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Abstract Argument-based assurance cases, often represented and organized using
graphical argument structures, are increasingly being used in practice to provide
assurance to stakeholders, e.g., regulatory authorities, that a system is acceptable
for its intended use with respect to dependability and safety concerns. In general,
comprehensive system-wide assurance arguments aggregate a substantial amount of
diverse information, such as the results of safety analysis, requirements analysis, de-
sign, verification and other engineering activities. Although a variety of assurance
case tools exist, many desirable operations on argument structures such as hierarchi-
cal and modular abstraction, argument pattern instantiation, and inclusion/extraction
of richly structured information have limited to no automation support. To close this
automation gap, over the past four years we have been developing a toolset for assu-
rance case automation, AdvoCATE, at the NASA Ames Research Center. This paper
describes how AdvoCATE is being engineered atop formal foundations for assurance
case argument structures, to provide unique capabilities for: a) automated creation
and assembly of assurance arguments, b) integration of formal methods into wider
assurance arguments, c) automated pattern instantiation, d) hierarchical abstraction,
e) queries and views, and f) verification of arguments. We (and our colleagues) have
used AdvoCATE in real projects for safety assurance, in the context of unmanned
aircraft systems.
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1 Introduction

The submission of a safety assurance case (or safety case for short) is increasingly
being required during system certification in many safety-critical industries, such as
aviation [33], nuclear power [47], road1 and rail transportation [49, 74], defense [72],
and medical devices [78]. Essentially, a safety case provides an audit trail of safety
considerations, from concept through operations, that can assist in convincing the
various stakeholders of a system, including regulators, that the system is acceptably
safe [73]. The purpose is, broadly, to demonstrate that
– the risks associated with a specific system concern, such as safety or security, have

been identified, are well-understood, and have been appropriately controlled; and
– there are processes in place to monitor the performance, and effectiveness of risk

controls.
The use of assurance cases2 has also been recommended during procurement and

mission assurance of aerospace systems [31].
Generally speaking, a safety case is a comprehensive, defensible, and valid justi-

fication of the safety of a system for a given application in a defined operating envi-
ronment. Often, the core of this justification is a structured, risk-based argument3,
which links safety-related claims through a chain of reasoning to a body of the ap-
propriate evidence. One of the motivations to use structured arguments is to explicitly
capture the traceability between safety claims and the substantiating evidence. An-
other motivation is to make it easier to understand and critically review the safety
case [44]. To further improve clarity, graphical notations have emerged over the past
decade to present the elements of a safety argument, e.g., the Claims-Argument-
Evidence (CAE) notation [9], and the Goal Structuring Notation (GSN) [39]. Such
graphical argument structures, can be thought of as a visual index into the safety
reasoning and evidence comprising a safety case.4

Existing tools5 that support the development of safety arguments using the GSN
or CAE [1, 4, 53, 56, 66] largely facilitate a manual development of safety cases.
That is, in practice, safety case authors need to specify the arguments that connect
low-level safety evidence to higher-level safety claims, and manually perform opera-
tions such as argument pattern instantiation, e.g., using copy-and-paste. Additionally,
to our knowledge, existing tools lack a formal basis—partly due to the informality
of the notations themselves—which, we believe, has impeded the development of
certain types of automation capabilities. In particular, operations such as hierarchi-
cal and modular abstraction, pattern instantiation, inclusion and extraction of richly
structured information, and evaluation of argument properties, can be usefully auto-

1 Strictly speaking, road vehicles do not undergo regulatory certification in the same way as civil air-
craft; rather, they are qualified by the manufacturer as meeting an applicable safety standard.

2 In general, an assurance case provides assurance of broad system concerns, such as dependability,
safety, and security; a safety case is a specialization of an assurance case for system safety assurance.

3 There are also different (but compatible) notions of safety case [6, 76] in which there is no explicit
requirement for presenting structured arguments.

4 In this paper, we will use the terms safety argument, and safety case interchangeably when the dis-
tinction between the two is not significant. Also note that the scope of our work here applies to assurance
cases in general, although we will focus primarily on safety assurance.

5 Also see Section 7.1 for more details on existing tools.
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mated to support the development of large safety arguments, typical of real systems.
Over the past four years we have been developing the Assurance Case Automation
Toolset (AdvoCATE), atop formal foundations, to close this automation gap. In this
paper, we describe how we are engineering AdvoCATE to provide unique capabil-
ities for automating, to the extent possible: a) the creation and assembly of safety
assurance arguments, b) the integration of formal methods into wider assurance argu-
ments, c) instantiation of assurance argument patterns,6 d) hierarchical and modular
abstraction, e) the generation of views from user-defined queries, and f) the verifi-
cation of properties of argument structures.

Our hypothesis is that automation will not only assist in reducing the time and
effort spent in creating, understanding, evaluating, and managing argument struc-
tures, but also reduce the potential to create ill-formed/inadequate arguments. Thus
we believe that automation support can address the practical challenges that we have
encountered in assurance case development. The main contributions of this paper
are: i) developing and integrating novel automation capabilities (as identified above),
based on formal foundations, into a single toolset; and ii) elaborating a methodology
for assurance argument development that leverages our toolset and its automation
features.

The rest of this paper is organized as follows: Section 2 first sets the context for
using AdvoCATE, describing a process for safety argument development, after which
Section 3 motivates the needs for automation support during that process, identifying
the broad requirements for the relevant capabilities. Then, in Section 4, we summa-
rize the foundations for the required automation features providing a formal, abstract
specification for their implementation, which we present in Section 5. This section
also describes the AdvoCATE system architecture. Thereafter, in Section 6, we give
an overview of the basic functionality of our toolset, after which we illustrate how
its automation capabilities were used during the creation of safety arguments for real
aviation systems. In Section 7, first we discuss related work, contrasting the capa-
bilities of existing tools with the innovations described in this paper. Thereafter, we
identify opportunities for future work. Section 8 concludes the paper.

2 Methodology

In this section, first we present our vision of a safety case. Then we describe an
abstract safety assurance methodology and our process for safety case development,
which will provide the context for how AdvoCATE will be used, and its automation
requirements (Section 3).

2.1 Overview

An argument is a connected series of propositions used in support of the truth of an
overall proposition. The latter is usually referred to as a claim, whereas the former
represents a chain of reasoning connecting the claim and the evidence. Our vision

6 In the rest of the paper, we will use pattern to mean an argument pattern. Also see Section 4, and [20].



4 Ewen Denney, Ganesh Pai

Argument Structure 
e.g., in GSN, with well-formedness  
constraints 

External Documents 
e.g., Hazard logs, requirements, etc. 

Hyperlinks 

Ontologies 
e.g., in OWL 
-  System organization 
-  Regulations, Environment / Domain, 

etc. 

Semantics 

Domain model 
Models / Artifacts of the System 
e.g., in AADL, MATLAB / Simulink, etc. 

Hyperlinks 

Hyperlinks 

Engineering analyses 
e.g., Safety analysis, testing, etc. 

Preliminary  
Safety Case 

Architectural /  
Intermediate 
Safety Case 

Implementation 
Safety Case 

Operational 
Safety Case 

Safety Case Evolution 

Fig. 1. Our vision of a safety case as an evolving risk management artifact, whose skeleton is an argument
structure assimilating and linking diverse reasoning and evidence.

of a safety case (Fig. 1) is a structured and evolving argument that comprises ex-
plicit safety claims, assimilates heterogeneous evidence, and presents the reasoning
required to conclude7 that a system will be safe for a defined application and operat-
ing environment. The elements of the safety case are given as an argument structure,
i.e., a diagrammatic presentation of the argument using the Goal Structuring Nota-
tion (GSN)8. The nodes of the argument structure contain links to external items
including
– artifacts such as hazard logs, requirements documents, design documents, various

relevant models of the system, etc.;
– the results of engineering activities, e.g., safety, system, and software analyses,

various inspections, reviews, simulations, and verification activities including dif-
ferent kinds of system, subsystem, and component-level testing, formal verifi-
cation, etc.;

– records from ongoing operations, as well as prior operations, if applicable; and,
additionally,

– nodes containing metadata drawn from domain ontologies that provide supple-
mentary and relevant domain-specific semantic information.

7 Or, convince and communicate to the relevant stakeholders.
8 See Section 4 for more details. We have opted to use the GSN, although other appropriate notations

could also have been used.
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Fig. 2. Abstract safety assurance methodology showing data flow between the processes for domain mod-
eling and analysis, system development and verification, safety analysis and safety argument development.

Fig. 1 illustrates the evolution of a safety case and the underlying argument struc-
tures. During the early phases of system development, we create a preliminary safety
case that addresses the safety aspects of system concepts, e.g., by identifying high-
level safety goals. Thereafter, we develop an intermediate and/or architectural safety
case to reason about risk mitigation through system design, as well as to address the
trade-offs between safety and other competing design concerns, such as performance,
reliability, etc. Implementation and operational safety cases are then created before
deployment, and updated during system operations, respectively.

Each of these safety cases is self-contained, although interrelated. Together they
represent the evolution of system safety concerns from concept through operations.
To create the corresponding argument structures, we apply our process for safety
argument development, which we will describe subsequently (Section 2.3).

2.2 Safety Assurance

Fig. 2 shows an abstract and simplified (data flow) view of a safety assurance metho-
dology9, that utilizes a safety argument development process. In particular, the pro-

9 We note that the data given in Fig. 2 is not comprehensive. In actual practice, this abstract methodology
is replaced by concrete processes, activities, and the corresponding data, e.g., as recommended in civil
aviation guidelines for system development and safety assessment [64, 65]. Additionally, we note that this
methodology addresses safety assurance prior to system operations, and is applied towards facilitating
the decision to release a system into service. A lifecycle approach to safety assurance [16] also takes into
account operational safety measures and safety performance, although we will not address that here.
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cesses of domain modeling and analysis, system development and verification, and
safety analysis provide the core data for safety argument development, whereas the
management activities of the methodology (not shown here) define the plan for safety
management.

For example, through domain modeling and analysis we determine stakeholder
needs, formulate the scope of the technical problem, and define the operating context
for the engineered system. Among the outcomes of this process is a domain model,
e.g., in the form of an ontology, from which metadata can be drawn for the nodes of
the argument structure. Similarly, the processes of safety analysis, system develop-
ment and verification, are sources of product-specific assurance claims, reasoning,
and evidence from which the safety arguments will be built. In addition, the pro-
cesses are also sources of the artifacts, results, and records to which the nodes of the
argument structures will be linked (as described earlier in Section 2.1). We perform
safety analysis both during concept development and subsequently during system
development. As development proceeds, we refine the system design, together with
its safety analysis and the associated assurance argument. After implementation, and
the generation of verification evidence, we revisit the safety analysis to ascertain that
the safety requirements have been satisfied, following which the items of evidence
are assimilated into the assurance argument.

Note that, in Fig. 2, the safety analysis, system development and verification,
and safety argument development processes are concurrent and iterative, and are are
periodically synchronized, e.g., at the milestones defined during the plan for system
development and certification [17]. We have intentionally not described a workflow
of the processes, since we can define a number of possible realizations based on the
constraints of the domain and projects.

2.3 Safety Argument Development

Fig. 3 shows our process for safety argument development identifying six key activi-
ties10; our main focus is on the process activities and the associated data flow instead
of a control flow, since the order in which the activities are performed must be tailored
to the specific needs of the project/domain. In general, however, argument develop-
ment can be performed in a top-down, or a bottom-up, manner. The former requires a
definition of a high-level argument organization and/or claim, followed by successive
refinement into lower-level details. The latter, in contrast, is concerned with assem-
bly of an argument based on the inferences that can be drawn from the available and
existing lower-level details (i.e., the evidence).

At each milestone, the process for safety argument development produces an ar-
gument structure that reflects: i) the inclusion of specific artifacts available at a given
phase of the system development process, and ii) the evolving state of the safety
argument (e.g., as shown in Fig. 1) and, consequently, system safety.

Note that safety argument evolution as shown in Fig. 1 is coarse-grained, although
we can define a finer-grained evolution. Thus, the architectural safety case, for exam-

10 The process shown in Fig. 3 is different from (but compatible with) both the six-step method for
developing an argument structure [39], and the safety case development methodology in [8].
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Fig. 3. Safety argument development process showing the key activities and the data flow; the data pro-
duced by the remaining processes of the safety assurance methodology (Fig. 2), are consumed by the
argument development process, and the result is a series of argument structures (Fig. 1) which embody the
evolution of the system safety case.

ple, can be considered to be the result of assembling the argument elements produced
at the various milestones that correspond to the phases of system design, and system
architecture development.

2.3.1 Argument Design / Assembly

In a top-down development of safety arguments, we define an argument architec-
ture which specifies a high-level, abstract, organization of the overall structure and
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elements of the argument [24]. Specifically, we select and compose argument pat-
terns11, i.e., abstractions representing various styles of argument, taking into ac-
count system assurance concerns, the types of claims requiring support, and argu-
ment design criteria such as compliance with safety principles, reducing the cost of
re-certification, modular organization, maintainability, etc. We instantiate patterns us-
ing domain- and system-specific data (which may, themselves, be generated using a
tool, e.g., for formal verification), to produce fragments of instance arguments. We
can directly compose instance arguments (to be consistent with pattern composition),
or there may be a need to introduce manually-created, intermediate, ‘glue arguments’.

Based on the project needs, we can specify a modular organization of the argu-
ment architecture (see Section 6.3.1), which can be beneficial in a number of ways,
e.g., to reflect the modularity inherent in the system, to manage safety argument size,
to constrain the impact of changes during argument evolution, as well as to support
distributed development. Additionally, we can also introduce a hierarchical organi-
zation in argument fragments (see Section 6.3.2) to reflect the natural hierarchy of
claims, or the refinement of an abstract argument fragment into a more detailed argu-
ment, e.g., when creating evidence arguments [21].

During both top-down, and bottom-up development, we use the argument frag-
ments produced from pattern instantiation, along with those produced from the re-
maining activities (e.g., as shown in Fig. 3), claims refinement/composition, and ev-
idence definition/selection) to assemble an argument consistent with its architecture.
As both the system and its assurance argument evolves, we refactor the argument
to improve its comprehensibility, and the consistency with its architecture and argu-
ment design criteria, such as maintainability. Essentially, the activity of argument de-
sign/assembly is one wherein we combine top-down and bottom-up argument deve-
lopment, together with tasks for improving its understandability and supporting its
evolution.

2.3.2 Claims Definition

We define safety claims based upon the system development phase, and the available
artifacts, e.g., using safety requirements identified through hazard analyses. We addi-
tionally state the context in which the claims can be interpreted and determined to be
valid, together with any relevant assumptions and the necessary justifications. Note
that assumptions can be made both about the system for which assurance is sought,
and the environment in which the system operates.12 We will refer to the combination
of claim, its associated context, justifications and assumptions as a qualified claim.

For example, in a safety argument, a correctness claim about a software func-
tion should be accompanied with its specification as context, an assumption that the
specification is valid, and a justification of the bearing of the correctness of that func-
tion on system safety. The results of claims definition are propositions—specified at
an appropriate level of abstraction—concerning system, subsystem and component
properties, which have been determined through safety analysis to have a (direct or

11 For more details on argument patterns, see Section 4.2.
12 Additionally, assumptions can also be made about the assurance techniques employed.



Tool Support for Assurance Case Development 9

indirect) bearing on system safety, e.g., the reliability of a hardware fail-safe, the
correctness of a software switch, etc. When a claim concerns low-level assertions
about evidence items, we distinguish them as evidence assertions. Thus, an evidence
assertion is a claim (in a goal node) that immediately precedes the solution node
corresponding to the evidence item.

2.3.3 Claims Refinement / Composition

The core task of this activity is to define and/or select the appropriate strategies to link
related claims. Additionally, we specify the associated rationale, i.e., the appropriate
assumptions and justifications in which strategies can be reasonably used, as well as
the relevant context.

Specifically, claims refinement is performed in a top-down development of argu-
ments. Here, we successively decompose higher-level, abstract claims into progres-
sively more detailed lower-level claims. For example, to develop a claim of subsystem
reliability into sub-claims about the reliability of the constituent components, we can
use a strategy of reasoning over cut-sets, i.e., the unique combinations of compo-
nents whose failure leads to sub-system failure. The subsystem architecture serves as
associated context, while the subsystem failure analysis provides the requisite justi-
fication for using the strategy. Note that we can also perform claims definition and
claims refinement by applying, and instantiating, argument patterns.

In a bottom-up development, the strategies chosen must aggregate/compose lower-
level claims into higher-level claims. Typically, this is required when solutions (such
as the result of a specific verification) are available from which evidence assertions
can be inferred, and which must be linked to the higher-level claims that require
support. For example, low- level assertions of successful unit testing can be used to
(partially) support a software fitness claim, through a strategy of using unit testing,
together with the appropriate context and justifications that support the relevance of
that strategy.

The result of claims refinement/composition is a collection of fragments of argu-
ment structures, whose leaves are claims, evidence assertions, or solutions.

2.3.4 Evidence Definition / Selection

The result of evidence definition/selection is a collection of fragments of argument
structures, and corresponding solutions. The former contain claims supported by so-
lutions and are, therefore, useful during a top-down development. The latter mainly
comprise solutions with the associated evidence assertions, which can be composed
to support higher-level claims (as described earlier in Section 2.3.3).

In a top-down development of safety arguments, we specify evidence require-
ments in the early phases of system development and safety analysis. As we develop
the system, we refine the evidence requirements, and choose/produce those solutions
that provide the requisite degree of assurance. For example, a (higher-level) claim of
software fitness may be supported by a proof of correctness, as well as through other
verification evidence, such as testing, static analysis, etc. In general, the choice of the
evidence to be used depends upon on the evidence assertion obtained from claims
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refinement, and the degree of assurance required. Thus, a lower-level assertion of
functional correctness would be better supported by a proof, whereas an assertion of
reliability might necessitate testing of the software, or simulation of a subsystem for
a specified duration in an environment with the desired degree of fidelity to actual
operations.

When solutions are available, from which evidence assertions can be inferred,
then evidence selection also involves determining whether the available solutions are
trustworthy, appropriate, and meet the evidence requirements.

2.3.5 Argument Analysis

Argument analysis involves a number of tasks whose goal is to analyze the soundness,
or cogency, of the argument structures produced; namely:

A) Property verification: We specify (structural) argument properties and verify
them to evaluate the quality of the argument structure. Properties can reflect con-
cerns such as well-formedness, e.g., the argument structure contains no cyclic links,
internal completeness, e.g., all paths from all claims in the argument structure lead
to evidence, as well as more general structural constraints required by best-practices,
e.g., a specific type of claim has at least two or more independent paths to, and/or
forms of, supporting evidence [54].

B) Argument validation: We evaluate the argument structure for possible flaws
in the reasoning, i.e., fallacies [43], as well as knowledge gaps that lower confi-
dence in claims, i.e., assurance deficits [46], and ways to attack an argument, i.e.,
defeaters [81]. Additionally, we a) examine the elements of the argument structure
for relevance and consistency, and b) identify counter-evidence that may either un-
dermine the solutions provided and/or reduce the strength of the argument.

C) Confidence assessment: This task supports safety related decision making by
characterizing the confidence that can be placed in an argument. The goal is to evalu-
ate the credibility of safety claims on the basis of the strength of the argument and the
veracity of the evidence supplied. Confidence can be evaluated in a number of ways,
e.g., by using probabilistic models, such as Bayesian networks, to specify a joint
distribution over the underlying sources of argument uncertainty [25], through be-
lief combination using Dempster-Shafer theory [3], or qualitatively using confidence
arguments [46].

D) Metrics-based assessment: Metrics computed on argument structures, such as
size, or coverage [26], are useful to gauge the progress of the safety argument through
its evolution. Specifically, metrics provide a convenient summary of the state of the
argument development process and thereby a means to gauge whether synchroniza-
tion with the remainder of the processes in the safety assurance methodology (Fig. 2)
is feasible at a given milestone. For instance, to synchronize an architectural safety
case (see Fig. 1) with, say, a milestone of design review, we can compute metrics
that measure the extent to which higher-level safety claims have been developed into
claims concerning the system components and their organization.
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2.3.6 Argument Improvement

Whereas argument analysis (Section 2.3.5) is a retrospective activity, argument im-
provement uses the results of the argument analysis task for (proactively) improving
the argument, by: a) including the counter-evidence identified, b) resolving the iden-
tified argument defeaters, c) reducing the identified assurance deficits, d) modifying
the argument structure to address fallacies, and e) fixing property violations, if any.
Note that some of the argument improvement tasks are not disjoint, e.g., the activi-
ties a), b) and c) above. However, they address different (although related) concerns
for improving an assurance argument. For instance, assurance deficits broadly con-
cern knowledge gaps in an argument (which may, but need not, include defeaters),
whereas argument defeaters are primarily concerned with the sources of doubt.

No specific order is imposed on the tasks, each of which represents a source of
change to the argument structure. Thus, improving the argument amounts to deter-
mining the exact changes to be made and their scope, e.g., as proposed in [35, 51].
In general, the changes represent editing the argument by adding, removing, and re-
placing argument fragments. The tasks a) andb), in particular, may require defining
notational extensions to GSN, e.g., as in [40, 46, 51].

3 Requirements for Automation

3.1 Motivating the Need for Automation

Based upon the argument development process (Section 2.3), our experiences in crea-
ting real safety cases [6, 13, 15, 24], as well as from feedback from other users and
projects within NASA, we have identified a core set of needs, which we believe can
be met by providing tool support along with the appropriate automation. Amongst
the stakeholders who would benefit from such a capability are safety engineers, sys-
tems engineers and developers, managers who are required to make safety-relevant
decisions (such as those concerning risk acceptance, effort allocation towards risk
reduction measures, etc.) and engineers functioning in an assessment capacity, e.g.,
regulators, and independent safety auditors.

3.1.1 Maintaining Consistency and Supporting Evolution

As shown in Fig. 1, safety cases evolve during system development and operation.
In practice, the processes of system development, safety analysis and argument deve-
lopment are loosely coupled, and consistency between the various artifacts produced
is achieved mainly when the processes synchronize, e.g., at defined milestones (Sec-
tion 2.2).

Since safety cases are meant to be an integrated approach for communicating—to
the various participants in system development—the safety concerns, their context,
and how those concerns are being addressed, there is a need i) to aggregate diverse
reasoning and evidence, as well as ii) to keep the safety case consistent with the sys-
tem being developed. During system operation, changes to the system, assumptions
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that are validated or invalidated, and observations of safety performance, for exam-
ple, should translate into updates of the safety case so that the system and its safety
case continue to be mutually consistent. Thus, when redesign/replacement of a com-
ponent is required, we also need to identify those argument fragments that ought to be
updated to reflect a necessary, and revised safety analysis, and, in turn, to understand
the impact of those changes on the overall safety argument [16].

3.1.2 Structuring Large Arguments

In practice, system safety cases can become substantially large, both as they are be-
ing developed, and as they evolve. For instance, the size of the preliminary safety
case for airport surface surveillance operations is about 200 pages [34]. Typically, an
argument will only be constructed for key parts of the case, with the remainder con-
sisting relevant contextual information, e.g., a hazard analysis and risk assessment.
However, depending upon the level of detail required, the underlying arguments also
can be large. For example, an end-to-end slice of an intermediate safety case of an
Unmanned Aircraft System (UAS), which includes software-related claims and for-
mally verification evidence, contains over 500 elements [22]. Effectively, there is a
need to support the management of large arguments containing diverse evidence.

Although modular (and hierarchical) organization of arguments can assist in ab-
stracting and reducing the size of a safety argument, thereby potentially improving its
understandability, introducing modularity in large arguments without adequate tool
support presents additional challenges, including increased effort [52]. This suggests
a need for tool support during safety argument abstraction and organization, such
that we can create abstract arguments that preserve the reasoning underlying their
concrete instances.

3.1.3 Aiding Stakeholder Comprehension

A number of activities need to be performed during the development and management
of safety arguments (see Section 2.3). Often, a diverse group of stakeholders, such as
systems, safety, and software engineers, is involved. Not all arguments concerning the
entire system may be created at the same time, or by the same group of stakeholders.
Furthermore, as an argument is created and refined, understanding the relationship
between the lower levels of the argument and the higher-level safety claims can be
difficult. Each stakeholder, thus, requires the presentation of specific information at
a specific point during development, to understand what is being done for safety
assurance.

For example, safety case developers may need to determine the claims that re-
main to be supported, how/if high-risk hazards have been addressed, how a formal
method was applied to develop a claim, how a specific pattern has been instantiated,
etc. Additionally, since a safety case is one of the primary references for up-to-date
safety information it must be understood by the system developers and its operators.
In general, there is a need to present role-specific information to subject-matter ex-
perts to improve the comprehensibility of a safety argument [15]. Eventually, before
a system can be deployed into operation, its safety case must be understood before it
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can be subject to analysis and review, e.g., by regulators, and safety auditors. Thus,
in addition to supporting stakeholder comprehension of arguments, there is a related
need to support analysis and review, which we describe next.

3.1.4 Supporting Analysis and Review

As a system is being developed, engineering artifacts and the safety case must be as-
sessed at different milestones to determine their progress [17]. Both the artifacts and
the safety case must be accepted to have met the minimum requirements of a mile-
stone, before development can proceed further. For example, during a Preliminary
Design Review (PDR), the architectural safety case can be examined to establish
whether or not all the identified safety requirements have been allocated to the rele-
vant system components.

As such, a system safety case can serve as a basis for safety certification. It also
provides a framework through which compliance to the relevant regulations, and the
corresponding certification requirements can be shown. For example, demonstrat-
ing traceability is a major requirement during the certification of aviation systems,
as part of the software approval process [75]. An important form of traceability is
to show how requirements from regulations, standards, and other relevant guidance
documents are linked to the appropriate evidence items. In addition to providing de-
scriptive text—as is the case in practice—the evidence for compliance can include an
appropriate slice or view of the assurance argument structure, showing the relevant
claims, how they have been refined, and eventually substantiated. Based upon the
nature of the regulations, existing assurance processes, and the application domain,
safety cases may need to be presented with specific content in a particular format, e.g.,
in the form of reports [48, 73], beyond a presentation of the underlying argument
structures. Indeed, some guidelines do not explicitly require an argument [76, 77].
Among those that do, the use of a graphical notation may be an additional require-
ment [33], or it may be optional [71].

In general, there is a need to support both safety case developers and assessors
with argument analysis and review, in particular to extract, present and analyze the
required information. As observed earlier, this need is closely tied to the need to aid
stakeholder comprehension (Section 3.1.3).

3.2 Requirements Specification

Towards addressing the general needs for safety case development identified earlier
(Section 3.1), and the more specific needs to support our process (Section 2.3), we
have defined a number of high-level requirements13 to implement automation support
in AdvoCATE (Fig. 4).

Our vision of an automation support solution draws on ideas in model-based deve-
lopment. For instance, argument patterns can be considered as a model from which
to generate (instance) argument structures. By design, a pattern is typically smaller

13 We have also identified and specified additional requirements that cover the remainder of the func-
tionality offered by AdvoCATE, although those are out of scope here.
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R1. AdvoCATE shall support automated creation and assembly of fragments of safety arguments.
i. A mechanism shall be provided to specify argument patterns

ii. AdvoCATE shall provide functionality to automatically instantiate argument patterns to
create instance arguments.

iii. Formal methods, in particular for software, shall be integrated into safety cases, i.e., there
shall be a mechanism to include the evidence produced from, and the reasoning underlying,
formal methods for software verification.

R2. There shall be features for complexity management of argument structures.
i. hierarchization of argument structures shall be supported.

ii. A modular organization of argument structures shall be supported.
R3. A framework for improved comprehension of safety arguments shall be provided.

i. Stakeholder-specific querying and viewing of safety arguments shall be supported.
ii. Safety arguments shall be queried using a query language.

iii. The results of queries shall be presented as views using a view mechanism.
R4. Evaluation processes for safety arguments shall be supported.

i. There shall be a capability to compute metrics on safety arguments.
ii. Customized metrics shall be specified using a metrics specification language.

iii. A verification language shall be used to specify properties of argument structures.
iv. A verification environment shall be provided to verify properties of argument structures.
v. Reports shall be generated from safety argument structures.

Fig. 4. High-level requirements for automation support in AdvoCATE

in size in comparison to its instance. Consequently, we anticipate that comparatively
lesser effort could be spent in creating, understanding and evaluating the pattern as
opposed to its instance. We believe that one way to address the need to support safety
argument evolution, and its consistency with the system being developed/operated
(Section 3.1.1), is through a tighter coupling of the different processes, e.g., by au-
tomatically transforming system development artifacts, along with the rationale for
the methods/tools used, into the argument that the system developed will be fit for
purpose (Fig. 4, requirement R1).

For example, in software-intensive systems, a reasonably large number of soft-
ware requirements can be derived from system safety goals, and the evidence to
support those goals can be generated from a variety of formal methods/verification
tools. By automating the transformation of the formal verification results or, more
generally, by integrating the formal methods used into the argument, we can reflect
changes to the requirements, the implementation, and the consequent verification ev-
idence, by regenerating the assurance arguments. Here, patterns serve as the mecha-
nism to encode the reasoning underlying development processes, methods, tools, and
the corresponding artifacts produced. Consequently, automated pattern instantiation
is a central component of our automation solution.

Subsequently, implementing mechanisms that enable modular and hierarchical
organization (Fig. 4, requirement R2) can address the need to structure the arguments
being created (Section 3.1.2).

The potential to query a safety case has been previously suggested as one of the
benefits of using safety cases, and as a way for stakeholders to understand how safety
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concerns have been addressed [10]. Thus, a principled way to specify various kinds
of queries on the safety argument, e.g., concerning structural properties, traces be-
tween artifacts, and domain-specific information, and to generate relevant views [18]
is another component of our automation solution (Fig. 4, requirement R3). In order
for queries to access the relevant information, we augment the safety argument with
metadata.

Generating reports from the argument structure and its various views, e.g., in a
mandated report format, can additionally contribute to assisting how stakeholders
understand the safety case. We can, then, extend queries with more expressive logic
to provide a language and environment for argument property verification, as well
as for computing user-defined metrics. These capabilities (Fig. 4, requirement R4)
collectively comprise our approach to respond to the needs of supporting argument
evolution (Section 3.1.1), aiding stakeholder comprehension (Section 3.1.3), and sup-
porting argument analysis and review (Section 3.1.4).

4 Foundations

In this section we present the formal foundations of the structures manipulated by
AdvoCATE, which we have formalized as various kinds of labeled graph. We present
argument structures, briefly explain argument patterns, and describe the hierarchi-
cal and modular extensions to arguments. To illustrate the intuition underlying the
formalization, we also present the associated GSN for each kind of structure.

4.1 Argument Structures

A (non-modular) argument structure in GSN (Fig. 5) contains a top-level (root) goal
stating a safety claim. We develop goals into sub-goals using strategies, and continue
goal development until there are elementary claims that can be connected to the avail-
able evidence, i.e., solutions. The structure also specifies the assumptions made, the
justifications if any, e.g., for the strategies used or the sub-claims created, as well as
the context in which the claims, strategies, and solutions are valid.

We link goals, strategies, and solutions using the Is Supported By link (›) while
context, assumption, and justification elements require an In Context Of link (_).
GSN provides a graphical annotation (3) for goals and strategies to indicate that they
are to be developed (tbd), i.e., they are incomplete.

Fig. 5 gives a simple illustrative example. Here, the top-level claim, “G1: Failures
of the LiPo battery system are acceptably tolerated”, which is made in the context
of the failure modes and effects analysis (FMEA) of the LiPo battery system (context
node C1) is decomposed by two strategies, S1 and S2, which provide complementary
arguments—i.e., over the identified failure modes, and of redundancy, respectively.
The latter relies on an assumption of independence in failures of the redundant batter-
ies (assumption node A1), but has not been further developed. The use of the former
has been justified (in justification node J1), and results in two sub-goals: G2 (con-
cerning the elimination of short circuits in the battery system), and G3 (concerning
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Fig. 5. Basic (non-modular) GSN and a simple example to illustrate usage

the acceptable mitigation of thermal runaway), respectively. The latter remains to
be developed, while the former is addressed by evidence node E1, i.e., short circuit
analysis.

Note that GSN nodes are intended to be pointers to more detailed information,
with the description of the node summarizing those details. Thus, we can give de-
tailed definitions/content externally, and link those to an appropriate node whose de-
scription could be, simply, an identifier. For example, the context node C1 of Fig. 5
contains a simple clarifying description, although the content to which it would be
linked could be the detailed FMEA report.

Definition 1 (Argument Structure) An argument structure, S, is a tuple hN, l,!i
comprising: a set of nodes, N; a family of labeling functions, lX , where X 2 {t,d,m,s},
giving the node fields type, description, metadata, and status; and! is the connector
relation between nodes. Let {s,g,e,a, j,c} be the node types strategy, goal, evidence,
assumption, justification, and context respectively. Then, lt : N! {s,g,e,a, j,c} gives
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node types, ld : N! string gives node descriptions, lm : N! P(A) gives node instance
attributes (see below), and ls : N ! P({tbd}) gives node development status14. We
require the connector relation to form a finite forest, with the operation isroot(!,r)
checking if the node r is a root of the forest15.

Furthermore, the following structural conditions must be met:
1) Each root of the argument structure is a goal: isroot(!,r)) lt(r) = g
2) Connectors only leave strategies or goals: n! m) lt(n) 2 {s,g}
3) Goals cannot connect to other goals16: (n!m)^ [lt(n)= g]) lt(m)2 {s,e,a, j,c}
4) Strategies cannot connect to other strategies or evidence: (n! m)^ [lt(n) = s])

lt(m) 2 {g,a, j,c}
5) Only goals and strategies can be undeveloped: tbd 2 ls(n)) lt(n) 2 {g,s}.

Note that Definition 1 does not need to distinguish is supported by edges (›)
that connect core nodes, and in context of edges (_) that connect contextual nodes.
Instead, we make this distinction with a notational convention, writing v1_ v2, if
v1! v2 and lt(v2) 2 {a, j,c}.

We have additionally extended GSN nodes with metadata, which we associate
with individual nodes (rather than globally with the entire argument or pattern) in the
form of a set of associated instance attributes. Attribute types are declared globally
and can be parameterized over parameters of specific types. Nodes have instances of
attributes with values that comply with the type of the parameter (which can itself
depend on the node).

The type of a parameter can either be:

– a basic type, i.e., a string (String), an integer (Int), or a natural number (Nat)
– a node type, which can be used as parameters in three different ways:

– NodeID: any kind of node
– sameNodeTypeID: the parameter must be the identifier of a node of the same

type as the node with the attribute.
– Specific node parameter types, which allow specification of a node of a given

type: assumptionNodeID, contextNodeID, evidenceNodeID, goalNodeID,
justificationNodeID, strategyNodeID.

– A user-defined enumeration (userDefinedEnum): for example, we can define the
parameter types
severity ::= catastrophic | hazardous | major | minor | noSafetyE↵ect
likelihood ::= frequent | probable | remote | extremelyRemote | extremelyIm-
probable

to define the parametrized attribute risk(severity, likelihood). Then, we can give
an attribute instance as: risk(severity(catastrophic), likelihood(extremelyImpro-
bable)). We will just use ‘attribute’ when it is clear from the context whether

14 Status is defined as a set since, as we will see later, nodes can have multiple status values. Here, tbd
represents the ‘to be developed’ status.

15 A partial argument can have multiple roots, whereas a full argument structure has a single root.
16 Formally, we define a strict notion of argument where goals require intermediate strategies (thus

spelling out explicitly why subgoals follow from parent goals), and separate goals cannot share evidence.
In practice, both these conditions are often violated and can be captured with a more relaxed definition.
The tool allows both conventions.
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m: l..h

m: l..h

Fig. 6. GSN for argument patterns.

we mean attribute instance or attribute declaration. Note that we do not force the
values of different enumerations to be distinct.

Metadata can be used to express relations between nodes, relations between ar-
gument nodes and patterns (indicating how instance nodes have been generated; see
Section 4.2), tracing information (e.g., to external artifacts, such as goals to require-
ments, or to risks and hazards), provenance information for the integration of external
sources, such as formal methods. For example, to reflect the notion that a particular
node in a pattern formalizes another node of the same type in that pattern, we can use
the attribute: formalizes (sameNodeTypeID).

4.2 Argument Patterns

Safety argument patterns [20, 23] capture repeatedly used structures of successful,
i.e., correct, comprehensive and convincing arguments, within a safety case. In effect,
they provide a re-usable approach to safety argumentation by serving as a means to
capture expertise, so-called tricks of the trade, i.e., known best practices, successful
certification approaches, and solutions that have evolved over time.

The existing notion of a safety argument pattern is an extended argument struc-
ture, often specified graphically using GSN, which abstractly captures the reasoning
linking certain (types of) claims to the available (types of) evidence, and is accompa-
nied by a clear prescription and proscription of its usage. Fig. 6 shows the GSN used
to specify argument patterns along with notational extensions that we defined in our
earlier work [20]. There are two types of abstractions for pattern specification:

i) Structural abstraction applies to the › and _ relations, providing the concepts
of multiplicity and choice. The former abstracts over repeated elements, whereas
the latter captures a choice between alternatives (which may or may not be ex-
clusive). As shown in Fig. 6, we indicate multiplicity by placing a ‘•’ on the
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relevant link accompanied with an annotation, l . . .h, indicating its lower and up-
per bounds. When the bounds are 0 . . .1 the annotation represents optionality and
is indicated by placing a ‘�’ on the link instead. Choices are shown using a ‘u’
between the links, also annotated with the bounds of the choice, L . . .H.17

ii) Entity abstraction in GSN provides the concepts of uninstantiated (or to be in-
stantiated), and uninstantiated and undeveloped (i.e., to be instantiated and to be
developed) elements. We represent the former by annotating the corresponding
nodes with ‘ ’, referring to abstract elements whose parameters are replaced
with concrete values upon instantiation. We represent the latter by annotating
the relevant nodes with a combination of ‘ ’ and ‘3’ (i.e.,‘ ’; see node G2
in Fig. 6), and it indicates uninstantiated entities that are also to be developed.
Thus, upon instantiation, an abstract uninstantiated and undeveloped entity is re-
placed with a concrete, instantiated, but still undeveloped, instance. Patterns thus
abstract over possibly undeveloped, but instantiated, fragments.

We specify the parameters to be instantiated as {v :: T}, where v is the parameter
variable and T is its type. Additionally, although not part of the GSN standard, there
are a few examples of the use of a recursion abstraction in the literature [58], which
we have also formalized. Fig. 6, shows recursion using the loop link between the
goal node G3 and strategy node S2, to expresses the idea that a pattern (or a part of
it) can be, itself, repeated and unrolled, e.g., as part of an optional link, or a larger
pattern [20]. Note that although loops are permitted in patterns, they are prohibited
in arguments. Also see Fig. 15 for an illustrative example of patterns. In particular,
Fig. 15b gives an example of a pattern using the recursion abstraction.

Definition 2 (Argument Pattern) An argument pattern (or pattern, for short), P,
is a tuple hN, l, p,m,c,!i, where: hN,!i is a directed hypergraph in which each
hyperedge has a single source and possibly multiple targets; l is a family of labeling
functions, lX , where X 2 {t,d,m,s}; and p, m, and c are additional labeling functions.
The structural conditions from Definition 1 hold, as well as the following conditions
below:

1) lX , where X 2 {t,d,m} is as in Definition 1. We have ls : N ! P({tbd, tbi}), re-
taining the status restriction from Definition 1 (item 5).

2) p is a parameter label on nodes, p : N * Id⇥T , giving the parameter identifier
and type. Without loss of generality, we assume that nodes have at most a single
parameter

3) m : N2 * N2 gives the multiplicity range on a link between two nodes, where
m(x,y) is defined iff we have x! Y and y 2 Y . If Y has more than one node, i.e.,
y is part of a choice, we assume, without loss of generality, that the multiplicity
applies to the outgoing connector to y. Multiplicity bounds of hL,Hi represent the
range L..H, where L H and 0 < H. An optional connector has range 0..1.

4) c : N⇥P(N) * N2, gives a “L..H of n” range on the choice attached to a given
node, where c(x,Y ) is the choice between Y with parent node x, where c(x,Y ) is

17 Though not so common in practice, bounds are a natural generalization of optionality and multiplicity
and can be used, for example, to require complementary strategies or evidence (as a lower bound on
number of branches) or to limit argument complexity (by placing an upper bound).
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defined iff we have x!Y . Here, n is simply the number of legs in the choice, and
so can be omitted. We require the bounds on choices to be within the number of
legs of the choice, i.e., if a! {b1, · · · ,bn}= B and c(a,B) = hL,Hi then 0 < L
H  n and L < n.

There are additional restrictions on argument patterns, namely: a) the multiplicity
condition, i.e., multiplicity on a link in a pattern that is followed by a boilerplate node
(a node without a parameter) must eventually be followed by a data node (a node with
a parameter); b) the single parent condition, i.e., patterns can contain nodes with
multiple parents, but their instances cannot; and c) well-foundedness, i.e., patterns
containing loops cannot contain inescapable paths. See [20] for more details.

4.3 Hierarchical Arguments

We can introduce hierarchical structuring into flat argument structures (Fig. 7). A
hierarchical node (or hinode) groups a fragment of an argument structure into an
abstract node. Hierarchical nodes can be open, so that the argument structure that
they contain is visible, or can be closed, and can be viewed simply as a (hierarchical)
safety case node.18 There are conditions on which fragments can be abstracted [27].

We need the following notions. A fragment is fully developed if all goals lead to
evidence and well-developed if the root is a goal and the leaves are goals or evidence.

There are three types of hinodes:

1) Hierarchical goals (Fig. 7b; higoals, for short) abstract well-developed argument
fragments (for example branches which end in goals or evidence); one of their
main purposes is to provide a high-level view of an argument structure.

2) Hierarchical strategies (Fig. 7c) represent the decomposition of a goal to several
subgoals by aggregating a chain of strategies (with intermediate goals), and hiding
parts of the argument that are considered supplemental to the main argument of
interest.

3) Hierarchical evidence is the special case of a hierarchical strategy with no outgo-
ing goals, but where the subtree encloses a fully developed fragment (e.g., a proof
represented as argument fragment). In Fig. 7d, since the fragment starting from
the strategy S2 is downwards complete (has no undeveloped elements), we can
construct a hierarchical entity that abstracts and encapsulates it. In other words,
the subtree that justifies goal G2 can be packaged as the hierarchical evidence
node HE1. The hinode HE1 in Fig. 7d, is in its open view, where both the hin-
ode and the structure it abstracts are visible. Similarly, in Fig. 7c, the hierarchical
strategy HS1 is in its open view, whereas the included hierarchical evidence HE1
is in its closed view.

We now extend Definition 1 to hierarchical argument structures (also called hi-
cases for short). Hicases extend the definition of safety cases with an additional re-
lation to represent hierarchical structure. We use the partial order symbol  where

18 Note that the open and closed views of a hinode, respectively, serve to visually display or hide the node
contents. In our current implementation, a hinode cannot be empty regardless of whether it is displayed in
its open or closed view, although as part of future work we plan to allow the creation of empty hinodes.
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(a) Flat argument structure fragment (b) Hierarchical goal (open view); hierarchical
evidence (closed view)

(c) Hierarchical strategy (open view); hierarchi-
cal evidence (closed view) (d) Hierarchical evidence (open view)

Fig. 7. Flat argument structures and hierarchization. Note that the description of the nodes has been omitted
in the hicases shown in (b), (c), and (d), since the objective here is to illustrate the different hinodes.

n < n0 means that the node n is inside n0. We wish to define hicases in such a way that
we can always unfold all the hierarchy to regain a flat safety case.

Definition 3 (Hierarchical Argument Structures) A hierarchical argument struc-
ture (or hicase, for short) is a tuple hN, l,!,i. The set of nodes N, labelling function
l, and connector relation! are as given in Definition 1. The forest hN,!i is subject
to all conditions except condition (1) of Definition 1 which is generalized to state that
global roots must be goals: isroot(!,v)^ isroot(,v)) lt(v) = g. The hierarchical
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(a)

! !

(b)

Fig. 8. GSN extensions for modular organization: (a) Intra-module GSN; (b) Inter-module GSN.

relation is a (necessarily finite) forest qua poset hN,i. Finally, we impose several
conditions on the interaction between the two relations! and  (omitted here; see
[27] for details)

The conditions allow us to derive the type of a hinode from its contents (and
surrounding context). Hinodes also have attributes in the same manner as their un-
derlying counterparts; however, as for node types, some of the attributes for hinodes
must be consistent with those of the nodes they enclose. For example, a hinode is
considered undeveloped if any of its contained nodes is undeveloped.

4.4 Modular Arguments

In the GSN, there are intra-module and inter-module notational extensions for pre-
senting modular arguments (Fig. 8). In addition to modules, GSN also provides a
concept of contract module, a specialized module containing a definition/justification
of the relationship between two or more modules, in particular how a claim in one
(or more) module(s) support(s) the argument in the other(s) [39]. As originally con-
ceived, (argument) contracts were intended to represent relations between goals, con-
text and evidence of modules participating in a composition, and were documented
using contract tables. In order to integrate a contract and view it within the same
framework as the argument, rather than as an external entity, the use of GSN itself
to specify contracts within contract modules, has been proposed [36], and this is the
convention we will follow here.

Intra-module GSN is used within a specific module to reference other modules,
using module reference nodes, and specific elements in other modules, using so-called
away nodes. An away goal in one module repeats a claim present in another module.
Similarly, an away context and an away solution in a module repeat, respectively,
the context and a reference to evidence items present in another module. Each away
node additionally contains a reference to the module containing the original content.
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For example, in Fig. 8a the away goal AG1 repeats the claim present in some goal
node in the module Module 1. Away nodes in the local module are public nodes in
the referenced module and are indicated by the ‘ ’ annotation placed at the top right
of the node (as shown for the goal node G1 in Fig. 8a). Thus, a public node of a
given type, i.e., a goal, context, or evidence, is visible to other modules, and can be
referenced within those modules by using an away node of the corresponding type.

When the argument is supported in an, as yet, unspecified module but the contract
of support is available in a contract module, the reference to that contract is shown
using a contract module reference node (e.g., node MC1 in Fig. 8a). When the con-
tract itself is unspecified, a to be supported by contract annotation ( ) is used (e.g.,
as shown for goal node G2 in Fig. 8). This notation is analogous to, and mutually
exclusive with, the to be developed annotation in non-modular GSN (Fig. 5).

As shown in Fig. 8a, intra-module GSN permits links to away goals using both
the › and _ relations. The former implies claim refinement, i.e., by a claim in a
different module as indicated by the away goal, whereas the latter is a substitution for
a justification node, but where (a) more justification is required than can be provided
by a justification node alone, and (b) where the additional justification is provided in
a different module.

The use of inter-module GSN effectively specifies a module view that is intended
to show modules and their relationships (Fig. 8b). As shown, modules can be linked
to: a) other modules, by either the › or _ relations. For example, in Fig. 8b, M1 ›
M4 means that there exist one or more goal and/or evidence nodes in module M4, that
support, respectively, one or more strategies or goals in module M1. Additionally, M1
_ M3 means that there are one or more goals or strategies in module M1, that have
a contextual reference to one or more context and/or goal nodes in module M3; and
b) contract modules, using the › relation: the contract module explicates the support
relationship between the modules to which it is linked.

Modularity allows safety cases, as with other artifacts, to be decomposed into
discrete modules so as to contain change impact, support distributed development,
etc. Hierarchy, on the other hand, permits a system to contain sub-systems of the
same kind. The concepts are thus distinct, though complementary; if modules can
themselves contain modules, this results in hierarchical modularity [11].

We now formalize the notion of a single modular argument structure, i.e., an
individual diagram, after which we extend the formalization to inter-connected col-
lections of modules.

Definition 4 (Modular Argument Structure) Let {s,g,e,a, j,c} be the node types
as in Definition 1. We extend these with two additional node types: mr, and cr, de-
noting module reference and contract module reference respectively. A modular ar-
gument structure, (or module, for short), M, is a tuple hN, l, t,d,!i, where

– N and! are as in Definition 1;
– d is a module description string;
– l is the same family of functions as in Definition 1, where

– lt : N! {s,g,e,a, j,c,mr,cr} gives node types
– ld : N! string gives node descriptions;
– lm : N! P(A) gives node instance attributes, and
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– ls : N! P({tbd, tbsbc,public,away,contextual}), gives node status, i.e., whe-
ther a node is, respectively, to be developed, to be supported by contract, de-
clared public, references an away node, or is used in context.

– t is a family of functions that give the target of nodes that reference other modules.
Let Im and In be sets of identifiers distinct from N, representing modules (and
contracts) and nodes external to M, respectively. Then, for module reference, x,
tr(x) gives the target module, and for an away node, ta(x) gives the pair of module
and public node, i.e., ta : {n2N | away2 ls(n)}! Im⇥ In, and tr : {n2N | lt(n)2
{mr,cr}}! Im.

Additionally, we require individual modular argument structures to form forests,
and various structural conditions (omitted here) to hold.

Contracts can be defined as a particular kind of modular argument19 and are used
to abstract the relation between producer and consumer modules.

A set of interrelated modules and contracts forms a hierarchy, subject to various
constraints. Assume a set of IDs for modular argument structures (Ia), contractual
argument structures (Ic), module containers (Im), and mappings (Ma, Mc) to the sets
of modular arguments (A), and contracts (C), respectively.

Definition 5 (Module Hierarchy) A module hierarchy, H, is a tuple hIm, Ia, Ic,A,C,
Ma,Mc,<i, comprising distinct sets of
– module container IDs, Im;
– modular argument IDs, Ia;
– contractual argument IDs, Ic;
– modular arguments, A;
– contractual arguments, C; and
– mappings Ma : Ia! A, and Mc : Ic! C,

along with a forest hI,<i, where I = Ia[ Ic[ Im, such that i2 Ia[ Ic) leaf (<, i), and
root(<, i)) i 2 Im.

The forest represents the containment relation between modules (which is distinct
from the hierarchy relation on arguments; Section 4.3). Since it is a forest, there
need be no single top-level module. A module hierarchy represents a snapshot of
a possibly incomplete collection of safety arguments under development and, thus,
although arguments and patterns must be leaves, we do not require all leaves to be
arguments and patterns. That is, during development, we allow a module leaf (with
no argument within). We also allow a tree with a single node, i.e., an empty module.
Since Definition 5 allows forests, we allow multiple arguments in a single module,
and multiple argument fragments (with distinct roots) in a single argument.

Finally, we can define notions of well-scoping (references between modules exist
are are correctly scoped according to the module hierarchy, and there are no reference
cycles) and well-formedness (references between modules have the appropriate type
and data).

In Section 6.3 we describe tool functionality for creating modular arguments as
well as module views (i.e., inter-module GSN).

19 Strictly speaking, they relax some conditions on the definition of modules and add others.
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Fig. 9. Conceptual model for argumentation elements and extensions supported by AdvoCATE

5 System Description

5.1 Conceptual Model

The preceding section provided formalizations of the various elements of an assu-
rance case. Before describing the implementation (Section 5.2), we first give an infor-
mal (and incomplete) conceptual model (Fig. 9) to indicate some of the relationships
between the various high-level concepts. Assurance cases can have a modular or non-
modular structure, and can address a range of assurance concerns for a system. In the
context of our practice, safety is most commonly the primary concern (for which we
produce safety cases), although another related concern is security. Thus, a security
case is another kind of assurance case.
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Xtext 

Eclipse Modeling Framework (EMF) 

Eclipse Rich Client Platform (RCP) 
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Fig. 10. AdvoCATE execution stack.

Conceptually, assurance cases can be considered to consist of a collection of
(modular or non-modular) argument structures, argument patterns, associated assu-
rance artifacts (including evidence items linked to from solution nodes, and possi-
bly other artifacts providing additional context, linked from other nodes), along with
analyses (e.g., queries, verifications, and/or metrics). System assurance concerns of
interest are captured in a number of claims in the modular or non-modular argument
structures. The latter also can be hierarchical, although currently we do not combine
hierarchy and modularity. As mentioned earlier (Section 2.3.2), an evidence asser-
tion is a particular kind of claim relating to an evidence item. Views either provide an
abstraction of the modular structure, or are generated by applying queries to an argu-
ment. Finally, a modular assurance case consists of a collection of modular argument
structures which are organized using two relations: inter-module references and the
module hierarchy (capturing containment).

5.2 Implementation

We have implemented AdvoCATE using the Eclipse framework20 as a collection of
plugins, bundled into independent features, each of which can be separately added
or removed. Plugins use the Eclipse rich client platform (RCP) for the user inter-
face, and the Eclipse modeling framework (EMF) for the underlying data model. We
use Graphiti21, which in turn uses the Eclipse graphical editing framework (GEF), to
provide the graphical representation of the diagrams, and an editor for manipulating
the diagrams. Additionally, we use the Xtext framework22 to implement (domain-
specific) languages for queries, verification, and report generation. The Xtext frame-
work also provides support for creating the language infrastructure, i.e., the editor,
parser, linker, etc., as well as usability features in the generated editor, such as syntax
highlighting, syntax completion, etc. Fig. 10 shows the AdvoCATE execution stack,
highlighting these various elements.

20 Available at: http://www.eclipse.org/
21 Available at: http://eclipse.org/graphiti/
22 Available at: http://eclipse.org/Xtext/



Tool Support for Assurance Case Development 27

Graphical 
Editor 

User Interface 

Node 
Editor 

Project 
Explorer 

Handlers Issues 
Panel 

Workbench 

UI Services 
•  Metadata 
•  Dialogs 
•  Wizards 
•  Hyperlinks 

Model Diagram 
Metamodel 

Builder 

Preferences 

Backend 

Data binding 

Report 
Generation Verification 

Queries Metrics 

Parser Execution 
Engine 

Analysis Panels 

Analysis 

Results 
Views, metrics, reports 

Counter-examples 

Modules 

Hierarchy 

Structuring 

Synthesis 

AutoCert 

External 
Analysis Tools 

Pattern 
Instantiation 

Formal 
Methods 

Integration 

Requirements 
Integration 

Generation 

Analysis  
Library 

Attribute 
Library 

Customizations 

Fig. 11. AdvoCATE system architecture

As shown in Fig. 11, AdvoCATE has been architected around four main subsys-
tems: the user interface (UI), the backend, and various analysis and synthesis func-
tionalities. Note that, to avoid clutter, not all links between (and within) the corre-
sponding components have been shown. If multiple components of a subsystem con-
nect to another subsystem, this is indicated as a single arrow between the subsystems,
but if the primary link is between specific components, then a direct arrow between
those components is shown. Also not shown is the interface between the backend,
the filesystem and the underlying Eclipse infrastructure. We describe each subsystem
next.

5.2.1 Backend

The diagram metamodel specifies the elements and format of arguments and pat-
terns, including the core GSN, its modular extensions, our extensions for hierarchy,
as well as metadata. Argument and pattern models23 exist both as a collection of
file resources—i.e., extensible markup language (XML) files distinguished within

23 Henceforth, we will use argument (or pattern) when we mean the model of the argument (or pattern),
i.e., the instance of the diagram metamodel.
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the filesystem through their extensions, .argument, and .pattern respectively—
and via a data binding to pictogram elements (within Graphiti) that form the visual
representation of the GSN diagrams.

The data binding maintains consistency between visual elements and the model.
Amongst other things, it updates derived metadata and modifies diagrams when re-
quired in order to ensure consistency, e.g., when a node status is set to tbd, its im-
age must be updated with the appropriate annotation. Similarly, when a parameter is
added to a pattern node, its metadata must be updated accordingly.

In addition to created arguments and patterns, user data consists of the attribute
library (attributes, parameters, synonyms) and the analysis library (queries, metrics,
etc.), as well as various tool preferences, such as the status of the well-formedness
rules. The model must comply with the diagram metamodel by construction. The
builder provides a collection of monitors that analyze the data (i.e., the models and
user-defined metadata) for compliance with the well-formedness rules (Section 6.1),
after every save operation. The builder then updates the issues panel in the UI with
the results of the analysis.

5.2.2 User Interface

The main elements of the user interface (UI) (Section 6.1) are the graphical editor
for constructing and editing the argument, the node editor where details of individual
nodes are edited, the project explorer, which lists files in the various projects, inclu-
ding views and metrics associated with given arguments, and the issues panel, where
errors and warnings are reported. In addition, there are several other wizards and in-
terfaces developed to support specific fuctionality. Many of these interfaces build on
the Eclipse workbench for UI elements. The analysis panel is also part of the UI and
is described below. Handlers carry out a number of custom commands invoked from
interface elements, such as creation, modification, and deletion of various artifacts
(modules and projects) and export of diagrams in different formats.

5.2.3 Analysis and Synthesis

The analysis panels of the tool provide the interface to its functionality to specify and
execute queries (Section 6.4), specify and verify properties (Section 6.5), specify and
compute metrics (Section 6.6), as well as generate reports.

The analysis component has been implemented using the Xtext framework, which
generates functionality from the language grammars, such as parsers for the query,
verification and metrics languages. An execution engine takes the parsed input to pro-
duce views from queries, compute the metrics, verify or generate counter-examples
to a property and create reports.

The generation component implements functionality for requirements integra-
tion and formal methods integration, both of which invoke the pattern instantiation
mechanism. External analysis tools are wrapped as Eclipse plugins, which translates
between tool output (XML in the case of AUTOCERT; see Section 6.2.2) and Advo-
CATE’s internal argument representation. These feed into the formal methods inter-
face allowing their output to be used to create argument fragments.
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The structuring component allows arguments to be structured by the introduction
of well-formed hierarchical nodes; additionally, it provides functionality to create
modules, and the related nodes for defining the inter-module links.

6 Functionality

In this section, we present the functionality offered by AdvoCATE. First, we give
a brief overview of the basic capabilities of the tool (Section 6.1), after which we
describe its automation features. In particular, we describe how we usei) pattern in-
stantiation, to automatically create and assemble argument fragments (Section 6.2);
ii) hierarchization and (manual) modularization, for structural abstraction (Section
6.3); iii) queries and views, to present stakeholder perspectives (Section 6.4); and
iv) specification and automatic verification of argument properties, to support argu-
ment analysis (Section 6.5).

6.1 Basic Functionality

Fig. 12 shows a screenshot of the basic interface available to the user whilst creating
and editing safety arguments using AdvoCATE. Though our main aim in developing
AdvoCATE is to provide automation features during safety argument development,
the tool also offers core functionality to support manual development and editing.

For instance, we can manually create (both modular and non-modular) arguments
and patterns by placing the relevant nodes and links—provided in a palette (top right
panel, Fig. 12)—on to a canvas (center panel, Fig. 12), or by using pre-defined key-
board shortcuts. When a structure grows large, e.g., when it exceeds the size of the
visible canvas, we can create so-called associated diagrams, which allow the user to
continue creating the argument structure on a new canvas. Multiple canvases can be
simultaneously opened in tabs for concurrently editing multiple arguments, whereas
a miniature view (bottom left panel, Fig. 12) provides a bird’s eye view of the argu-
ment contained on the selected canvas, and also highlights the active area of the can-
vas being displayed/edited. Node contents, metadata, hyperlinks to external content,
and node status can be viewed/edited through a detail panel underneath the canvas.
In addition to creating and editing the argument, standard features include copying,
pasting, and exporting to a variety of formats, e.g., portable document format (PDF).

The tool allows patterns to be copied into arguments as part of a manual in-
stantiation process. The user then needs to resolve resolve pattern elements such as
parameters and choices. The tool also provides an automated instantiation feature,
described in Section 6.2. Each time we create and save a diagram, the tool performs a
number of pre-defined structural well-formedness checks and displays the results in
a number of ways, as shown in Fig. 12:
a) in an issues panel, highlighting specific errors and warnings. Here, selecting a

specific error/warning provides navigability to the argument element responsible
for the issue;

b) on the canvas (if open), highlighting the offending elements (see the goal nodes
G11 and G4 in Fig. 12); and
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Fig. 12. Screenshot of AdvoCATE interface during safety argument development.
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c) in the project explorer, highlighting those projects and files containing arguments
and patterns that failed the checks. Projects can be considered as a logical col-
lection (of various types of files and folders) that would be recognized by Advo-
CATE.
As part of the tool configuration, well-formedness checks can be specified to

apply to arguments and patterns, and are user-modifiable to offer three categories of
results:

i) Error: The structure fails the constraint being checked and ought to be corrected
as soon as possible;

ii) Warning: The structure fails the constraint but is acceptable as an intermediate
state for practical purposes; and

iii) Ignore: Omit the check.
The default settings for the checks are such that these categories correspond,

roughly, to aspects of the formal definitions. An error reflects an inherently wrong
and, therefore, non-well-formed structure, whereas a warning reflects a relaxation of
the structural constraints of Definitions 1 and 2. In particular, we check the following
concerns:

Cyclicity: More specifically, the lack of cycles in an argument, although cyclic struc-
tures are permitted in patterns (See Section 4, Definitions 1 and 2). Thus, the
cyclicity check would be configured to produce errors for arguments that have
cycles24, and would be ignored for patterns.

Unique identifiers: Although alphanumeric node identifiers are auto-generated, they
can be subsequently modified by the user, e.g., to be more meaningful. This check
ensures that, upon user modification, two or more nodes in a given fragment do
not have the same identifier, and is configured to produce errors if they do.

Multiple roots: As in Definitions 1 and 2, full argument structures and patterns have
a unique root. Thus, this check is normally configured to produce errors, e.g., as
shown25 for the argument fragment in Fig. 12.

Multiple parents: In particular, our formal definitions (Definitions 1 and 2) prohibit
multiple parents for any given node, although in practice such structures are not
uncommon (e.g., when sharing evidence). This check would be configured to
produce warnings for arguments, e.g., as shown in for the argument fragment in
Fig. 12, and ignored for patterns.

Intervening strategies between goals: As in Definition 1, we prohibit direct goal-to-
goal links and require an intervening strategy. However, once again, such struc-
tures are not uncommon in practice and the constraint can be practically relaxed
(for both arguments and patterns) by configuring the check to produce warnings.

Consistency of syntax: In particular, for pattern nodes, this check verifies that those
nodes with status tbi contain a node parameter and an appropriate type (See Def-
inition 2), and produces an error upon failure of the check.

24 The only way in which cycles can be introduced into arguments is by pasting a pattern with a cycle
into an argument.

25 Here, note that the multiple roots errors shown in the issues panel has identified two goal nodes with
the same identifier. However, since the check is performed across all the open projects, the errors exist in
separate arguments; the path to those arguments can be seen by expanding the size of panel, but has not
been shown in Fig. 12.
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1 Instantiate(P , t) begin
2 I {}
3 foreach r = ( j , v) 2 t do
4 F  instantiateRow(P , v)
5 I connect(F , j , I)
6 end foreach
7 end

Fig. 13. Abstract algorithm for pattern instantiation.

In addition to these basic features, additional panels are available to: create and/or
modify module hierarchies (see Section 6.3.1, Fig. 21), specify user-defined checks
(verification), as well as queries, metrics, and template specifications for report gen-
eration (as shown in Fig. 12). Collectively, these represent the AdvoCATE interface
for some of the automation features, which we describe next.

6.2 Automated Argument Creation and Assembly

As mentioned earlier (in Section 3.2), a key idea underlying automated creation
and assembly of argument structures is specifying and instantiating a pattern. In
particular, we specify a higher-level abstraction that applies for a given assurance
problem—i.e., an argument pattern—so that automated instantiation can address the
lower-level details.

Pattern instantiation has been used to auto-generate argument fragments for the
safety assurance of both manned and unmanned aircraft systems (UASs): specifically
to create safety arguments from a hazard and safety requirements analysis of the Swift
UAS [19] and a transport category twin-engine aircraft model [12]; and to integrate
formal methods, in particular the results of formal verification [22].

We can instantiate a pattern either interactively, or using data extracted from exter-
nal sources, e.g., using the output from a requirements management tool, or a formal
verification tool. We have implemented mainly the latter in AdvoCATE (illustrated
next, in Section 6.2.1), although a restricted form of interactive instantiation can also
be invoked to formalize informal claims using a claim formalization pattern [23]
(which we will illustrate in Section 6.2.2).

In general, the data required to instantiate a pattern can be given as a mapping
from (the identifiers of) the data nodes to lists of values that enumerate the possi-
ble paths through the pattern. We can conveniently represent this data as a table (t),
whose columns list the identifiers of the pattern nodes containing parameters, and
whose rows (r) contain the parameter values (v) for a specific path through the pat-
tern. We refer to this data structure as a P-table, and it can be given in either a verbose
(i.e., expanded), or a compact format (see Fig. 14b and Fig. 14c respectively). The
procedure to create an instance argument is, effectively, to instantiate each row in-
stance fragment (F), i.e., the fragment of the pattern beginning either at the root node
of the pattern, or at a unique location—the join point, j—in the instance (I) at which
an instantiated branch of the pattern is to be appended.
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Hazard Causes Modes Mitigation Safety Requirement

HR1.4:
Avionics system failure
HR1.4.5: 
Flight critical system 
failure

MI1.4.5: 
Redundancy

RG1.4.3:
Flight critical systems shall be dually 
redundant

HR1.4.5.3:
Loss of Bank A

C1.4.5.3-1: 
Electrical overload

MI1.4.5.3-1: 
Wire sizing 

RG2.1.7: 
Wires shall be sized appropriately to bear the 
rated load plus a safety margin

C1.4.5.3-2:
Mechanical decoupling

MI1.4.5.3-2: 
Fasterner design

RF.166: 
All fasteners shall have locking mechanisms

MI1.4.5.3-3:
Pre-flight checks

PF1.5:
Pre-flight checklist shall include fastner 
checks to verify proper installation

HR1.4.5.5:
Switch failure

MO1.4.5.5: 
Stuck open

(a) Excerpt of a hazard table from the safety analysis of the Swift UAS.

Parameter Type Hazard Hazard Cause Hazard Mode Mitigation Requirement
Data Node ID G1 G2 G3 S3 G4
Parameter ID h1 c1 m1 m2 r1

HR1.4
G1, HR1.4 HR1.4.5
G1, HR1.4.5 HR1.4.5.3 MI1.4.5 RG1.4.3
G1, HR1.4.5.3 C1.4.5.3-1
G1, HR1.4.5.3 C1.4.5.3-2
G2, C1.4.5.3-1 MI1.4.5.3-1 RG2.1.7
G3, C1.4.5.3-2 MI1.4.5.3-2 RG.166
G3, C1.4.5.3-2 MI1.4.5.3-3 PF1.5
G1, HR1.4.5 HR1.4.5.5
G1, HR1.4.5.5 MO1.4.5.5

Jo
in

 P
oi

nt
s

(b) Verbose P-table containing the (identifiers of the) data from the hazard table of Fig. 14a.

Parameter Type
Safety 
Requirement Source

Implementation 
Allocation

Allocated 
Requirement

Verification 
Method Verification Allocation

Data Node ID G1 C1 C2 G2 S2 E1
Parameter ID r1 s1 a1 a2 v1 e1

R1 S A AR1 VM11, VM12 [VA11, VA12], [VA22]
G1, R1 R1.1, R1.2
G1, R1.1 VM1.11, VM1.12 [VA1.11, VA1.12]
G1, R1.2 R1.2.1, R1.2.2 AR1.2
G1, R1.2.1 VM1.2.1 VA1.2.1
G2, AR1.2 AR1.2.1 VM1.2 VA1.2

Jo
in

 P
oi

nt
s

(c) Excerpt of compact P-table containing the (identifiers of the) data from a requirements table.

Fig. 14. Data required to instantiate the extended hazard directed breakdown pattern of Fig. 15a, and the
requirements breakdown pattern of Fig. 15b.

Fig. 13 gives an abstract algorithm that illustrates the instantiation procedure;
for the more detailed algorithms that address both the compact and the expanded
P-tables, see [20] and [23].

6.2.1 Integration of Hazards and Requirements Analysis

We can create fragments of safety arguments from a hazard analysis, and the subse-
quent safety requirements analysis, e.g., as we have done from the functional hazard
analysis (FHA) of the Swift UAS [15, 22].

In particular, an outcome of FHA is a hazard table containing a hierarchical list
of hazards, their causes and/or modes, identified mitigation mechanisms, and the cor-
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responding safety requirements. Fig. 14a shows an excerpt of such a table, which
we transform into a verbose P-table (Fig. 14b), which is required to instantiate the
extended hazard-directed breakdown (EHDB) pattern (Fig. 15a). In general, to map
hazards/requirements tables to P-tables, each row of the former is mapped to a row
of the latter so that parameter values are consistent with their types. Row increments
occur based upon the join points in the pattern corresponding to the P-table or, for
the verbose tables, when multi-row entries are to be mapped.

Here, note that the P-table only contains the identifiers of the entries of the hazard
table of Fig. 14a to save space; in implementation, the P-table would instead contain
the actual, complete data in addition to the identifiers. A result of the safety require-
ments analysis, which follows the FHA, is a requirements table (not shown here)
containing a hierarchical list of the safety requirements identified in the hazard ana-
lysis, related verification methods, and the expected verification results. Again, we
refer to (the identifiers of) the contents of the requirements table in a P-table (an ex-
cerpt of which is shown in a compact format in Fig. 14c), which we use to instantiate
the requirements breakdown (RB) pattern (Fig. 15b).

The EHDB pattern (Fig. 15a) captures the implicit reasoning in the hazard table,
i.e., how a claim of mitigation of the identified hazards can be hierarchically devel-
oped into claims of mitigating lower-level hazards, managing hazard causes and haz-
ardous modes, and eventually linked to claims concerning the satisfaction of safety
requirements arising from the identified mitigation mechanisms. Likewise, the RB
pattern (Fig. 15b) explicitly represents the reasoning in the requirements table, i.e.,
how the claims entailed by safety requirements can be, further, hierarchically devel-
oped and linked to the supporting evidence produced from the specified verification
methods. We do not give the descriptive specifications of the patterns here, and refer
the reader to [23] for those details.26

Additionally, note that the patterns and P-tables given here are specific to the
particular hazard/requirements tables created during the safety analysis of the Swift
UAS. During safety analysis, other forms of the tables may be defined that may con-
tain additional items of data. In general, a domain-specific definition of an appropriate
pattern—capturing the specific reasoning associated with a given analysis—and the
corresponding mapping to the P-table is required.

Fig. 16 shows the arguments that we generate by instantiating the patterns in
Fig. 15 using the P-tables of Fig. 14b, and Fig. 14c, respectively.

Upon comparing the leaf node of the EHDB pattern, and the root node of the
RB pattern, we observe that the two nodes are identical. Thus, it is easy to see how
the two patterns can be composed into a two-tier argument architecture so that, in the
instance argument, the first tier addresses the identified hazards for a system, whereas
the second tier assures that the corresponding safety requirements have been met.

As mentioned earlier, pattern instantiation has been applied by our colleagues at
NASA Ames, to create an argument structure with well over two thousand nodes, to
integrate over five hundred requirements for the safety assurance of a transport cate-
gory, twin-engine aircraft model [12]. Additionally, we have applied this approach to
integrate formal methods into safety arguments, which we describe next.

26 The patterns shown here are more concise versions of those given in [23].
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G1
Hazard -- {h1 ::

string} -- is mitigated

S1
Argument

over lower-
level hazards

S2
Argument

over causes
and modes

G2
Hazard cause --
{c1 :: string} -- is

managed

G3
Hazard mode -- {m1
:: string} is managed

1...2

1...3

S3
Argument by

mitigation
mechanism --
{m2 :: string}

G4
Safety requirement --
{r1 :: string} -- holds

>= 1 >= 1

0...h

>= 1

>= 1

>= 1

>= 1

(a) Extended hazard-directed breakdown (EHDB) pattern.

G1
Safety requirement --
{r1 :: string} -- holds

C1
Source -- {s1

:: string}

C2
Implementation
allocation -- {a1

:: string}

S1
Argument

over lower-
level

requirements

S2
Argument by
verification

method -- {v1
:: string}

S3
Argument

over
allocated

requirements

1...3

G2
Allocated requrirement --

{a2 :: holds}

G3
[Evidence Assertion]

E1
Verification

result -- {e1 ::
string}

1...3

>= 1

>= 1

>= 1 >= 1

(b) Requirements breakdown (RB) pattern.

Fig. 15. Argument patterns, specified in AdvoCATE, for integrating hazard and requirements analysis in
the safety argument for the Swift UAS.
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G1
Hazard -- HR1.4 -- is

mitigated

S1
Argument

over lower-
level hazards

G2
Hazard -- HR1.4.5 --

is mitigated

S2
Argument

over lower-
level

hazards

G3
Hazard -- HR1.4.5.3 --

is mitigated

S3
Argument by

mitigation
mechanism --

MI1.4.5

G4
Safety requirement -

- RG1.4.3 -- holds

S4
Argument

over causes
and modes

G5
Hazard cause --
C1.4.5.3-1 -- is

managed

G6
Hazard mode --

C1.4.5.3-2 is
managed

S5
Argument by

mitigation
mechanism --
MI1.4.5.3-1

G7
Safety requirement -

- RG2.1.7 -- holds

S6
Argument by

mitigation
mechanism --
MI1.4.5.3-2

G8
Safety requirement -

- RG.166 -- holds

S7
Argument by

mitigation
mechanism --
MI1.4.5.3-3

G9
Safety requirement -

- PF1.5 -- holds

G10
Hazard -- HR1.4.5.5

-- is mitigated

S8
Argument

over causes
and modes

G11
Hazard mode --

MO1.4.5.5 is
managed

(a) Instance of EHDB pattern (Fig. 15a) automatically generated using the P-table of Fig. 14b.
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Verification
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G9
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requrirement --

AR1.2

S9

Argument by

verification

method --

VM1.2.1

G10

[Evidence Assertion]

E6

Verification

result --

VA1.2.1

G11

Safety requirement -

- R1.2.2 -- holds

S11

Argument

over

allocated

requirements

G12

Allocated

requrirement --

AR1.2.1

S12

Argument by

verification

method --

VM1.2

G13

[Evidence Assertion]

E7

Verification

result --

VA1.2

(b) Instance of RB pattern (Fig. 15b) automatically generated using the P-table of Fig. 14c.

Fig. 16. Automatically generated instance arguments.
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6.2.2 Formal Methods Integration

Formal methods, such as formal verification, can be used conveniently in an argument
to supply evidence. Traditionally, the approach is to use evidence nodes to refer to
the artifacts created by a formal tool, and additionally supply justification for the
relevance, and validity/efficacy of the evidence, e.g., addressing issues such as tool
qualification, confidence, etc., for the overall argument. However, we are interested
in using formal methods to create (fragments of) arguments, as opposed to simply
evidence nodes. The idea is to use the reasoning underlying the formal method/tool
itself to create an argument for the suitability of the results produced and to provide
additional insight into the analysis beyond the existence of the evidence27. We also
want to be able to invoke the formal methods tool from within AdvoCATE while
constructing the argument. This entails several additional requirements:

– Formalizing informal nodes: that is, transitioning from informal to formal nodes
within the argument;

– Mapping argument nodes into specifications, i.e., translating claims and assump-
tions into formal tasks in the language of the tool;

– Mapping formal verifications into argument fragments; and
– Integrating argument fragments into an overall argument.

The main idea is that the integration of a tool can be specified using patterns
(Fig. 17). Thus, to integrate a tool we provide the patterns embodying the formal
reasoning (used by the tool) and a mapping from the tool output (i.e., the verification
artifacts) to the pattern parameters, via the appropriate P-tables. The dual mapping
from arguments to specifications needs to map open goals (i.e., goals without support)
to verification tasks, e.g., formal requirements, and assumptions in the scope of those
goals to logical hypotheses.

We have used this approach to automatically generate and integrate an argu-
ment, which was used to support a software safety claim in the Swift UAS safety
case [22], and which was created using the output of the AUTOCERT annotation in-
ference tool [5], [29] applied to the verification of autopilot source code.

Fig. 18a shows a (screenshot containing a) fragment of the Swift UAS autopi-
lot software safety argument. As shown, we develop a claim of correct implementa-
tion of the PID controller updates for the aircraft control surfaces (goal node G120),
through an argument over each control surface (strategy node S120), into sub-claims
concerning the correct implementation of controller for the aileron control surface
(goal node G121) and the elevator control surface (goal node G122). To further de-
velop the former—which is an informally stated claim—we first formalize the claim
by invoking the claim formalization (CF) pattern [23] (through the Formalize option
of a context menu, as shown in Fig. 18a). The user is then presented with a dialog
(Fig. 18b) to interactively supply the values of the CF pattern parameters. The values
of the parameters depend upon the language and logic being used for formalization.

27 Note that by hierarchically abstracting such an argument into a closed hierarchical evidence node (see
Sections 4.3 and 6.3.2), the result is an argument which is both structurally and semantically identical to
that produced from the traditional approach of referring to the results of formal methods using evidence
nodes.
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Fig. 17. Concept and architecture for integration of formal methods with safety cases.

AdvoCATE then instantiates the CF pattern with the parameter values supplied,
replacing the leaf node (G121) from which the CF pattern was invoked, with the in-
stance argument (goal node G1 and all its children, in Fig. 19). As shown, the root
node of the instance argument is identical to the informal claim from which the CF
pattern was invoked, whereas the leaf nodes comprise the formalization of the infor-
mal claim (goal node G2), supporting claims about the validity of the claim formal-
ization (goal node G4), and the element to which the informal requirement applied
(goal node G3). Both the formal and informal nodes are updated with metadata relat-
ing the two.

Once we have formalized a claim (or if formal claims are already part of the ar-
gument), we invoke the verification tool from within AdvoCATE (see the Verify By
option in the context menu, shown in Fig. 18a). Based on the metadata of the formal
node, indicating what the corresponding requirement is, AdvoCATE calls AUTO-
CERT on a specific requirement in a designated specification file. The output pro-
duced from AUTOCERT is then

i) automatically converted into a data table consistent with the AUTOCERT formal
property decomposition (FPD) pattern: a recursive pattern that defines the gen-
eral structure of formal property decomposition in AUTOCERT [21]; after which
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(a) Invoking the claim formalization (CF) pattern through the Formalize option of a context menu, as
applied to an informal goal node (G121) in a fragment of the Swift UAS autopilot software safety case.

(b) Interface to interactively supply the parameters of the CF pattern.

Fig. 18. Screenshots of the AdvoCATE interface to formalize an informal claim.

ii) the FPD pattern is automatically instantiated (see Section 4.2). The instance ar-
gument structure produced encodes the reasoning and the evidence from AUTO-
CERT formal verification, which is then grafted onto the formal node from which
the verification was invoked.

Fig. 20 illustrates this instance argument—i.e., the subtree with formal goal node
G2 as root—but shows only one step in the verification, i.e., the decomposition of
the formal claim in G2, into the VCs in goal nodes G124 and G126, and the lower-
level formal property in goal node G6. The rest of the verification steps and and the
corresponding nodes in the argument have been hidden28 for better readability. The
full argument can be seen in [21, 22].

In [22] we have described in detail how formal requirements verified using AU-
TOCERT can be transformed into argument fragments. Here, we have mainly de-

28 AdvoCATE provides a Show/Hide feature—as shown by the eponymous option in the context menu
in Fig. 18a—with which a user can selectively show and/or hide a node, paths to/from a node, and children
of a node.
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Fig. 19. Screenshot of AdvoCATE showing an instance of the CF pattern produced from interactive in-
stantiation and appended to the invoking fragment.

scribed how AdvoCATE supports the process, in particular the steps followed in the
AdvoCATE interface to invoke a formal verification tool and integrate the result into
an argument. Although we have used AUTOCERT, as the formal method (and tool)
being integrated, the approach is generic and extensible to other formal verification
techniques29 in a straightforward way.

6.3 Structural Abstraction

Earlier (Section 6.2), we described how we use AdvoCATE to automate the genera-
tion and assembly of large argument structures. In this section, we describe how we
use AdvoCATE for structural abstraction of such arguments, in particular modular
organization (Section 6.3.1), and hierarchization (Section 6.3.2).

We illustrate this functionality by applying it to the safety arguments of a real
aviation system: a ground-based detect and avoid (GBDAA) capability used for the
assurance of UAS flight transit operations [6]. In brief, the purpose of this safety
argument is to provide assurance that a) the GBDAA capability meets its respective
functional requirements, i.e., to detect intruder air-traffic in the airspace where UAS
transit operations are occurring, and to facilitate the safe completion of any avoidance
maneuvers required to mitigate a mid-air collision hazard; and, additionally, b) that

29 As well as, more generally, to other formal methods paradigms, so that techniques such as formal
refinement or program synthesis could be integrated, although that would require a different workflow.
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Fig. 20. One step in the AUTOCERT verification: one level of the instantiated verification argument, con-
nected to the formal claim node with the rest of the levels hidden.

the introduction of this capability into the airspace system does not pose additional
hazards to other airspace users.

6.3.1 Modular Organization

The currently implemented functionality allows users to create modular arguments,
contractual arguments, module views, and a module hierarchy. To display and ma-
nipulate the latter, a dedicated module explorer panel is available (Fig. 21, top left)
whose default content contains a local root module that corresponds to a project. The
module explorer automatically recognizes and lists existing (or newly created) mod-
ular/contractual arguments. By default, all contents appear as siblings under the local
root module. Users can then create, edit, and move modules (and the corresponding
arguments) into a hierarchy as required.
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Fig. 21. Screenshot of AdvoCATE showing modular organization of arguments, with a module explorer
panel highlighting the module hierarchy and a modular argument shown in the canvas.

Fig. 21 illustrates how we use AdvoCATE to organize the GBDAA safety ar-
gument in a modular way. As shown in the module hierarchy, the overall argument
contains a top-level module, along with sibling modules that address:
– the GBDAA detection and avoidance functional requirements (module DetReq

and module AvdReq respectively). The former further contains an argument of
equipment reliability (module EqpRel);

– the mitigation of GBDAA hazards (module GBDAAHazMit);
– the adequacy of the threat volume of the airspace for mission operations (module

ThrtVolDef );
– safety during the various flight phases (module FlightPhases).

Moreover, each module contains modular arguments that address a specific top-level
claim. For instance, each of the six arguments in module FlightPhases i.e., Taxi-
TakeOff, OutboundTCEntry, TCTransit, OutboundTCExit, InboundTCEntry, and In-
boundTCExit, addresses a specific claim concerning that flight phase.

The module view (not shown) presents an overview of the safety argument ar-
chitecture, representing the dependencies between the various modules and contract
modules. For example, the top-level module invokes support from the modules Av-
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dReq, DetReq and GBDAAHazMit. Likewise, module AvdReq is supported by module
FlightPhases, and there are contextual dependencies between the modules AvdReq,
DetReq and ThrtVolDef. Each module (or contract module) in the module view is
linked to the corresponding diagram, and AdvoCATE provides navigability to the
contained modular (or contractual) arguments. For example, in Fig. 21, the canvas
tab labeled AvdReq shows a fragment of the modular argument contained in the GB-
DAA avoidance requirements assurance argument module (AvdReq), while Fig. 22
shows another fragment.

As shown in Fig. 21, the modular argument contains at least one away node of
an appropriate type such that i) the module reference in the away node points to a
module and modular argument defined in the module hierarchy/view; and, ii) the link
type to that away node corresponds to the link type to the module given in the module
view. Thus (as shown in Fig. 21 on the canvas labeled AvdReq), the module reference
in the away node G17 refers to the module DetReq, and the node itself is referenced
in context, which will result in an _ link between the modules AvdReq and DetReq
in the module view (not shown).

To maintain consistency between the module view and the corresponding mod-
ules, the user can either choose to have edits in the latter automatically propagated to
the former (i.e., by regenerating the view) or to have the tool flag the view as being
inconsistent with its modules and requiring a user edit. Conversely, there are various
choices for how an edit to the view could be propagated to the modules but this is not
currently implemented.

6.3.2 Hierarchization

Now we describe the application of hierarchical structuring, using AdvoCATE.
As mentioned earlier (Section 6.3.1), Fig. 22 shows a fragment of the GBDAA

safety argument contained within the module AvdReq (Fig. 21). Since hierarchization
is orthogonal to modularization, for clarity here we use a version of the argument that
omits the modular elements. The main claim (goal node G7) in the fragment concerns
the acceptability of the GBDAA function to safely avoid intruder air traffic. In brief,
to provide assurance that this claim holds, the argument presents a chain of reasoning,
together with evidence, regarding the procedural and technical implementations of
the avoidance function. The former further includes reasoning over deconfliction and
operator-specific procedures, whereas the latter considers airworthiness and equipage
issues. Note that the structure of Fig. 22 has no hierarchical (or modular) abstraction
and we consider it to be a flat safety argument.

Fig. 23 shows a possible hierarchization of the flat argument structure of Fig. 22,
presenting an intuitive abstraction of the underlying reasoning, although other hierar-
chical organizations can also be created. As shown, we have hierarchically abstracted
the goal node G8 (G9) and the entire subtree beneath it (as in Fig. 22) into the hierar-
chical goal HG2 (HG1), which has been shown in the open view, i.e., the contents are
visible. In AdvoCATE, we achieve this result by simply selecting the node that will
form the local root of the hinode to be created, e.g., G8 (G9), and invoking a hierar-
chize operation that automatically determines the contents of the hinode based upon
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Fig. 22. Flat safety argument fragment, extracted from the safety case for a ground-based detect and avoid
capability for UAS operations [6].

the well-formedness rules for hierarchization [27]. In this case, since no nodes are
selected to delimit the outputs of the hinodes, the hinodes will extend to the leaves.

The fragment of the argument between, and including, strategy nodes S2 and S4
(in Fig. 22), is a chain of strategies that we can consider together and, therefore, ab-
stract as a higher-level, hierarchical strategy; Fig. 23 presents this chain of strategies
as the hinode HS1 (shown in its closed view) whose description reflects the com-
bined strategy employed. Likewise, in Fig. 23, the hinode HS2 abstracts the fragment
between, and including, the strategy nodes S5 and S9 (Fig. 22). In AdvoCATE, this
result is achieved by first selecting the goal nodes that delimit the hierarchical node
to be created (in the case of HS1, those nodes are the local root G8, and outputs
G11, and G15) and, then, invoking the hierarchize operation. We can also create a
hierarchical strategy in the same manner as a higoal, i.e., by first selecting the strat-
egy node that will be the local root of the subtree to be enclosed, and then invoking
the hierarchize operation. The hierarchical strategies HS3 and HS4, in Fig. 23, were
created in this manner. The former encloses the subtree beneath and including the
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Fig. 23. A complete hierarchization of the flat argument structure of Fig. 22, showing containment as well
as both open and closed hinodes.

strategy node S10 (see Fig. 22), whereas the latter abstracts the strategy node S7 and
its justification. The hierarchical evidence node, HE2, is constructed in a similar way.

Each hinode description intuitively conveys either the overall conclusion to be
drawn from the argument enclosed (in the case of a higoal or hierarchical evidence),
or the combined strategy employed (in the case of a hierarchical strategy). Thus, for
example, the higoal HG2 that abstracts the argument from goal G8 downwards would
be used to conclude that a procedural implementation of the GBDAA function assures
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that intruder air traffic would be avoided. Similarly, the hierarchical strategy HS1
concerns the usage of operator-directed avoidance procedures, and the hierarchical
evidence HE2 reflects a collection of those procedures that depend on the location of
the unmanned aircraft.

6.4 Queries and Views

Now we describe how we can use AdvoCATE to query a safety argument, so as to
present views that reflect stakeholder perspectives.

For instance, certification processes in aviation usually require that traceability be
demonstrated between regulations, identified safety hazards, and the various types of
requirements (i.e., those addressing system safety, subsystems, components, and soft-
ware). Thus, a query about traceability can serve, in part, to show compliance to the
traceability requirements arising from the regulator’s viewpoint. Similarly, from the
perspective of software development, it can be useful to highlight software relevant
claims in the argument, so as to evaluate their contribution to the identified safety
hazards. Alternatively, from the perspective of safety case development, queries can
also be used to support the argument development process, in particular argument
assessment (Section 2.3, and Fig. 3), e.g., by identifying parts of the argument that,
though complete, might not engender sufficient confidence. For example, goals asso-
ciated with high risk may need to be supported by particular forms of evidence. We
can then use an appropriate query to identify those argument fragments that do not
meet these criteria.

To illustrate the query functionality and show its utility, we apply it to a fragment
of the Swift UAS safety case (shown as a bird’s eye-view in Fig. 24). In brief, the root
node of the fragment addresses the mitigation of a specific safety hazard—i.e., unan-
ticipated nose pitch down during descent and landing—that can result in a loss of
the aircraft and damage to the runway. The argument develops the root claim of haz-
ard mitigation into sub-claims concerning the various contributory system functions,
including software/hardware, components, and operations, which are then linked to
the evidence, e.g., available from experimental data, procedures, and verification ac-
tivities. We augment the argument nodes with metadata, e.g., user-defined enumera-
tions (given in a domain-specific grammar [18]), which we can reference in queries.

Fig. 25 shows a screenshot of the AdvoCATE interface, highlighting an editor in
which to specify queries, as well as the verification environment (described later, in
Section 6.5). The query editor (see the Queries panel in Fig. 25) provides a library of
pre-defined queries. Users can specify a customized query in the AdvoCATE Query
Language (AQL), store those queries as drafts, and add well-formed named queries
to the query library. For improved readability and ready access to the AQL keywords,
the editor provides syntax highlighting and auto-completion. As shown in Fig. 25,
the query to be executed has been given as the AQL expression:

isGoal & hasAttribute(regulation) |
isBelow(isGoal & hasAttribute(regulation)).

This query attempts to a) identify those goal nodes in the argument with the attribute
‘regulation’; and, additionally, b) show the fragments that have the located goals as
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Fig. 24. Bird’s eye view of a fragment of the Swift UAS safety case, addressing the mitigation of a nose
pitch down hazard [18].

root. Such a query could be used, for example, to determine all the parts of the ar-
gument that address the concerns arising from regulations (or, in general, standards,
guidance documents, etc., when argument nodes contain the corresponding meta-
data).

Others [68] have also recognized the need to relate traceability to safety argu-
ments, defining a specific traceability information model and a mapping to GSN
arguments. Whereas this approach utilizes specific types of metadata and a static
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Fig. 25. Screenshot of the AdvoCATE interface for specifying queries (in the Queries panel on the bottom
left), and for property verification (in the Verification panel on the bottom right). Note that in both panels
the relevant editor gives the name of the argument (complexArgument) upon which the query/verification
is executed; here, that also happens to be the argument shown on the canvas.
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Fig. 26. View produced by executing the query shown in Fig. 25.

mapping to particular argument node types, metadata within our tool is user-defined,
and can be associated with any argument node.

After executing the query, AdvoCATE produces a view (Fig. 26)—showing the
two fragments of the argument (of Fig. 24) that satisfy the query—from which we can
infer that i) there are claims in the structure that reference regulatory requirements,
but that ii) they are yet to be fully developed and supported by evidence. To determine
the exact extent of how the regulations are met, an assessor could navigate to, and
examine, the external documentation referenced from the nodes shown in the view.

Note that this query is rather general, although intentionally so (since we want
to see all the parts of the argument that concern regulations). We can give more
specific queries by including metadata parameters. Thus, if we wanted only to de-
termine whether the regulation concerning aircraft performance during landing—in
particular approach speeds (14 CFR §23.73)—were addressed, we would alter the
query to state:

isGoal & hasAttribute(regulation(CFR14-Part23-73)) |
isBelow(isGoal & hasAttribute(regulation(CFR14-Part23-73)))

which would produce only the right half of the view shown in Fig. 26, i.e., the frag-
ment with node G7 as root. Thus, we can specify generic or detailed queries that best
capture, and locate, the information sought.

Although the view in Fig. 26 appears to indicate that the fragments are discon-
nected, in fact, they are not. To highlight their connectivity, AdvoCATE introduces a
new node type (not shown in Fig. 26, see [18] for an example)—i.e., a concealment
node, or C -node—only visible in views. A C -node is a collapsed representation of
all the nodes that do not satisfy the query, and is annotated with the number of hid-
den core nodes [18]. Displaying C -nodes is a user-defined setting in AdvoCATE and,
should a user choose to display them, they can be shown when the nodes that do not
satisfy a query have either only incoming links, only outgoing links, or both.

In general, AdvoCATE stores views as a special property of the diagram to which
the query is applied, in particular as two lists in the diagram file itself: a) all the view
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names associated with the diagram; and, correspondingly, b) the query that maps to
each name. In the interface, views appear by name as sub-items under the corre-
sponding diagram in the project explorer (see Fig. 25, where the view produced from
the query shown has been listed). We have implemented some additional usability
features, such as the ability to open multiple views simultaneously in separate tabs,
i.e., multiple canvases. Users can save changes either to the argument structures, the
queries, or both. When any change is made either to the source diagram or a view, it
is reflected in all views and in the original diagram.

In summary, we can use AQL to specify combinations of structure and metadata
to produce views that address domain specific scenarios. We can also use AQL to
specify more complex queries that operate on the structure alone, to produce mean-
ingful views [18]. For example, querying to locate all goal nodes from which all paths
lead to an evidence node (i.e., completely developed fragments), will produce a view
that is identical to the argument structure to which the query is applied, if the argu-
ment is internally complete. However, as we shall see subsequently (Section 6.5), it
is useful to be able to specify and verify such argument properties as well.

Extending Queries for Report Generation: Report generation is a common feature
in model-based development, and many frameworks offer mechanisms for specify-
ing reports using combinations of static and dynamic text, where the dynamic text is
instantiated from a variety of artifacts, such as models, code, and test results. Mat-
lab [55], for example, uses model queries in combination with structure and style
elements to generate reports.

We have developed a prototype safety case report specification language, SCRbL,
based on an extension to our query language, AQL. Fig. 27 shows the methodology
for report generation. The key components are templates, specifying the organiza-
tion and format for a report, and queries specifying the content. Templates combine
boilerplate text with extended queries to extract information from the safety case. We
omit the details here.

6.5 Verification

The overall goal for argument verification is to support our argument development
process (Section 2.3), in particular the argument analysis and improvement activi-
ties (Fig. 3). Our current implementation can verify argument structure properties
representing both a) specific structural constraints, i.e., syntactic checks (see Sec-
tion 2.3.5 for some of the types of argument properties being addressed); and b) se-
mantic checks, based on the metadata attached to the nodes. Note this is a form of
lightweight semantic checking, in contrast with approaches which encode the argu-
ment itself in a formal machine checkable language [69]. In brief, the verification
language extends AQL with a more expressive logic, including existential and uni-
versal quantification. As mentioned earlier, Fig. 25 shows a screenshot of the Advo-
CATE interface including its (query, and) argument verification environment. Fig. 28
shows the latter in more detail. As shown, the verification environment provides a
property specification editor in which we use APL to specify the properties to be
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GSN Argument Structure 

beginTemplate default (argument)  
 
rootGoal = has(type, goal) & !<isBelow>(true) 
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Fig. 27. Methodology for generating safety case reports using AQL queries and templates specified using
SCRbL.

Fig. 28. Screenshot of AdvoCATE verification environment.

verified on a chosen argument structure. As in the query editor, the property specifi-
cation editor provides standard editing functionality such as keyword suggestion and
auto-completion during property specification, syntax highlighting, and an error indi-
cation if the property is not well-formed. Properties that are not well-formed preclude
invocation of the verification engine.

When a well-formed property is verified, upon successful verification, a Passed
status is displayed, whereas a failed verification causes a Failed status to be displayed
along with the counterexample nodes that caused the verification to fail (Fig. 28). The
verification environment additionally provides library properties (shown in the verifi-
cation task library sub-panel of Fig. 28), functionality to specify and save properties
incrementally as drafts, a history of the properties executed, as well as links to the
library of metrics and queries (not shown), which can also be used in verification.
Furthermore, verifications can be saved relative to an argument structure (see the
project explorer panel, in Fig. 25), and can be accessed directly from the project. The
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idea is that property verification can be invoked either every time that a change is
saved (i.e., run on save), or on user demand (i.e., run on command).

To illustrate the application of the verification functionality, we verify whether the
Swift UAS argument fragment of Fig. 24 is internally complete, i.e., that all goals in
the argument eventually have a path to an evidence node. We specify this as the prop-
erty forAll(x:isGoal :: exists(x.A(� >>*)(isEvidence | !isLeaf))), which states that
for all goals x there exists a node that is!-below x, for which every node reachable
by!⇤ is either evidence or not a leaf.

Fig. 25, and also Fig. 28, show that the argument structure (of Fig. 24) fails verifi-
cation of this property, and also lists the goal nodes in the structure for which the prop-
erty does not hold, i.e., the counterexamples to the universal quantification. Presently,
there is no navigability from counterexamples to the argument structure, but we in-
tend to introduce this functionality in future.

6.6 Computing Safety Case Metrics

Safety case metrics are a mathematical specification of the particular questions that
must be addressed to respond to specific measurement goals, and which are deter-
mined by computation on the argument structure. Together with an interpretation
model, metrics provide a convenient mechanism for decision making by summa-
rizing the state, and the key properties, of a safety case during its evolution. Since
measurement goals, the corresponding questions, and the interpretation models are
usually defined and tailored to a particular application, domain, or project, there is a
need for user-defined specification and computation of safety case metrics.

Although we will not discuss metrics and their treatment in detail here, we have
defined a number of base and derived metrics that express, respectively, a value
assignment to directly measurable safety case properties, e.g., size, and indirectly
measurable properties, e.g., coverage of certain kinds of claims. In our earlier im-
plementation of AdvoCATE [26], those metrics were not user-modifiable and were
hard-coded. In our current implementation, we have extended AQL to support a user-
defined computation of safety case metrics30. Additional syntax is introduced in AQL
to support counting, integer literals, and basic arithmetic operations. For example, we
can define a metric: developedClaimRatio = #(isGoal & isTBD)/#isGoal specify-
ing the proportion of undeveloped claims in the argument. In other words, it provides
one numeric measure of the extent to which an argument has been developed, and
can serve to support decision-making at the milestones at which the various processes
during safety assurance synchronize (see Section 2.2).

We note that one of the criticisms against the safety case approach is the lack of a
measurement basis [80]. Although the metrics being computed in AdvoCATE using
our approach do not directly address this problem, we believe it provides preliminary
steps towards bridging that gap.

30 In fact, we can also leverage the use of metrics computation during property verification (Section 6.5).
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7 Discussion

In this section, first we describe related work in tool support for assurance cases
(Section 7.1). Then (in Section 7.2), we reflect upon the satisfaction of the needs and
requirements motivating this work (given earlier in Sections 3.1 and 3.2). Finally, we
present our future plans for enhancing AdvoCATE (Section 7.3).

7.1 Related Work

As mentioned earlier, practitioners can choose from among a variety of tools to create
structured safety arguments using GSN and/or CAE diagrams.

The Safety Argument Manager (SAM) [57, 82] and its various versions repre-
sent, perhaps, the very first set of tools for creating and managing safety arguments.
The initial incarnation of SAM based its structuring principles on the Toulmin model
of arguments [70]. Subsequent versions of the tool focused on developing a goals-
based representation for structured arguments (representing the precursor to GSN),
and managing the interrelations with fault tree analysis (FTA) and failure modes and
effects analysis (FMEA). A number of tools for creating and managing safety cases
have since emerged (including ours), several of which have been developed through
research projects, which we will categorize as research tools. Others tools have been
developed for commercial purposes, which we categorize, accordingly, as commer-
cial tools. We describe each category next.

7.1.1 Research Tools

Several research tools have used the Eclipse framework for implementing functional-
ity to create and manage safety case argument structures. For example, ACEdit [30]
is an open-source, Eclipse plugin31 that provides a straightforward implementation of
the GSN standard and the Argumentation Metamodel (ARM). Likewise, the SafeEd
tool32 is another Eclipse plugin for creating GSN safety arguments, supporting only
the core (non-modular) GSN. However, SafeEd is distinguished by its functionality
of translating arguments into description logic, and automated consistency checking
through an integrated reasoner. To our knowledge, neither tool provides any addi-
tional automation features, beyond those that are built into the Eclipse framework
and extended, as a consequence, into its plugins.

The AutoFocus3 (AF3) framework [79] is a set of model-based tools33 one of
which supports creating GSN arguments. Thus, the AF3 framework, itself, is a tool-
chain providing integrated support for requirements specification, modeling and sim-
ulation, code generation, formal verification, and test-case generation for distributed,
reactive, embedded software systems. Models created within the framework can be
linked to elements of the argument also created within the framework.

31 Available at: https://code.google.com/p/acedit/
32 Available at: http://cs-gw.utcluj.ro/ adrian/tools/safed/gsn/gsn.html
33 Available at: http://af3.fortiss.org/
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The CertWare workbench [4] is an open-source tool34 for creating safety cases,
supporting a variety of notations and metamodels. Thus, CertWare provides a facility
to create diagrams in both GSN, CAE, and the EUROCONTROL GSN [33], which is,
itself, a variant of the core GSN. Additionally, the argument data stored is compliant
with the ARM, and the software assurance evidence metamodel (SAEM) (which have
been now combined into the structured assurance case metamodel (SACM) [60]).
CertWare also facilitates computing effort and project management metrics, rather
than metrics on the safety argument, as in AdvoCATE (see Section 6.6).

The D-Case editor [56] is an open-source Eclipse plugin35, which provides func-
tionality to manually create argument structures and patterns. Arguments can incor-
porate monitoring nodes, a sub-class of evidence nodes which are linked to monitors
of target systems and whose status is updated automatically to indicate whether tar-
get values remain within a specified range. The editor has also been connected to the
Agda functional programming language and proof assistant, to provide features for
automated consistency checking [69]. The methodology underlying the latter is to
create a formal assurance case as a formal proof which can then be imported into the
D-Case editor, so that consistency checking of the argument amounts to type check-
ing the proof in an appropriate theory.

The Evidence Confidence Assessor (EviCA) [59] is an Eclipse plugin that sup-
ports the manual creation of GSN arguments, and purports to auto-generate the cor-
responding confidence arguments. The core approach is to manually annotate argu-
ment structures with so-called assurance claim points [46], which correspond to pre-
defined confidence argument patterns. The core elements of these patterns are what
the developers refer to as confidence factors. Pattern instantiation amounts to an in-
teractive specification of the values of the relevant pattern variables, to create instance
arguments. The tool additionally implements the evidential reasoning algorithm [83]
to aggregate user-supplied beliefs and weights towards a specification of confidence
in the arguments created.

Tools for creating and managing safety arguments, which do not (or only partly)
use the Eclipse framework in their implementation are also available. For example,
the ACCESS tool [66] is a Microsoft Windows application that integrates Microsoft
Visio, as the application to create and edit GSN argument structures, and Microsoft
Word, to view the related documents. In addition, it provides a number of customized
interfaces to create argument summaries (i.e., descriptions associated with a selected
subset of the argument nodes), record author or reviewer comments as annotations,
and for argument inspection.

The DiaSAR [84] tool has been created with the primary purpose of supporting a
dialectical model for reviewing GSN safety arguments. The tool provides an editor
for specifying safety arguments using core GSN, along with some notational exten-
sions to represent counter-arguments. In addition, the tool provides a means to track
the progress of a review, i.e., whether an argument element has been accepted, with-
drawn, challenged, or questioned, as well the dialog between the review participants
(and its history).

34 Available at: http://nasa.github.io/CertWare/
35 Available at: http://www.dcase.jp/index en.html
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The Evidential Tool Bus (ETB) [14] provides a tool integration and workflow
scripting framework to manage the claims and evidence generated by formal tools, in
support of assurance activities. Specifically, the ETB provides a mechanical approach
to managing the evidence both generated in support of tool-specific inferences, and
created for the claims where formal tools have been utilized.

The Workflow Engine for Analysis, Certification, and Test (WEFACT) framework
provides a toolchain36 that connects, in part, the DOORS requirements management
tool37 and the D-Case Editor to generate GSN arguments for process compliance.
The underlying methodology relies on model transformation, wherein i) a DOORS
plugin first transforms a process model into its corresponding argument, i.e., essen-
tially, a DOORS file that contains a listing of the argument elements together with the
associated links, using a defined set of transformation rules [38]; and ii) the argument
is then exported into a format compatible with the D-Case editor, which presents it as
a GSN argument structure diagram.

The University of York, UK, provides a Microsoft Visio plugin38 that provides a
diagramming capability to create GSN argument structures.

The Resolute tool [37] provides both a language and a capability for creating
assurance arguments based on architectural models. The language component of the
tool provides users with the functionality to formulate claims and rules for justifying
those claims, based upon which an argument structure can be generated. Resolute has
been implemented based on the Eclipse framework.

Beyond the tools mentioned here, the literature contains allusions to other tool im-
plementations: for example, of an approach for the automated compilation of safety
argumentation (essentially a hierarchy of safety requirements) from work products
of automotive functional safety development processes [2]; of a weaving model for
automated pattern instantiation [45]; and, of a common information model for man-
aging both arguments and evidence [62]. There is little information available on these
tools, their actual capabilities, and their applicability, besides their provision of spe-
cific functionality in support of creating assurance cases.

7.1.2 Commercial Tools

The Assurance and Safety Case Environment (ASCE)39 is a mature toolset for safety
cases (and possibly also amongst the most widely used by many practitioners).

ASCE provides its safety case creation and management services through schemas
and plugins. ASCE schemas provide the capability to recognize a variety of notations,
including the (core and modular) GSN, CAE, fault tree notations, etc. To manipulate
these notations, ASCE plugins provide a variety of functionality. For example, linking
to (and embedding) a wide range of documents; listing argument contents in tabular
form; customized report generation; support for creating and editing views of safety
arguments, etc. We note that the underlying notion of view in ASCE differs from that

36 See: https://www.ait.ac.at/en/research-fields/verification-validation/methods-and-tools/wefact/
37 Available at: http://www-03.ibm.com/software/products/en/ratidoor
38 Available at: http://www.goalstructuringnotation.info/archives/41
39 Available at: http://www.adelard.com/asce/
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supported in AdvoCATE [18]. Specifically, in ASCE, argument fragments must be
manually selected, rather than determined through queries, as in AdvoCATE, after
which those fragments can be viewed, edited and saved independently. ASCE keeps
the views of an argument consistent with the original diagram. The dynamic narrative
region (DNR) plugin provides users with the capability to extract and manage content
from a variety of external sources, to embed the extracted content into the arguments
being created, and subsequently update the content by validating consistency with
the source documents. ASCE additionally provides functionality for change tracking
via its difference tool, and support for independent configuration management of the
argument and associated evidence.

Astah GSN40 is a modeling tool that implements the SACM and the GSN. Essen-
tially, it is diagramming tool with some automation features—e.g., a one-click export
of a subtree in the argument into a module—primarily addressing usability needs,
rather than a syntactic and/or semantic manipulation of the argument.

The NOR-STA Assurance Case Tool41 is a web-based application whose focus is
on creating the logical structure of an assurance argument, rather than its graphical
construction using notations such as GSN. Primarily, it offers its users the ability to
manually instantiate an argumentation model—the so-called NOR-STA argumenta-
tion model—comprising much of the same elements as core GSN along with some
additional elements. Effectively, the arguments constructed using the NOR-STA assu-
rance case tool are tree-like hierarchical structures. Nevertheless, the tool also en-
codes a mapping from the NOR-STA argumentation model elements to GSN, due
to which instances of the argumentation model can be exported as GSN diagrams.
The tool additionally offers capabilities to generate reports, and provide argument
assessments using subjective logic [50].

The Safety Case Toolkit (SCT) [53], purports to provide a comprehensive system
for developing, managing and presenting large-scale safety arguments as a set of ser-
vices integrated into the Eclipse framework. SCT exports safety cases as websites,
which are linked to the underlying safety artifacts, i.e., GSN arguments, text-based
descriptions, figures, and linked files that are to be contained in the safety case. SCT
provides a build system that provides automation support, primarily, to create the
safety case website whose index is mechanically extracted from the specified argu-
ment structure and the linked files. In addition, SCT provides additional features in
terms of auto-layout of the arguments, typed metadata, versioning support, and re-
port generation. Finally, it also provides support for argument review, in part, via a
customizable focus mechanism, that displays a selected node in the argument and a
user-defined number of levels of descendants.

The TurboAC assurance case tool42 implements a subset of the core GSN—i.e.,
goals, strategies, and solutions—and also provides a tabular representation of the
created arguments. Additionally, it provides an interface to create fault trees, risk-
traceability matrices, and to document FMEAs, with primary application to medical

40 Available at: http://astah.net/editions/gsn
41 Available at: https://www.argevide.com/en/products/assurance case
42 Available at: http://www.gessnet.com/products
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device safety assurance [32]. The tool also provides an internal linking mechanism
so as to reference the resulting analysis in the arguments created.

Safety.Lab [61], is a prototype tool whose focus is on so-called model-based
safety analysis and it purports to provide support for rich, deeply integrated mod-
els of various safety relevant artifacts including requirements, hazards, fault trees and
architecture. One of the capabilities of this tool is to create GSN argument structures
that link to the safety artifact models that it creates and manages.

7.2 Reflection

To show traceability from the AdvoCATE implementation to the needs motivating
this work (Section 3.1), we recall that the corresponding requirements (Section 3.2)
state the provision of specific functionality. In particular, the implementation provides
a formally-founded framework to:
– create and instantiate argument patterns from the artifacts produced during sys-

tem development, in particular hazards and requirements tables, and formal meth-
ods (Section 6.2), towards addressing the requirement to support the automated
creation and assembly of safety argument fragments (Fig. 4, requirement R1).
Moreover, patterns and their automated instantiation provide a mechanism for
evolving arguments and maintaining consistency when system development arti-
facts change.

– organize argument structures in a hierarchical and modular way (Section 6.3),
to satisfy the requirement to provide complexity management features (Fig. 4,
requirement R2).

– specify queries on argument structures, and produce views (Section 6.4) using the
AdvoCATE Query Language (AQL). In general AQL forms the core of a suite
of analysis languages to both i) enable improved comprehension of safety argu-
ments by stakeholders (Fig. 4, requirement R3), through a view-based presenta-
tion of the argument, and ii) support evaluation processes (Fig. 4, requirement
R4), through property verification and computing metrics.
Although we have only briefly touched on the formal foundations of the tool

(Section 4), it is worth noting how this provides a basis for the automation features
we have described. The semantics are based on a family of graph-based structures,
with essentially no constraints on the contents of the nodes, themselves, allowing
informal text. This can be contrasted43 with (but is not incompatible with) work on
formal assurance cases [63, 69] where assertions of the safety case are drawn from
a formal logic. Thus, our emphasis on formalization is to provide robust, tool-based
automation support for creating arguments.

So far as we are aware, the automation features of AdvoCATE as presented in
this paper represent functionality not provided by other contemporary tools described
earlier (Sections 7.1.1 and 7.1.2).

43 This distinction has sometimes been misunderstood in the literature [41].
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7.3 Future Work

Several avenues exist to extend and further develop the automation capabilities cur-
rently implemented in AdvoCATE, which we now describe.

7.3.1 Extending the Integration of Formal Methods

Although we have developed a generic mechanism for integrating formal verification
tools, the integration of the individual tools, themselves, is currently hard-coded us-
ing the plugin mechanism. For full extensibility, we must identify the data that needs
to be associated with a tool and how it should be user-specified. For example, tool
integration could be specified as embeddings into the three argument pattern types:
formalization, decomposition, and solution (i.e., divide and conquer), giving the ar-
chitecture of the verification, along with mappings from argument nodes to tool input
(i.e., specifications and syntax for calling a tool). More generally, this approach could
be extended to provide a systematic way of integrating other software engineering ar-
tifacts, such as tests, and the corresponding traceability artifacts.

7.3.2 Pattern Composition

We implicitly use a notion of sequential composition of patterns. In fact, other ways
of combining patterns can be defined, and we have also developed a notion of paral-
lel composition (not given here) to create complex patterns (such as for requirements
breakdown shown in Fig.15b) from simpler patterns. This leads to a notion of argu-
ment architecture, based on pattern composition. Pattern metadata could be drawn
from an ontology, which would offer several advantages. For example, using an on-
tology tool together with an automated import mechanism would save some effort,
while enforcing constraints from the ontology in the argument would provide a way
of specializing a generic pattern for use in a particular domain, as well as validating
that its application does not violate domain-specific constraints.

7.3.3 Combining Modularity, Hierarchy, and Patterns

There are several interesting lines of future development of hierarchy, modularity, and
patterns in safety cases. Firstly, since our current theory of hierarchy only accounts
for the core GSN, one key task is to extend the notion of hierarchy to also account
for patterns and modules. Likewise, our theory of modules has not yet considered
the various hierarchical nodes. Thus, a complementary task is to extend modules to
account for hinodes. Secondly, we would like learn potential hierarchical and modular
structure, e.g., using metadata, after which one might be able to automatically abstract
hierarchical and/or modular patterns from existing safety cases.

7.3.4 Enhancing Queries and Views

Currently, the scope of a query is a single argument structure. We intend to develop
suitable interfaces to linked artifacts, which will allow us to query the entire assem-
bly of artifacts comprising a safety case. The current query/view mechanism is also
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limited to the core GSN language, but AdvoCATE implements a number of exten-
sions, in particular, for modules, hierarchy, and patterns. We plan to investigate the
interaction of queries with these extensions. Additionally, as currently implemented,
the source diagram and resulting view are each currently a single diagram. However,
modular GSN allows multi-diagram safety cases, suggesting a need to define an ap-
propriate notion of multi-diagram view. Another interesting direction to pursue is the
interaction between queries and verification: so-called ontology-mediated query lan-
guages [7] combine querying with reasoning over an ontology, which may provide
greater scope to formulate queries that address argument validity.

7.3.5 Extending Support for Argument Evaluation and Improvement

Among the major challenges in using safety cases during certification, is evaluating
the argument presented. This can be considered as analogous (or complementary) to
the activity of argument analysis (Section 2.3.5), although existing techniques such
as phased inspection [42], and safety argument review [51] render it a largely human-
centric verification activity. We believe that AdvoCATE can provide tool-based au-
tomation support here, e.g., through the integration of Bayesian reasoning for the
assessment of confidence [25].

Additional research in terms of both methodology and automation support, is
also required for improving an argument after it has been evaluated, in particular
with respect to the argument improvement activity (Section 2.3.6). So far, the met-
rics we have implemented compute properties of individual arguments, but could
be extended to modules. The concepts of coupling and coherence are well-known
quality metrics for modularization, but the analogous notions for safety arguments
require some thought. This would allow automated transformations for refactoring
arguments.

7.3.6 Maintaining Consistency between Artifacts

It has gradually become clear that there are numerous consistency (and, more gener-
ally, traceability) relations that need to be maintained between the various assurance
artifacts: for example, the relation between module views and the corresponding mod-
ules, or between a query view and its source diagram. Rather than implementing these
maps in an ad hoc way, we need a principled approach. Indeed, the problem has be-
come more acute as we have extended AdvoCATE with additional assurance artifacts,
such as first class hazard tables, and bow tie diagrams (not described in this paper;
see [28]). We believe that bidirectional transformations [67] offer a rich theoretical
foundation that should be applicable here and we have begun to investigate their use
in AdvoCATE.

8 Conclusion

We believe that both a formal basis and tool support are crucial for improving the
credibility and wider acceptance of structured safety arguments during the certifica-
tion of safety-critical products. Towards that end, in this paper, we have described
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AdvoCATE, a toolset that provides unique automation features to support the deve-
lopment of assurance cases, and a methodology for safety argument development that
leverages our toolset. AdvoCATE implements a formal model of graphical argumen-
tation, and the semantics are based on a family of graph-based structures, enriched
with metadata. There are orthogonal extensions to define argument patterns, as well
as the two key structuring mechanisms, i.e., hierarchy and modularity. Thus, Advo-
CATE supports both manual and automated construction of arguments, their modular
and hierarchical organization, the specification and instantiation of argument patterns,
queries and views on arguments, and the verification of argument properties.

The need for these capabilities was borne out of practical necessity to provide
safety case development and safety assurance support for UAS and their missions be-
ing conducted at NASA Ames. Indeed, to illustrate the utility of AdvoCATE, and the
applicability of its automation features, we have used the tool during the development
of assurance arguments for a number of real aviation systems. In particular, we have
used the pattern instantiation capability to integrate hazards and requirements ana-
lysis [19], as well as evidence and reasoning from formal methods [21, 22], during
the development of an end-to-end safety argument for the Swift UAS. Likewise, our
colleagues used this capability to create safety arguments from the hazard and safety
requirements analysis of a transport-category, twin-engine aircraft model [12].

Additionally, we have applied the query/view mechanism to illustrate the creation
of stakeholder specific views on fragments of the Swift UAS safety argument. In
particular, we use the AdvoCATE Query Language (AQL) to specify queries, which
are applied to arguments augmented with domain-specific metadata, and produce
views showing
– traceability between hazards, safety, system, and software requirements;
– whether, and the extent to which, requirements arising from regulations are being

addressed;
– the contribution of software to system assurance concerns; and,
– the degree to which an argument is complete [18].

Moreover, we have used the verification environment to specify and verify structural
properties on the arguments created. Lastly, we have applied modular structuring to
specify an argument architecture, together with modular arguments, for the safety
assurance of a ground-based detect and avoid capability used in UAS transit oper-
ations. Subsequently, we have applied hierarchical structuring to abstract argument
fragments of the same system [27].

We have used AdvoCATE in real projects for safety (and airworthiness) assu-
rance of UAS. Our hypothesis—partly based on this first-hand experience in creating
safety cases for real systems, which subsequently underwent regulatory scrutiny—is
that formally-founded automation can augment and improve the current practice of
manually creating, evolving and evaluating arguments. We plan to evaluate Advo-
CATE by application within various other aviation contexts, e.g., airspace system
safety, and airworthiness assurance.
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