
(Cover Feature) Intelligent Autonomous Systems
Editors: Atif Mashkoor, Paolo Arcaini, Angelo Gargantini

Dynamic Assurance Cases: A
Pathway to Trusted Autonomy
Erfan Asaadi and Dimo Petroff
KBR, Inc.

Ewen Denney, Jonathan Menzies, and Ganesh Pai
KBR, Inc. and NASA Ames Research Center

Abstract—We propose a system architecture that facilitates dynamic assurance of autonomous
systems embedding machine learning (ML) based components, and introduce Dynamic
Assurance Cases (DACs) as a generic framework to provide justified confidence in their
capabilities. Underpinned by diverse evidence, rationale capture, and safety risk management
principles, DACs characterize what lifecycle assurance means for such systems by capturing the
technical mechanisms for managing risk, whilst elaborating the rationale for trusting autonomy.

THE PREVIOUS DECADE has witnessed revo-
lutionary advances in artificial intelligence (AI)-
based autonomous capabilities of engineered sys-
tems, largely due to a corresponding progress in
machine learning (ML) algorithms. Self-driving
cars, which epitomize such AI and ML-based
autonomous systems (AS) are the face of this
revolution. Fatal accidents involving AS [1] have
keenly highlighted the need to assure different
stakeholders that systems with varying levels of
autonomous capability are both fit for purpose and
can be safely operated.

Various concurrent and ongoing standardiza-
tion efforts aimed at autonomy safety analysis and
assurance generally acknowledge that assurance

cases (ACs) are a viable approach for engendering
trust [2], [3]. An AC is a comprehensive, defensi-
ble, and valid justification that a system or service
will function as intended for a defined application

and operating environment [4].

ACs have been successfully used for safety
assurance of novel aviation applications [5] where,
similar to AS, regulations and safety guidelines
continue to be under development. Contemporary
research [6], [7] has also elaborated the merits of
using ACs for addressing the varied AS assurance
challenges.

AS are inherently dynamic and updates of
their ML-based components—aimed at improving
performance based on operational data—can be
expected to occur reasonably often. Online and
lifelong learning [8] are schemes meant specifi-
cally for this purpose, although their use has yet to
be demonstrated in mainstream products. Another
paradigm (the use case for this paper) employs
sufficiently frequent offline learning to sensor data
gathered during the operation of an in-service
system. The re-trained ML components are then

Computer Published by the IEEE Computer Society © 2020 IEEE 1

Author’s pre-print copy accepted for publication in IEEE Computer 53 (12). Dec. 2020
The definitive version appears on IEEEXplore. DOI: 10.1109/MC.2020.3022030



Intelligent Autonomous Systems

re-deployed into the operational system using, for
example, over-the-air software updates.

The most common notion of AC is that of
a structured argument. The objective is to con-
vince human stakeholders, e.g., regulators, of the
trustworthiness of an autonomous capability, by
elaborating assurance claims that are then related
by structured reasoning to a variety of supporting
evidence. However, structured arguments are effec-
tively static. Although arguments can in principle
be evolved [9], given the role of argumentation
it may be more practical for argument updates
to happen offline, between missions, and when
system changes are appreciable enough to warrant
human decision making.

Additionally, an operational assessment of
assurance can be a valuable indicator of continued
fitness for purpose, potentially facilitating inter-
vention and recovery when there is insufficient
assurance. Such a dynamic assessment and update

of assurance that is aimed at machine consumption
must necessarily be in a computable form, e.g.,
as a quantification, or by using a formal language,
such as a logic.

Moreover, once a baseline level of acceptable
risk has been established for a system approved
for operation, from an assurance standpoint the
focus is on maintaining that baseline. An archi-
tectural viewpoint of the assurance mechanisms
implemented in the system, along with computable
forms of assurance, are inherently better suited
for this purpose, being more tightly coupled to
the physical and functional system architecture.

In our perspective, a richer AC concept includ-
ing both static and dynamic elements is required
instead: namely, a rigorously defined Dynamic
Assurance Case (DAC). Our concept is distinctly
different from prior work [9], [10], comprising
the following core interrelated aspects: assurance

rationale (captured using structured arguments as
in traditional, static ACs) which is informed by
assurance policies and an assurance architecture,
and which is underpinned by evidence, together
with assurance measures facilitating confidence
quantification that serve as an architectural mech-
anism for dynamic assurance. Collectively, these
offer a multi-viewpoint, model-based approach
for through-life assurance of an AS. Each core
element models a different aspect of assurance
that we will explain subsequently. As more is

discovered about the AS and its environment, we
update the DAC components as appropriate (some
in real-time, and others over a longer interval)
keeping the models consistent via consistency
relations (not described here) that also enable inter-
model traceability.

For the subsequent discussion, the ensuing
terminology is relevant: assurance is the provision
of justified confidence that an item—i.e., a com-
ponent, system, or service—possess the required
assurance properties. An assurance property is
a logical, possibly probabilistic characteristic as-
sociated with assurance concerns (or assurance

objectives), i.e., functional capabilities and depend-
ability attributes. An assurance claim results from
applying one or more assurance properties to a
particular item. Practically, an assurance claim can
be considered to be equivalent to a requirement
that has been (or will eventually be) substantiated
by concrete evidence.

DYNAMIC ASSURANCE
Architecture

The concept of assurance measure charac-
terizes the extent of confidence in an assurance
property through a probabilistic quantification of
uncertainty. As we will later see, it represents
a computable notion of confidence tied to the
wider assurance concerns that are substantiated by
the (system-focused) DAC. As such, it encodes a
baseline level of acceptable risk for a deployed AS,
based on a suitably abstract, probabilistic model
of the same.

Our concept of dynamic assurance integrates
assurance measures into an AS, to facilitate
run-time confidence assessment of its assurance
properties. That, in turn, can support subsequent
decision-making for continued assurance of AS
fitness for purpose in operation.

Figure 1 shows our proposed architecture for
trustworthy autonomy: a collection of run-time

monitors assess system properties (which may
include assurance properties) taking inputs from
the environment and system state. The assurance
measure quantifies the confidence/uncertainty in
the assurance properties using both the inputs and
outputs of the monitors. This, in turn, is one of the
inputs for a decision mechanism that determines
whether to proceed with the nominal system

2 Computer



Assured/Trustworthy 
Autonomous System

Autonomous 
System 

Run-time 
Monitors

Assurance 
MeasuresUncertainty

Decision 
Mechanism

Inputs to the system

Assured Outputs

Original system 
outputs and state

Contingency management

Run-time Assurance
Mechanisms

Monitoring outputs

Original system outputs and
state

Figure 1. An architecture for trustworthy AS.

operation or to invoke contingency management
actions. For example, when there is insufficient
confidence, any expected system output that is
otherwise assured may be masked. We concretize
these concepts later by application to an aviation
domain AS.

The aim of run-time assurance, also known
as run-time verification, is to provide updates as
to whether a system satisfies specified properties
as it executes [11]. Typically, this uses run-time
monitors, which evaluate the properties using
values extracted from the system and environ-
ment state. In a sense, therefore, the notion of
assurance measure we have described here is a
kind of monitor. However, it is worth making the
following distinctions:
• monitors typically relate directly to properties

of the system, whereas an assurance measure
characterizes confidence in our knowledge of
such properties; and

• an assurance measure seeks to aggregatea
range of sources of information, including
monitors. Thus it can be seen as a form of
data fusion.

The architecture in Figure 1 is also closely
related to the simplex architecture and its vari-
ants [11], though there are some differences:
since the assurance measure models the AS,
which may itself be implemented as a simplex
architecture, assurance measure outputs can be
viewed as providing an additional level of analytic
redundancy that is wider in scope that the safety
controllers that simplex traditionally employs. We
believe this can be advantageous in a run-time
tradeoff between performance and safety. Also,
in simplex, decision making takes environment

state as one of the inputs, whereas here they are
reflected in the uncertainty forecast from assurance
measures.

Methodology
We now clarify the relationship of assurance

measures to the DAC concept and its core com-
ponents (described in detail in the next section).
Figure 2 shows a high-level methodology of the
lifecycle of developing a DAC for an AS (broadly
considered as the physical and logical system
descriptions and its concept of operations).

First we establish a baseline level for sufficient
assurance, largely, by developing a static AC
focused on the system requiring assurance. As
shown (in Figure 2 in the box labelled ‘System
Focus’), this comprises various core components,
i.e., assurance policies, architecture, rationale,
evidence, and quantification models (especially
relevant at this stage).

Besides quantifying a pre-deployment assur-
ance baseline, together with the hazard analysis
it enables us to identify and discriminate between
properties for which we construct assurance mea-
sures, and those that require monitoring. Triv-
ially, these include properties whose violation is
expected to impede continued safe operation or
prevent mission completion. However, for instance,
monitoring may suffice for certain component-
level properties verified in design under assump-
tions of system and environment states, while
assurance measures may be better suited to system-
level properties potentially affected by emergent
behavior. In general, we assume that there exist
run-time monitors, some of which are part of the
system requiring assurance, while others are tied
to the validity of the evidence items used.

We compile the corresponding quantification
models into optimized executables—assurance
measures—that we then integrate into the system
architecture as described earlier. Via a dashboard,
the assurance measure can also passively provide
a real-time assessment of the confidence in assur-
ance properties to end users. In either case, since
this modifies the system design there is a need
to provide additional justified confidence in both
the efficacy of the assurance measure itself, and
in the integration.

For this, we develop additional static assur-
ance artifacts (see Figure 2, the box labeled

December 2020 3



Intelligent Autonomous Systems

System Focus

Assurance Policies (Hazards & Requirements)
Assurance Architecture (Risk Scenarios)

Assurance Rationale (Structured Arguments)
Evidence Items

Assurance Quantification Model

AI/ML-based 
Autonomous System

Physical & Logical Architecture
Concept of Operations

Trustworthy Autonomous 
System

Static Assurance Case
Assurance Measure

Run-time Monitors

Quantification and Integration Focus

Assurance Policies (Hazards & Requirements)
Assurance Rationale (Structured Arguments)

Evidence items

Compilation and Optimization

Static Assurance Case

Dynamic Assurance Case

Decision Mechanism

System requiring assurance

Figure 2. Dynamic assurance methodology.

‘Quantification and Integration Focus’) for ob-
jectives such as timeliness of the assurance mea-
sure in the context of recovery actions; assurance
measure performance in terms of forecast sensi-
tivity and specificity; and mitigation of hazardous
interactions due to assurance measure integration.

DYNAMIC ASSURANCE CASES
Our concept of DAC is the combination of the

static assurance artifacts (focused on the system,
quantification and integration), and the assurance
measure, which provides dynamic assurance (Fig-
ure 2).

Practically, through-life assurance has a broad
scope, and a comprehensive DAC must address
a plurality of core and supplementary assurance
concerns [5] through one or more of its main,
interrelated components (see Figure 2). We con-
sider these components to be part of an assurance

toolkit, where the particular assurance concern
being addressed informs which components are
required, and impacts their size and complexity.

For instance, AS system safety is a core
concern—itself covering a broad gamut of as-
surance objectives including but not limited to
design safety, and operational safety—that requires
all DAC components. In contrast, reliable compi-
lation of an ML model into a platform-specific
executable has a narrower, tool-qualification focus.
It represents a supplementary assurance concern

that requires fewer DAC components.
We now describe each DAC component, their

role in (dynamic) assurance, and their interrela-
tions.

Assurance Policy Model (APM)
An assurance policy concretely expresses what

AS assurance means in terms of: i) the conditions
under which assurance is impacted, in particular
where there is a higher risk of undesired effects,
and ii) the requirements for mitigating the risk
associated with those impacts. As previously men-
tioned, these requirements are, in fact, assurance
claims that are yet to be substantiated by evidence.
As such, they capture both assurance properties,
and their allocations to the relevant AS items.

The APM is a model-based representation of
assurance policies providing a basis against which
sufficiency of assurance can be established. As
such, it is both related to and kept consistent with
other core DAC components, as we will clarify
when describing the latter. More generally, the
APM captures the (functional and non-functional)
guarantees to be provided together with the as-
sumptions made, mappings to the AS physical
and logical components, bounds on acceptable
behaviors, system states, etc.

To formulate assurance policies, we can lever-
age traditional hazard analysis techniques, such
as a Functional Hazard Analysis (FHA), or newer
ones such as System Theoretic Process Analysis
(STPA), along with requirements decomposition
and refinement techniques.

Assurance Architecture Model (AAM)
An assurance architecture models a system

from an assurance viewpoint as a collection of
scenarios that show how risk is modified.

The AAM is a model-based representation

4 Computer



of the assurance architecture. We have adopted
barrier models, extending an earlier notion of
safety architecture [12], to represent the AAM.
This choice has been motivated by the observation
that a collection of scenarios can conveniently
describe an assurance concern and, in turn, the
related assurance properties. This tightly couples
the AAM to the physical and functional items con-
stituting the AS architecture, whilst highlighting
the roles that the items and their capabilities play
in risk modification, e.g., prevention, recovery,
tolerance, masking, etc.

Conceptually, the AAM composes distinct
but related operational scenarios, each of which
models the impact on assurance in terms of: i) the
progression of events that migrate the system
to higher risk states; and ii) the mechanisms of
the system architecture employed to manage risk
(barriers). We use Bow Tie Diagrams (BTDs) to
specify these scenarios in a graphical way [12].

Shared BTD elements capture relations be-
tween scenarios at appropriate abstraction levels.
Thus, for system-level assurance concerns, we
model system-level operational risk situations,
each of which we can further refine into lower-
level risk scenarios that themselves require design-
time or operational mitigations.

The AAM can be seen as an implementation

of the APM, with each model being closely
related to, and synchronized with the other, whilst
recording different information. For example, we
can model the assurance architecture of the bar-
riers themselves, as additional BTDs scenarios
showing barrier failure modes and their local
effects. Simultaneously, the APM captures the
corresponding assurance requirements that ought
not to be captured in the AAM.

Thus, a value addition of the AAM is the
assurance viewpoint into the system architecture,
through which the contribution of the latter to
sufficient assurance can be explicitly highlighted.

Assurance Quantification Model (AQM)
The main purpose of assurance quantification

is to assess the confidence that can be justifiably
placed in an (AS) item based on data associated
with measurable assurance properties. Conse-
quently, an appropriate AQM can help both to
establish a baseline level of assurance (to support
the decision to release a system into service), and

to evaluate whether or not that level continues to
be maintained in operation (supporting a run-time
risk assessment and mitigation).

Many AS used in safety-critical applications
are stochastic dynamical systems. As such, the
system-level AQM is a suitably abstract, proba-
bilistic, model-based representation of a stochastic
process whose underlying random variables (RVs)
describe the AS state space. Specific realizations
of those RVs correspond to the assurance prop-
erties of interest, and the associated probabil-
ity distributions reflect the uncertainty in those
properties. That is, we express confidence in
terms of the uncertainty in assurance properties,
with lower uncertainty corresponding to higher
confidence that the related assurance property
holds. Effectively, this is a probabilistic query
on the AQM, leveraging a range of techniques for
uncertainty quantification (UQ) and propagation
that account for various types of uncertainty, e.g.,
model and parameter uncertainty.

Component focused assurance quantification
of ML components is also feasible and the cor-
responding AQM takes into account component-
level usage details [13]. We can relate a component
level AQM to the system-level AQM, though we
will not consider it further here.

Evidence Model (EM)

Evidence underpins assurance, and is crucial
for trusting AS. The EM as a core DAC compo-
nent relates heterogenous evidence items, records
their provenance, captures the assertions that can
be made, and their usage context, whilst facilitat-
ing their tracing to other core DAC components. In
particular, we link evidence items to assurance ra-
tionale (described next) for both justifying specific
AS assurance claims, and to substantiate why the
evidence items should themselves be trusted. In
the latter case, note that the assurance claims are
about the evidence items, whereas in the former
case, they are about the AS.

More generally, the EM is an interface to
reference concrete external evidence items in
the application-specific DAC components. For
instance, when a structured argument references,
say, a piece of formal verification, it refers to the
corresponding entry in the EM.

December 2020 5



Intelligent Autonomous Systems

Assurance Rationale
Structured arguments capture various kinds

of assurance rationale, in the same way as a
traditional, static AC. This includes not only the
reasoning why specific (AS) assurance claims
should be accepted based on the evidence supplied,
but also rationale substantiating supplementary
assurance concerns of the remaining DAC com-
ponents themselves; e.g., sufficiency of the stated
assurance policies; appropriateness of assumptions
such as independence of risk mitigations in the
assurance architecture; the relevance and complete-
ness of the scenarios specified in the AAM; and,
as mentioned earlier, the suitability and relevance
of the evidence used.

We can communicate such rationale as a
narrative, in a tabular or a graphical form, or as a
combination of the three. Here, we use the Goal
Structuring Notation (GSN) [14]: a standardized
graphical language to describe key components of
an assurance argument. For methodological details
on developing assurance arguments, see [4].

EXAMPLE
We now concretize the preceding concepts by

application to an aviation domain AS supplied by
our industrial collaborators: an Unmanned Aircraft
System (UAS) embedding a generic autonomous
taxiing capability, intended for ground movement
operations at airports. We will present illustrative
excerpts and fragments that are not intended to
be exhaustive.

Taxiing requirement: ± x meters from centerline with 2! confidence

Runway Centerline

True lateral offset 

Estimated 
lateral offset

Position error 

Allowed lateral offset

2x

Side stripe

Figure 3. Autonomous runway centerline tracking.

Autonomous Taxiing System Description
We are primarily interested in providing as-

surance of runway centerline tracking. Figure 3
shows this use case, where the UAS is required
to taxi along the runway, following the runway
centerline without both i) violating an allowed
lateral offset (assured performance), and ii) lateral
runway overruns, i.e., veering off the sides of
the runway (assured safety). A simplified system
architecture to realize this autonomous taxiing
capability comprises, firstly, a deep Convolutional
Neural Network (CNN) that implements a percep-

tion function, ingesting video images from a wing-
mounted camera pointed to the nose of the aircraft.
This ML component performs regression under
supervised learning producing as output, estimates
of cross track error (CTE), i.e., the horizontal
distance between the aircraft nose wheel and the
runway centerline. Next, a classical Proportional-
Integral-Derivative (PID) controller then uses CTE
estimates to generate the appropriate steering and
actuation signals.

Autonomous Taxiing Assurance Policies
Safety and performance are amongst the two

main assurance concerns relevant for autonomous
taxiing. The APM records the hazards to these
(and other) concerns, i.e., the operational activ-
ities and system conditions that, under certain
environmental conditions, compromise safety and
performance. It additionally specifies assurance
requirements that embed the relevant assurance
properties. Those, in turn, give the system states
under which the hazards are implausible (ideally,
untrue). Thus, a candidate performance assurance
property is (informally) to maintain the allowed

lateral offset from the centerline whilst taxiing (see
Figure 3). Similarly, a candidate safety assurance
property is to not depart the runway pavement

boundaries by crossing the side stripes whilst

taxiing.
The APM also contains potential precursors

(causes) and effects, along with candidate mitiga-
tions and the associated requirements. For instance,
some candidate causes of the hazards to perfor-
mance and safety include hazard contribution

modes (HCMs) of the ML components [15], e.g.,
accurate CTE estimates from runway markings

other than the centerline. Mitigations can include,
for example, a combination of i) system-level

6 Computer



prevention and recovery devices, e.g., emergency
brakes, or redundant aircraft localization; and
ii) design modifications aimed at improving ML
component accuracy, e.g., retraining the ML com-
ponent using training data augmented with test
data from prior or lower-accuracy variants.

Autonomous Taxiing Assurance Architecture
Figure 4 shows a BTD illustrating the risk

posed to safety and performance in performing
a hazardous activity using ML-based autonomy:
taxiing at a speed of 25 knots on a wet runway
under low visibility conditions at dusk, when there
are no crosswinds.

Here, a violation of the performance assurance
property (the central, top event) can lead to an
unsafe consequence, signifying a compromise
of the safety assurance property. This scenario
shows two potential initiating events (threats, in
BTD terminology), one of which is a functional
deviation (labelled Threat 1), while the other is
a hazardous control action (labelled Threat 2).

Interspersed between the events are mitigations
(barriers, in BTD terminology) that modify risk in
specific ways: here, a combination of redundancy,
failover mechanisms for the perception and control
components, runtime monitoring, and emergency
braking, invoked to assure that taxiing is both safe
and performant. The extent of risk modification
that a barrier provides is reflected quantitatively
as barrier integrity [12].

Figure 4 can be seen as a snapshot of a
partially developed AAM, which we can further
refine based on the assessment of residual risk
levels (RRLs) of the relevant top events and
consequences. For instance, if the RRL is at an
unacceptable level, additional risk mitigations such
as safety margins may be used.1

We can develop this AAM and refine the asso-
ciated scenario-driven analysis not only at system
level (as discussed here), but also at a lower,
component-level, thereby relating (system-level)
operational assurance concerns to (component-
level) design assurance objectives.

Assurance Arguments and Evidence
Figure 5 shows a fragment of a structured

argument in GSN capturing the assurance rationale

1In Figure 4, node and label colors give an intuitive visualization
of risk, e.g., red/orange colors reflect higher risk.

for autonomous taxiing safety. The text labels
identify the GSN language elements, links with
solid arrowheads represent inferential relations
while those with hollow arrowheads indicate
contextual relations. The diamond decoration on
nodes indicate that the reasoning is to be further
developed (see [14] for more details).

The argument in Figure 5 combines disparate
forms of argumentation: a qualitative, inductive
argument (the fragments including strategies S2,
S5 and downwards) reasoning over hazard identi-
fication, and mitigation (e.g., through prevention
barriers), and the rationale underlying quantifica-
tion (as highlighted in Figure 5).

The qualitative argument captures the (static)
reasoning that is implicit in the assurance ar-
chitecture. However, it includes additional sub-
stantiation on fitness for purpose of the barriers
(e.g., the claims in the as yet undeveloped sub-
goal nodes G6, G7 and G8). The quantitative
argument fragment relates quantified assurance
claims as determined from the AQM (i.e., as
shown in sub-goal nodes G10–G12) to the wider
argument, serving as a complimentary branch to
the qualitative argument leg.

The fragment here is focused on the system
level, but connects to claims on components.
For example, the argument justifying the claim
in sub-goal node G9 (not shown here) would
address ML component contribution to the unsafe
event in the root goal node (G1), invoking the
mitigation of the applicable hazard contribution
modes (HCMs) [15], recorded in the APM.

The evidence used (not shown) includes both
formal and descriptive environment and aircraft
system models, scenario descriptions, simulation
results, formal safety specifications and verifica-
tion results (e.g., of reachability properties).

Dynamic Assurance of Autonomous Taxiing
The assurance measure implements the AQM,

providing a real-time quantitative forecast of the
uncertainty that the aircraft violates its perfor-
mance and safety assurance properties whilst
taxiing.

The AQM here is a Dynamic Bayesian Net-
work (DBN) that specifies the joint distribution
over a collection of RVs (including those for the
true and estimated CTE), whose states correspond
to the temporal evolution of the states of the

December 2020 7



Intelligent Autonomous Systems

Threat 1
(Functional Deviation)

Threat 2
(Hazardous Control)

Top Event
(Performance Assurance 

Property Violation)

Consequence
(Safety Assurance 
Property Violation)

Hazardous Activity
(Operating Context)

Recovery Barrier

Prevention Barrier

Figure 4. A view of the AAM: BTD showing a performance and safety violation scenario.

Root goal/claim

Context

Strategy

Justification

Assumption Sub-goal

Rationale underlying the 
quantitative argument
Rationale underlying the 
quantitative argument

Figure 5. Excerpt of a system-level structured argument in GSN.

8 Computer



taxiing aircraft. Quantifying assured performance
amounts to querying the DBN for the posterior
probability that the true aircraft location (i.e., true
CTE) is within the bounds of the allowed lateral
offset.

Based on thresholds that balance safety and
performance (as determined by our end-user in-
dustrial collaborators), the decision mechanism
(see Figure 1) uses the assurance forecast to
decide whether the aircraft should continue, slow
down, or engage the emergency brakes and stop.
The assurance measure includes the inputs and
outputs of a run-time monitor that determines if
the camera output images are from outside the
training distribution of the the ML controller.

We have integrated both the assurance measure
and the run-time monitor into a hardware-in-the-
loop simulator, visualizing various properties of
interest and the corresponding assurance quantifi-
cation on a user dashboard (not shown here). For
more details on the implemented run-time monitor,
assurance measure, and its visualization, see [13]
and [16].

To provide confidence in the efficacy of the
assurance measure, we augment specific com-
ponents of the autonomous taxiing DAC, as
described earlier (see the Methodology section).
Specifically, a supplementary assurance argument
leverages validation evidence [16] to make the
case that the assurance measure is a reasonably
accurate abstraction of the time-series behavior of
autonomous taxiing, and that together with the run-
time monitor produces uncertainty estimates that
are conservative and consistent when operating in
an uncertain environment.

CONCLUSIONS
Dynamic Assurance Cases (DACs) offer a

pathway towards through-life assurance for AI
and ML-based autonomous systems. They are
intended to provide both dynamic assurance at
run-time using assurance measures, and design-
time assurance aimed at certification. The former
provides operational situational awareness to hu-
mans as well as online machine processing, while
the latter comprises more static artifacts that can
be evolved to maintain certification over the longer-
term. There are a range of possible realizations
of the DAC concept, and we have described one
such instantiation, and its rigorous foundations.

The main novelty is providing assurance from
multiple viewpoints, including one that supports
dynamic assurance update in a form suitable for
machine consumption.

One key focus for future work is in quan-
tification, and we are exploring how best to
integrate assurance measures into system-level
decision making, whilst providing domain-specific
visualization of assurance measures for end users.

To facilitate adoption of the DAC concept
into practice we are also developing supporting
infrastructure, i.e., languages, models, reusable
assurance artifacts, and automation technologies
in our assurance case tool, AdvoCATE [4]. Our
overarching goal is to build a generic, integrated
assurance framework to provide justified confi-
dence first during design, and then continually
in operation. Our concept is compatible with
emerging standards for safety assurance of AS,
whilst enhancing their basic assurance mechanism.

ACKNOWLEDGMENT
This work was supported by the Defense

Advanced Research Projects Agency (DARPA)
under the Assured Autonomy Program. The opin-
ions, findings, recommendations or conclusions
expressed are those of the authors and do not
represent the official views or policies of DARPA,
the Department of Defense, and the United States
Government.

REFERENCES
1. National Transportation Safety Board, “Collision between

vehicle controlled by developmental automated driv-
ing system and pedestrian Tempe, Arizona March 18,

2018,” NTSB, Washington, DC, Highway Accident Report
NTSB/HAR-19/03, November 2019.

2. International Organization for Standardization, “Road

vehicles — Safety of the intended functionality,” Standard
ISO/PAS 21448:2019, January 2019.

3. Underwriter Laboratories Inc., “Standard for Safety for
the Evaluation of Autonomous Products UL 4600,” April

2020.
4. E. Denney and G. Pai, “Tool Support for Assurance Case

Development,” J. Autom. Soft. Eng., vol. 25, no. 3, pp.

435–499, September 2018.
5. R. Clothier, E. Denney, and G. Pai, “Making a Risk In-

formed Safety Case for Small Unmanned Aircraft System
Operations,” in Proc. 17th AIAA Aviation Technology,

Integration, and Operations Conference, June 2017.

December 2020 9



Intelligent Autonomous Systems

6. J. E. McDermid, Y. Jia, and I. Habli, “Towards a Frame-

work for Safety Assurance of Autonomous Systems,” in
Proc. AAAI Workshop on AI Safety, CEUR Workshop

Proceedings, January 2019.
7. R. Bloomfield, H. Khlaaf, P. Ryan Conmy, and

G. Fletcher, “Disruptive innovations and disruptive
assurance: Assuring machine learning and autonomy,”
IEEE Computer, vol. 52, no. 9, pp. 82–89, September

2019.
8. D. L. Silver, Q. Yang, and L. Li, “Lifelong machine

learning systems: Beyond learning algorithms,” in 2013

AAAI Spring Symposium Series, 2013.

9. E. Denney, I. Habli, and G. Pai, “Dynamic Safety Cases
for Through-Life Safety Assurance,” in 2015 IEEE/ACM

37th Intl. Conf. Soft. Eng., vol. 2, May 2015, pp. 587–590.

10. R. Calinescu, D. Weyns, S. Gerasimou, M. U. Iftikhar,
I. Habli, and T. Kelly, “Engineering Trustworthy Self-

Adaptive Software with Dynamic Assurance Cases,”
IEEE Trans. Soft. Eng., vol. 44, no. 11, pp. 1039–1069,

November 2018.
11. Subcommittee F38.01 on Airworthiness, ASTM-F3269-

17, Standard Practice for Methods to Safely Bound Flight

Behavior of Unmanned Aircraft Systems Containing

Complex Functions, ASTM International, 2017.

12. E. Denney, G. Pai, and I. Whiteside, “The Role of Safety

Architectures in Aviation Safety Cases,” Rel. Eng. Sys.

Safety, vol. 191, 2019.
13. E. Asaadi, E. Denney, and G. Pai, “Towards Quantifica-

tion of Assurance for Learning-Enabled Components,” in

Proc. 2019 15th European Dependable Computing Conf.

September 2019, pp. 55–62.

14. The Assurance Case Working Group, “Goal Structuring

Notation Community Standard Version 2,” Jan. 2018.

15. E. Denney, G. Pai, and C. Smith, “Hazard Contribution
Modes of Machine Learning Components,” in Proc. AAAI

Workshop on AI Safety, CEUR Workshop Proceedings,

January 2020.

16. E. Asaadi, E. Denney, and G. Pai, “Quantifying Assur-
ance in Learning-enabled Systems,” in Proc. 39th Intl.

Conf. Comp. Safety, Reliability, and Security. September
2020.

Erfan Asaadi is with KBR, Inc. His research in-
terests are in the topics of uncertainty quantifica-
tion, probabilistic machine learning, and deep learn-
ing. Erfan holds a Ph.D. in Mechanical Engineering
from the University of Pretoria. Contact him at er-
fan.asaadi@us.kbr.com.

Ewen Denney is with KBR, Inc., and NASA Ames
Research Center. His research interests cover safety
and mission assurance, including automated tool sup-
port and formal foundations. Ewen holds a Ph.D. in
Computer Science from the University of Edinburgh
and he is a member of the IEEE. Contact him at
ewen.denney@nasa.gov.

Jonathan Menzies is with KBR, Inc., and NASA
Ames Research Center. He is interested in the ap-
plication of software engineering techniques to as-
surance case tool development. Jonathan holds a
B.Sc. in Computer Science from Heriot-Watt Univer-
sity. Contact him at jonathan.menzies@nasa.gov.

Ganesh Pai is with KBR, Inc., and NASA Ames Re-
search Center. His research interests lie in the broad
areas of safety, dependability, and mission assur-
ance, as applied to aerospace systems and software.
Ganesh holds a Ph.D. in Computer Engineering from
the University of Virginia, and he is a Senior Member
of the IEEE. Contact him at ganesh.pai@nasa.gov.

Dimo Petroff is with KBR, Inc. Dimo is inter-
ested in domain specific languages, model-based
development, user-interface engineering, and their
application to assurance case tool development. He
holds an M.Sc. in Electronics and Computer Science
from the University of Edinburgh. Contact him at
dimo.petroff@us.kbr.com.

10 Computer


