasingly complex aeronautics re-
search missions1. Our previous safety cases have successfully undergone review and
approval by the Federal Aviation Administration (FAA), the US civil aviation regulator,
while the more recent ones are either undergoing FAA review, or are in development.

The current set of guidelines governing UAS operational approval [2] does not ex-
plicitly require the use of argumentation in a safety case. However, the guidelines do
require that an explanation be supplied for how the hazard mitigation measures speci-
fied in the safety case are expected to reduce risk. Indeed, we have found argumentation
to be largely useful for that purpose and, using our methodology for developing assu-
rance arguments [3], we have slowly begun including structured arguments in the safety
case (reports) to organize and document the reasons why the intended operations can
be expected to be acceptably safe.

Based on our previous, and ongoing effort, and the experience gained, a number
of observations follow to motivate the work in this paper. Firstly, many of the UAS
operations have been the first of their kind conducted in civil airspace.2 Individually,
they have unique mission-specific constraints and safety requirements; so, much of the

1 As part of NASA’s UAS traffic management (UTM) effort: http://utm.arc.nasa.gov/
2 To our knowledge, at least in the US, and within a non-military context.

Author Pre-Print Copy. International Conference on Computer Safety, Reliability, and Security (SAFECOMP 2016).
The definitive version appears on SpringerLink.

2 E. Denney and G. Pai

associated safety reasoning is also tailored to the mission. Taking the various opera-
tions together, we have been able to identify similarities amongst the associated hazard
control mechanisms and safety systems, e.g., ground-based surveillance, safe separa-
tion measures, a suite of avoidance maneuvers, emergency procedures for off-nominal
situations, etc. That, in turn, has allowed us to develop both domain-independent and
domain-specific patterns of safety reasoning—clarifying how the identified Safety mea-
sures contribute to risk reduction—which we have specified as argument structure pat-
terns in the Goal Structuring Notation (GSN) using our tool, AdvoCATE [4].

Next, going forward we want to design the required safety systems for future UAS
missions by carefully leveraging as many reusable safety assets that have a successful
operational history, as possible. In conjunction, we want to apply our argument develop-
ment methodology, and construct the corresponding safety case(s) from a combination
of the relevant safety reasoning patterns, and tailored arguments, as appropriate. Intu-
itively, there is a need for exploring how patterns (and/or arguments) can be combined.

Third, as mission complexity grows, the associated safety cases can also be expected
to become larger and more complex. In fact, that has indeed been our own experience.
The way in which argument patterns are composed, and the results of such composition,
can be thought of as providing a view of the overall architecture of the safety case
and, thereby, an insight into the ‘big picture’ of how the safety measures contribute
to managing risk. Moreover, by using argument patterns and their composition to the
extent possible, we expect to be able to generate large parts of the arguments through
automatic pattern instantiation [5]. We further anticipate that this will allow us to better
manage the complexity of the safety cases we create while also amortizing the effort
expended in their development.

As such, the main goal (and contribution) of this paper is a (preliminary) formu-
lation of the formal foundations for composing GSN argument patterns. First, we give
a running example to illustrate the intuition underlying the theory (Section 2). Speci-
fically, we give some simple patterns which we extracted from the UAS safety cases
we authored. Then, on the basis of this example, we formalize the notion of composi-
tion (Section 3), after which we illustrate how we have applied composition in practice
(Section 4). We conclude this paper contrasting our work with related research, and
identifying avenues for future research (Section 5).

2 Illustrative Example

For what follows, we assume familiarity with GSN for specifying arguments/patterns,
and refer interested readers to [5] and [6] for details on GSN syntax and semantics. We
have extracted a number of simple patterns of safety reasoning from the initial UAS
safety cases we created. Fig. 1 shows a selection of those patterns, given using GSN
pattern syntax3 and representing, respectively: hazard enumeration (Fig. 1a); mitigat-

3 Due to space constraints, and for figure legibility, we omit the contextual nodes (i.e., assump-
tions, justifications, and context) that provide additional clarification of the associated reason-
ing, from the patterns in Fig. 1. Also note that, in some cases, the strategies in these patterns
include the safety measures used to achieve a goal in addition to the standard GSN strategies
that provide inference explanations.

Composition of Safety Argument Patterns 3

G1
All hazards for {s ::

system} are
acceptably mitigated

S1
Mitigate each

identified
hazard

G2
{h :: hazard} is

acceptably mitigated

>= 1

(a)

(b)

(c)

(d)

G5
{b ::

hazardMitigationBarrier}
fulfills {o :: safetyObjective}

S1
Decompose

into lower-level
requirements

G6
{r1 :: requirement} is

fulfilled

G7
{c ::

implementingComponent}
fulfills {r2 :: requirement}

S2
Allocate to

implementing
component

1...2

>= 1
>= 1

(e)

G6
{r1 :: requirement} is

fulfilled

S1
Decompose

into lower-level
requirements

S3
Show by {v ::

verificationPro
cedure}

S2
Allocate to

implementing
component

1...4

E2
{s2 ::

solutionSt
atement}

>= 1>= 1

(f)

G7
{c ::

implementingComponent}
fulfills {r2 :: requirement}

S3
Show by {v ::

verificationPro
cedure}

S1
Decompose
into lower-

level
requirements

1...3

E1
{s1 ::

solutionSt
atement}

>= 1

>= 1

(g)

Fig. 1. A selection of simple, domain-independent GSN argument patterns extracted
from real UAS safety cases, representing part of the reasoning underlying i) risk re-
duction with the use of mitigation barriers and ii) how mitigation barriers satisfy their
applicable safety objectives. We will subsequently compose these patterns (see Fig. 2,
which composes the latter three, and Fig. 4, which composes the former four).

4 E. Denney and G. Pai

ing a specific hazard by enumerating its causes or by hierarchical decomposition over
its constituent lower-level hazards (Fig. 1b); managing a hazard cause by invoking mul-
tiple hazard mitigation barriers, each of which meets a particular safety objective that,
in turn, specifies the requirement to be fulfilled to manage that hazard cause (Fig. 1c);
managing a hazard cause by also showing that the applicable barriers are reliable in
operation (Fig. 1d); hierarchical decomposition of a safety objective into lower-level re-
quirements, or its allocation to specific components of a mitigation barrier (Fig. 1e); and
supporting a safety objective by applying a verification procedure, via direct evidential
support, reapplying hierarchical decomposition, or by reallocation to lower-level com-
ponents (Figs. 1f and 1g, respectively). Note that these patterns do not encode a com-
prehensive collection of risk reduction measures, but reflect part of the approach that we
have used successfully in the safety cases we authored. Moreover, the individual struc-
tures are variations on well-known safety argument patterns, such as hazard-directed

breakdown, and requirements breakdown [5].
By examining Fig. 1, we can see that there is an intuitive notion of sequential com-

position where patterns are joined in a top-down way so that a leaf node of one pattern is
the root of another. Similarly, there is also a notion of parallel composition, where pat-
terns can be thought of as being placed alongside one another, and joined to reconcile
common nodes and links. Using these patterns as the running example, we subsequently
describe (Section 4) how we have composed patterns to supply safety rationale in a re-
cently authored UAS safety case. The instance arguments of those patterns explain how
the barriers of ground-based surveillance, and avoidance meet their safety objectives
for managing the collision hazard posed by air proximity events.

3 Pattern Composition

We now formalize what it means to compose patterns. The goal is to develop a prin-
cipled approach to composing arbitrary patterns, generalizing the intuition (as above)
underlying the composition of the simple patterns of Fig. 1, to arbitrary (and larger)
patterns. There are several subtleties that must be addressed, e.g., reconciling overlap-
ping fragments, and determining when a composition will be well-formed. Moreover,
we manually created the composition when we applied it in practice; however, we want
to automate the functionality in our tool, AdvoCATE. We build on our previous work,
using the following (slightly modified) definition of argument patterns from [5], and
omit the conditions described there for brevity.

Definition 1 (Argument Pattern). An argument pattern (or pattern, for short), P , is a

tuple hN, l, p,m, c,!i, where hN,!i is a directed hypergraph

4
in which each hyper-

edge has a single source and possibly multiple targets, and comprising a set of nodes,

N , a family of labeling functions, l
X

, where X 2 {t, d,m, s}, giving the node fields

type, description, metadata, and status; and ! is the connector relation between nodes.

Let {G,S, E ,A,J , C} be the node types goal, strategy, evidence, assumption, justi-
fication, and context respectively. Then, l

t

: N ! {G,S, E ,A,J , C} gives node types,

4 A graph where edges connect multiple vertices.

Composition of Safety Argument Patterns 5

l
d

: N ! string gives node descriptions, l
m

: N ! A⇤
gives node instance attributes,

and l
s

: N ! P({tbd , tbi}) gives node development status.

There are additional (partial) labeling functions: p is a parameter label on nodes,

p : N * Id ⇥ T , giving the parameter identifier and type; m : N2 * N2
gives the

multiplicity range on a link between two nodes, with hL,Hi representing the range from

L to H; c : N ⇥ P(N) * N2
, gives the range on the choice attached to a given node,

where c(x,y) is the choice between child legs y with parent node x. Here, n is simply

the number of legs in the choice, and so can be omitted.

The links of the hypergraph, a ! b, where a is a single node and b is a set of nodes,
represent choices. We write a ! b when a ! b and b 2 b, and a ! {b, c} when a
is the parent of a choice between b and c. A pattern node n is a data node, if it has a
parameter, i.e., n 2 dom(p). Otherwise, a node is boilerplate.

3.1 Composition

There are various alternative ways in which composition can be defined. The simplest
definition, however, which works for our driving examples, is to take the union of
all links in the respective patterns, using shared identifiers as the points at which to
join. This is a conjunctive interpretation of composition, where we require fragments in
both patterns to be satisfied. We will require that data be equivalent on corresponding
nodes, and call such patterns conflict-free. For multiplicities on corresponding links and
choices, however, it is not possible to reconcile distinct ranges without either losing
information5 or making ad hoc combinations. We thus adopt the simple solution of also
assuming that there are no conflicts between corresponding multiplicities.

Definition 2 (Conflict-free Patterns). The two patterns P1 = hN1, l1, p1,m1, c1,!1i
and P2 = hN2, l2, p2,m2, c2,!2i are conflict-free whenever l1|N1\N2 = l2|N1\N2

and p1|N1\N2 = p2|N1\N2 . If x, y 2 N1 \N2 and x !
i

y (i = 1, 2) then m1(x, y) =
m2(x, y), and if x 2 N1 \ N2, y ✓ N1 \ N2, and x !

i

y (i = 1, 2) then c1(x,y) =
c2(x,y).

Henceforth, we will use P1 and P2 as metavariables for patterns representing the above
tuples.

Definition 3 (Pattern Composition). Let P1 and P2 be conflict-free patterns. Then,

P1 || P2 = hN1 [N2, l
00, p00,m00, c00,!00i where i) l00 = l1 [l2; ii) x !00 y iff x !1 y

or x !2 y; iii) m00 = m1 [m2; and iv) c00 = c1 [c2.

It can be seen that this is a well-formed pattern. The definition is simple but subtle,
since the merging of the links can introduce recursion. Note also that when composing a
choice A ! {B,C} with A ! B we retain both links, rather than merging them. Also,
choices can be interwoven in, for example, A ! {B,C} || A ! {C,D}. However,
duplicates are removed in A ! B || (A ! B,A ! C). Now, clearly || is commutative
and associative modulo renaming of the node identifiers, and so composition can be
defined over sets of patterns.

5 There is no single range that corresponds to the union of possibilities represented by two
distinct ranges. This could be addressed, however, by generalizing annotations from ranges to
logical constraints that can express dependencies between nodes.

6 E. Denney and G. Pai

G5
{b :: hazardMitigationBarrier} fulfills

{o :: safetyObjective}

G6
{r1 :: requirement} is

fulfilled

S2
Allocate to

implementing
component

1...2

G7
{c :: implementingComponent}

fulfills {r2 :: requirement}

S3
Show by {v ::
verificationPr

ocedure}

1...31...4

S1
Decompose into

lower-level
requirements

E1
{s1 ::

solutionStat
ement}

E2
{s2 ::

solutionSta
tement}

> = 1

> = 1

> =1> = 1> = 1

> =1

||

Fig. 1e Fig. 1f

Fig. 1g

G5
{b ::

hazardMitigationBarrier}
fulfills {o :: safetyObjective}

S1
Decompose

into lower-level
requirements

G6
{r1 :: requirement} is

fulfilled

G7
{c ::

implementingComponent}
fulfills {r2 :: requirement}

S2
Allocate to

implementing
component

1...2

>= 1
>= 1

||

G6
{r1 :: requirement} is

fulfilled

S1
Decompose

into lower-level
requirements

S3
Show by {v ::

verificationPro
cedure}

S2
Allocate to

implementing
component

1...4

E2
{s2 ::

solutionSt
atement}

>= 1>= 1

G7
{c ::

implementingComponent}
fulfills {r2 :: requirement}

S3
Show by {v ::

verificationPro
cedure}

S1
Decompose
into lower-

level
requirements

1...3

E1
{s1 ::

solutionSt
atement}

>= 1

>= 1

Fig. 2. Parallel composition (||) of the elementary patterns of Figs. 1e, 1f, and 1g
(repeated here, above left) giving a compound pattern (above right).

Fig. 2 shows a compound pattern—a variation on the requirements breakdown pat-

tern [5]—the result of the (parallel) composition of its reasoning elements, which are
themselves the elementary patterns in Figs. 1e, 1f, and 1g. The elementary pattern in
Fig. 1e describes how the claim that a hazard mitigation barrier fulfills a specific safety
objective (goal node G5) is supported by decomposition into lower-level requirements,
or by allocation to an implementing component of the technical system embodying the
barrier (strategy nodes S1 and S2 respectively). The patterns in Figs. 1f and 1g, respec-
tively, show how the resulting leaf claims (of Fig. 1e)—that a particular requirement
is fulfilled (goal node G6), or that the allocated component fulfills a corresponding
requirement (goal node G7)—are each either supported directly by relevant evidence
items (solution nodes E1 and E2, respectively), or developed using an appropriate veri-
fication procedure (strategy node S3). Additionally, each of those claims can be further
supported, again, by hierarchical decomposition (strategy S1).

Upon composing these elementary patterns, if there are repeated nodes (or frag-
ments) we retain one copy and discard other copies, after which we resolve the rela-
tions between all the pattern nodes (as specified in Definition 3). Note, in Fig. 2, that
the abstraction for iteration (i.e., the loop link from the choice following goal node G6,
to strategy node S1) follows as a natural consequence of composition.

3.2 Correctness

We now discuss in what sense the pattern composition is correct.6 Intuitively, a pattern
represents a set of traces, or paths, and the composition should, in some sense, be a
conservative combination of the paths in the component patterns. Since we have defined
the composition as the union of (single-step) links, this is trivially true so, instead, we

6 Proofs of the theorems in the rest of this paper have been omitted due to space constraints.

Composition of Safety Argument Patterns 7

ask whether interesting properties are preserved. In [5], we defined various properties
of patterns. It can be shown that composition preserves some of those properties, while
for others, we need additional conditions. We will discuss two such properties now:

i) We say that a pattern is unambiguous when for all paths s1, s2 : A ! B⇤ such that
every internal node is boilerplate, we have s1 = s2, and that a pattern is complete

when every leaf node is a data node.
ii) We say that a !must b, when every loop-free path from a that is sufficiently

long must eventually pass through some b 2 b. Then, an argument pattern is well-

founded when, for all pattern nodes a, and sets of nodes b, such that a /2 b, if
a !must b then it is not the case that for all b 2 b, b !must a.

Theorem 1 (Property Preservation). Let P1 and P2 be patterns.

i) If P1 and P2 are complete and unambiguous, then if there are not distinct paths of

boilerplate nodes such that A !⇤ B in both patterns, the composition is complete

and unambiguous.

ii) If P1 and P2 are well-founded and, in addition, if whenever A !⇤ B in P1 and

B !⇤ A in P2, then 9C .B ! C in either P1 or P2, and C 6!⇤ A in either P1 or

P2, then the composition is well-founded.

The preservation theorem thus tells us that (with some additional ‘compatibility’ con-
ditions) composition of ‘good’ patterns gives us a good pattern. We would now like to
formulate a dual theorem, that any pattern can be constructed from elementary patterns.

Definition 4 (Elementary Pattern). A pattern is elementary (or loop-free) if for all

nodes A,B, if A !⇤ B then B 6!⇤ A.

Prima facie, however, it is a trivial observation that it is always possible to construct
a pattern by composition of elementary patterns, since we can simply compose frag-
ments consisting of all the separate links (and hyperlinks). Instead, we need to show
that a pattern can be factorized into a collection of elementary patterns which are max-
imal in some sense. We make two observations:

i) ‘tight’ loops between a node and its child can only be composed from non-pattern
fragments. Thus we either allow such loops in the factors or, as we do here, simply
exclude them from the statement of the theorem;

ii) the factors need not actually be unique. Even if we limit ourselves to maximal
factors, it is still possible to move branches between factors, so any characterization
of uniqueness needs to be modulo an equivalence under such rearrangements.

Hence we define an equivalence relation on pairs of patterns, p1, p2 ⇠ p3, p4 when
we can rearrange a branch in p1, p2 to get p3, p4 and then extend this in the obvious
way to arbitrary sets of patterns. In other words, pruning a branch b from p1 gives p3,
and grafting it on p2 gives p4.

Theorem 2 (Pattern Factorization). All patterns with no tight loops can be expressed

as a maximal composition of elementary patterns. That is, if p is a pattern with no tight

loops, then 9p1 · · · pn . pi elementary and p = p1 || · · · || pn, such that 8q1 · · · qm . p =
q1 || · · · || q

m

) there exists a partition I
i···n of {1, . . . ,m} with for each I

i

=
{x1, . . . , xni}, r

i

= q
xi || · · · qxni

, such that we have r1, . . . rn ⇠ p1, . . . , pn.

8 E. Denney and G. Pai

That is, any factorization {q
i

} of p can be partitioned so that each subset of the
partition corresponds to a single factor p

i

, modulo rearranging.

3.3 General Composition

Rather than use overlapping node identifiers to determine composition points, we want
to be able to compose arbitrary patterns, placing no assumptions on identifiers. We
thus generalize the above definition so that nodes of P1 and P2 may or may not overlap.
Without loss of generality, however, we will typically assume that they are disjoint.

Since the overlap between two patterns need not, itself, be a pattern, we need to gen-
eralize to pre-patterns. A pre-pattern has the same type of data (i.e., nodes, links, labels,
etc.) as a pattern but need not respect the well-formedness rules. We define embeddings
as mapping between pre-patterns that preserve structure. To express that embeddings
do not introduce loops, we first define a  b if for all paths from the root s : r !⇤ b,
we have a 2 s, and a < b when a  b and a 6= b.

Definition 5 (Pre-pattern Mappings & Embeddings). Let A and B be (pre-)patterns.

We say that e : A ! B is a (pre-)pattern mapping if it maps nodes to nodes and

whenever A ! B then e(A) < e(B), i.e., all paths to e(B) must pass through e(A),
and e(A) 6= e(B). A pre-pattern embedding is a pre-pattern mapping that preserves

data, that is, 1) lB
x

(e(a)) = lA
x

(a) for x 2 {t, d,m, s}; 2) If mA(x, y) = m then for

some link x0 ! y0 in e(x) !⇤ e(y) we have mB(x0, y0) = m. Similarly for cA(x,y) =
c. If e is an embedding from A to B we write this as e : A ,! B.

To define compositions more generally we make use of some simple category theory7

and, in particular, the notion of pushout. A pushout encodes the minimal (and thus
unique) object which combines two objects in a specific way. We define this within the
category of pre-patterns, PrePat , which has pre-patterns for objects and pre-pattern
embeddings for morphisms. We are now in a position to define general compositions.

Definition 6 (General Composition). Let C be a pre-pattern, and e1 : C ,! P1,

e2 : C ,! P2 (a so-called span) be pre-pattern embeddings. Then the pushout of e1 and

e2, which we write as P1 || e1,e2P2, gives us the general composition of P1 and P2.

Note that the notion of context-freedom is now generalized by e1 and e2 being embed-
dings. Next, since PrePat is not co-complete (as co-equalizers do not exist, in general),
we rely on an explicit construction to show that pushouts exist.

Theorem 3 (Well-definedness of General Composition). The general composition of

P1 and P2 is well-defined. That is, pushouts exist in PrePat and, moreover, if P1 and

P2 are patterns, then P1 || e1,e2P2 is also a pattern.

We define the pushout hN, l, p,m, c,!i as follows. Let P1 and P2 be pre-patterns,
and e1 : C ,! P1, e2 : C ,! P2 the common embeddings. We sketch the construction
of the pushout (omitting the definitions of l, m, and c to save space): N = N

c

�
7 For basic concepts of category theory, we refer the reader to an introductory textbook, such

as [7].

Composition of Safety Argument Patterns 9

N1\ran(e1) � N2\ran(e2), i.e., disjoint union of the node sets minus ranges of the
embeddings. Also,

x ! y ,

8
><

>:

x = x
i

, y = y
i

2 N
i

, @z 2 C . e
i

(z) 2 {x, y} and x
i

!
i

y
i

x = x
i

2 N
i

, y 2 C, and x
i

!
i

e
i

(y)

y = y
i

2 N
i

, x 2 C, and e
i

(x) !
i

y
i

.

Finally, we observe that the general definition is equivalent to Definition 3 in the
following sense.

Corollary 1 (Equivalence of Composition). Let P1 and P2 be patterns. There exists a

span giving a general composition of P1 and P2 which is isomorphic to P1 || P2. Define

the span e1 : C ,! P1, e2 : C ,! P2 as: i) N
c

= N1 \N2; ii) l
c

, p
c

,m
c

, c
c

,!
c

are the

obvious restrictions to N
c

; and iii) e1(n) = e2(n) = n. Then, P1 || e1,e2P2
⇠= P1 || P2.

4 Application

We have used the elementary patterns identified in Fig. 1 (and others) along with their
combinations to explain the required safety rationale—by creating instance arguments

of the combined patterns—in a more recent UAS safety case to provide assurance of
safe operations. We are also applying them to other safety cases currently in develop-
ment. In brief, our approach is as follows.

First, we select the patterns that we can meaningfully compose into larger patterns
to address specific concerns, e.g., how a hazard is managed by the combination of dif-
ferent mitigation barriers, how a specific barrier meets its safety objectives, etc. Then
we examine the composed pattern to determine the extent to which it is applicable, e.g.,
whether it is (internally) complete or whether additional reasoning content is required
in the pattern. Here, there may be a need to define additional domain- or application-
specific patterns. Thereafter, we instantiate the patterns and examine the instance argu-
ments to determine the extent to which the instance provides the assurance required.
Again, there may be a need to define additional argument elements or bespoke argu-
ments to complete the overall reasoning. The result comprises argument structures that
supply the required safety rationale, e.g., how specific mitigation barriers meet their
safety objectives and contribute to reducing risk.

Fig. 3 shows a fragment of one such argument structure resulting from this ap-
proach. In particular, the nodes not highlighted by the thick border in the figure are
a fragment of the instance argument of the composed pattern in Fig. 2, instantiated
with respect to the ground-based surveillance barrier. The argument is intended to show
how the barrier meets its safety objective (root goal node G2, in Fig. 3). The high-
lighted (goal, context, and solution) nodes are additional argument elements/fragments
that we subsequently introduced to complete the argument, and to address the con-
cerns/essential information that the pattern did not include. Note that the instance argu-
ment also includes contextual nodes of the pattern that we had previously omitted (e.g.,
the context nodes C37 and C41). We similarly instantiated the pattern in Fig. 2) with
respect to the avoidance barrier (not given here).

10 E. Denney and G. Pai

C2
Definition of

sufficiently early

G2
[Ground-based surveillance]

fulfils [the objective of
detection and tracking of

airborne targets that are a
credible threat to UA

operations sufficiently early]

C31
Characterization of
the ground-based

surveillance system

C1
Definition of

credible threat

C16
Definition of

the operating
range (OR)

S6
Decompose into

lower-level
requirements

G3
[The requirement that the

surveillance system adequately
detects and tracks

noncooperative/cooperative
intruder aircraft that can pose a

credible threat] is fulfilled

G30
[A suitably trained RO]

fulfills [the requirement to
interpret the airspace

situation and determine
whether detected targets

that pose a credible threat]

C36
Detection

requirement on
target altitude

E34
Azimuth

coverage is
360 degrees

E35
3D target
position
reports

E40
[RO has received

sufficient prior
training on

operating the
radar system]

C30
Detection

requirement on
maximum target
range from radar

S7
Show by

[comparing
detection

requirements
against the radar

specifications]

G22
Radar specifications
meet the detection

requirements

E43
[Definition of the

minimal and
nominal

surveillance
volumes (SVs)]

E44
[RO is familiar

with the ConOps,
and nominal/
contingency
procedures]

G14
Operational testing in the
field shows that the radar

meets its performance
specifications

E4
Instrumente
d range is
21.5 NM

G31
[The requirement that there
exists a basis for classifying

detected targets as a credible
threat based upon the

encounter geometry] is fulfilled

E46
[RO is familiar

with radar
surveillance
procedures]

G15
[The requirement that the
dimensions of the threat

and surveillance volumes
are adequate to detect

theats sufficiently early for
the defined OR] is fulfilled

E5
Elevation

coverage is
from horizon

to 30 degrees

E42
[Definition of

the threat
volume (TV)]

S12
Allocate to

implementing
component

S1
Show by

[Operational
testing]

C19
Characteriza

tion of the
airspace
requiring

surveillance

E45
[Detected targets
pose a credible

threat when they
are at or within the

boundary of the
TV]

G35
[The radar system] fulfills [the
requirement that airborne can
be detected and adequately

classified based on the
encounter geometry]

G36
Operational testing in the field

shows that the surveillance
system meets the requirement to

detect and track aircraft that could
pose a credible threat to UAS

operations

S14
Allocate to

implementing
component

C40
Radar

Operator
(RO)

C41
Radar
system

S15
Show by

[Operational
testing]

E47
[RO has a basic
understanding

of ATM and
airspace

coordination]

S16
Decompose

into lower-level
requirements

Fig. 3. Fragment of the instance argument of the compound pattern in Fig. 2, when
instantiated for the surveillance barrier, and appended with tailored argument elements
(shown by the goal, context, and solution nodes highlighted with a thick border).

Fig. 4 shows the (structure of the) compound pattern which explains the contribu-
tion of hazard mitigation barriers to managing hazard causes and, in turn, to mitigating
the identified hazards. This pattern is produced from the general composition (see Sec-
tion 3.3) of the patterns in Figs. 1a, 1b, 1c, and 1d. Intuitively, it can also be seen as the
result of a sequence of simpler compositions, in particular the (sequential) composition
of the patterns in Figs. 1a and 1b which, in turn, is (sequentially) composed with the
parallel composition of the patterns in Figs. 1c and 1d. Similarly, the compound pattern
of Fig. 2 can, in fact, be sequentially composed with the compound pattern of Fig. 4.
The result, another compound pattern, is equivalent to the general composition of all the
elementary patterns in Fig. 1. The instance argument for that pattern8, which includes
the argument fragment shown in Fig. 3, explains the role of all applicable mitigation

8 Due to space constraints, neither this compound pattern nor its instance are given here.

Composition of Safety Argument Patterns 11

Fig. 4. Result of the composition of the elementary patterns in Figs. 1a–1d. Note that
this figure primarily illustrates the compound pattern structure, also indicating the con-
textual nodes not shown earlier. For node/link content, see Figs. 1a–1d.

barriers in reducing the likelihood of the different identified hazards during the UAS
mission, e.g., a near midair collision (NMAC), or air proximity event (AIRPROX).

5 Related Work and Conclusions

Compositional approaches to safety case construction have been considered in [8], how-
ever the focus there is on composing modular arguments. A catalogue of GSN patterns
for software safety assurance has been supplied in [9], along with the assertion that
the patterns link together to form a single software safety argument upon instantiation.
Thus, that work (implicitly) alludes to the capability and utility of pattern composition,
although it stops short of describing what composition means, and providing examples
for the same. Similarly, [10] gives generic patterns of reasoning empirically identified
from real safety cases—-i.e., so called building blocks, given in the Claims-Argument-
Evidence (CAE) notation—with the explicit intent to combine them into composite

blocks—analogous to hierarchical (argument) nodes [11]—and templates, which are
closer to the compound patterns presented here. This work also asserts the capability
and utility of composition, but only gives examples of building blocks as opposed to the
templates produced from their composition. Moreover, little has been said about what
composition means, and what modifications, if any, result to template semantics, and
their graphical structure, in relation to their constituent building blocks.

In this paper we have continued our ongoing line of work on developing formal
foundations to support automation in safety case development, in which argument struc-
tures are a first class object of study. We are now using our preliminary theory of pattern
composition to provide a formal basis for implementing a suite of features in our tool,
AdvoCATE, including automated refactoring of patterns, identifying reusable pattern
components, and composing them in an automated (or interactive) way.

Although we currently manually create patterns for instantiation, composition lets
us incrementally construct larger patterns of safety reasoning by combining smaller

12 E. Denney and G. Pai

patterns (extracted from, say, legacy safety cases). When combined with automated
pattern instantiation [5], we can increase the level of useful automation that can be
brought to bear when creating larger, more complex safety cases. The value addition
for creating arguments this way, we believe, is that patterns give the type of an instance
argument, providing a richer abstraction than argumentation schemes [12], for exam-
ple, and allowing us to determine whether larger arguments can be sensibly combined
by examining abstract, and relatively smaller, structures. Moreover, though there are
differences, similar techniques could be used for merging and refactoring of argument
fragments themselves. An interesting avenue of inquiry for future work is to determine
what a suitable representation of argument architecture should be. Modular structure
has been proposed for this [13], but here we have suggested that patterns and their com-
bination can serve as such an architecture. It might also be useful to represent ‘glue’
argumentation that connects patterns, or refinements between domain-independent and
domain-specific patterns.

Acknowledgement. This work was funded by the SASO project under the Airspace
Operations and Safety Program of NASA ARMD.

References

1. Berthold, R., Denney, E., Fladeland, M., Pai, G., Storms, B., Sumich, M.: Assuring ground-
based detect and avoid for UAS operations. In: 33rd IEEE/AIAA Digital Avionics Systems
Conference (DASC 2015). pp. 6A1–1–6A1–16. (Oct. 2014)

2. Federal Aviation Administration (FAA): Flight Standards Information Management System,
Volume 16, Unmanned Aircraft Systems. Order 8900.1 (Jun. 2014)

3. Denney, E., Pai, G.: A methodology for the development of assurance arguments for un-
manned aircraft systems. In: 33rd International System Safety Conference (ISSC 2015)
(Aug. 2015)

4. Denney, E., Pai, G., Pohl, J.: AdvoCATE: An assurance case automation toolset. In: SAFE-
COMP 2012 Workshops. LNCS, vol. 7613, pp. 8–21. (2012)

5. Denney, E., Pai, G.: A Formal Basis for Safety Case Patterns. In: SAFECOMP 2013. LNCS,
vol. 8153, pp. 21–32. (2013)

6. Goal Structuring Notation Working Group: GSN Community Standard Version 1 (Nov.
2011). http://www.goalstructuringnotation.info/

7. Pierce, B.C.: Basic Category Theory for Computer Scientists. MIT press (1991)
8. Kelly, T.: Concepts and Principles of Compositional Safety Case Construction. Technical

Report COMSA/2001/1/1, University of York (2001)
9. Hawkins, R., Kelly, T.: A systematic approach for developing software safety arguments. In:

27th International System Safety Conference (ISSC 2009) (2009)
10. Bloomfield, R., Netkachova, K.: Building blocks for assurance cases. In: 2014 IEEE ISSRE

Workshops. (ISSREW). pp. 186–191 (Nov 2014)
11. Denney, E., Pai, G., Whiteside, I.: Formal foundations for hierarchical safety cases. In: 16th

IEEE Intl. Symp. High Assurance Sys. Eng. (HASE 2015). pp. 52–59. (Jan. 2015)
12. Walton, D., Reed, C.: Argumentation schemes and defeasible inferences. In: Workshop

on Computational Models of Natural Argument, 15th European Conference on Artificial
Intelligence. (2002) pp. 11–20

13. Industrial Avionics Working Group: Modular Software Safety Case Process GSN – MSSC
203 Issue 1 (Nov. 2012)

