
Author Pre-print Version. 39th IEEE/AIAA Digital Avionics Systems Conference (DASC 2020).

Assured Integration of Machine Learning-based
Autonomy on Aviation Platforms

Erfan Asaadi∗, Steven Beland†, Alexander Chen†, Ewen Denney∗, Dragos Margineantu†,
Matthew Moser†, Ganesh Pai∗, James Paunicka‡, Douglas Stuart‡, Huafeng Yu§

∗KBR, Inc., NASA Research Park, Moffett Field, CA 94035, USA
{easaadi, edenney, gpai}@sgt-inc.com

†The Boeing Company, Seattle, WA 98108, USA
{steven.c.beland, alexander.z.chen, dragos.d.margineantu, matthew.a.moser}@boeing.com

‡The Boeing Company, St. Louis, MO 63134, USA
{james.l.paunicka, douglas.a.stuart}@boeing.com
§The Boeing Company, Huntsville, AL 35824, USA

huafeng.yu@boeing.com

Abstract—Dynamic assurance cases (DACs) are a novel concept
for the provision of assurance—both during development and,
subsequently, continuously in operation—that can be usefully
applied to machine learning (ML)-based autonomous systems.
We describe the application of a DAC for dependability assurance
of an aviation system that integrates ML-based perception
to provide an autonomous taxiing capability. Specifically, we
present how we: i) formulate and capture risk-based safety and
performance objectives, ii) model architectural mechanisms for
risk reduction, iii) record the rationale that justifies relying
upon autonomy, itself underpinned by heterogeneous items of
verification and validation evidence, and iv) develop and integrate
a computable notion of confidence that enables a run-time risk
assessment and, in turn, dynamic assurance. We also describe
our evaluation efforts, currently based on a hardware-in-the-loop
simulator surrogate of an airworthy flight platform.

Index Terms—Assurance, Autonomy, Confidence, Machine
learning, Quantification

I. INTRODUCTION

Equipping aircraft with autonomous capabilities, especially
those implemented using machine learning (ML) technologies,
will greatly enhance the operational effectiveness of un-piloted
aircraft and may have applications in piloted aircraft to aid
pilot decision making and workload management. KBR is sup-
porting Boeing in their exploration of how ML can bring ben-
efits such as improved mission capability, faster-than-human
reaction times, decreased operating cost with a reduction in
the need for human interaction during mission operations, and
increased safety to aircraft—including application to airplanes,
cruise missiles, and smart munitions. The ongoing work de-
scribed here is part of a wider effort providing important
theory, technology, and toolsets that aircraft manufacturers can
leverage to support airworthiness certification processes for
aircraft with ML-based flight software.

Distribution A. Approved for public release: distribution unlimited. This
work was supported by the Defense Advanced Research Projects Agency
(DARPA) and the Air Force Research Laboratory (AFRL) under the Assured
Autonomy Program. The opinions, findings, recommendations or conclusions
expressed are those of the author(s) and do not represent the official views or
policies of DARPA, AFRL, the Department of Defense, and the United States
Government.

A critical step towards operational deployment is providing
assurance of dependable autonomy and, in turn, of an airwor-
thy integrated system. In conventional aircraft systems, i.e.,
those that do not rely on ML for safety-critical functions,
designs are carefully and extensively validated and verified
before operation, with equipment issues (such as hardware
failures, out-of-range conditions, bounds on sensor inputs, etc.)
being monitored in operation to take corrective actions (includ-
ing reconfiguration, degradation, or shut down) in response to
detected unacceptable conditions.

ML is to meant to infer input-output relationships from
samples of intended behavior, and then generalize the learned
function to unknown and unforeseen inputs. Thus, due to
their very nature, not only may it not be possible to design
and verify ML-based components in the same was as in the
prevailing practice [1], but also there is a credible poten-
tial for unexpected responses that detrimentally contribute to
unanticipated emergent system behavior. This suggests a need
to broaden the scope of in-operation monitoring to address
conditions that would otherwise have been addressed during
development.

Moreover, safety assurance of conventional aviation systems
has been aided by performance standards and assurance guide-
lines that certification authorities recognize as an acceptable
means of showing compliance with aviation regulations. How-
ever, these are not yet available for systems embedding ML-
based autonomy, although domain-specific standardization is
emerging1 along with candidate standards [2]. A growing
consensus in these efforts is to use an assurance case (AC)
as the mechanism by which to convince various stakeholders,
especially regulators, that an autonomous system can be relied
upon. An AC is a comprehensive, defensible, and valid justifi-

1For example, through the efforts of the SAE G-34 Committee for Applied
Artificial Intelligence in Aviation who, together with EUROCAE WG-114,
are capturing the specific concerns presented by ML components and will
be defining assurance guidelines for such systems. If accepted by regulators,
it is envisioned those guidelines would be used as an acceptable means of
compliance with applicable regulations. See http://profiles.sae.org/teag34/

1

http://profiles.sae.org/teag34/

Author Pre-print Version. 39th IEEE/AIAA Digital Avionics Systems Conference (DASC 2020).

cation that a system or service will function as intended for a
defined application and operating environment [3]. They have
already proven to be useful in application to novel technologies
requiring operational approval under nascent regulations and
emerging standards, e.g., unmanned aircraft systems (UASs)
operating beyond visual range [4].

Dynamic Assurance Cases (DACs)—described in more de-
tail in Section II—generalize and extend the AC concept,
providing a framework for both development and operational
assurance of autonomous aviation systems (AAS). As a proof-
of-concept, in this paper we investigate the viability of the
DAC framework by applying it to integrate an ML-based per-
ception function on an aircraft platform, to enable autonomous
taxiing (Section III).

Specifically, we describe the DAC we are creating to pro-
vide justified confidence that: i) a deep convolutional neural
network (CNN) can enable autonomous runway centerline
tracking whilst taxiing, maintaining the aircraft within a re-
quired maximum lateral offset from the centerline; and that
ii) it is feasible to preclude potential lateral runway excursion
using a run-time assessment of (sufficient) confidence in the
ML-based centerline tracking capability. The former con-
stitutes development assurance, communicated through core,
interrelated DAC components (Section II-B), while the latter
represents an architectural mechanism for the provision of
dynamic assurance when integrated into the aircraft system
(Section II-B2, Section III-C). Our effort to assess and validate
our approach (Section IV) leverages a hardware-in-the-loop
(HIL) simulator surrogate of the aircraft. In this paper, we
describe how we gathered the data required to develop and
evaluate dynamic assurance, also discussing the corresponding
results (Section V).

II. BACKGROUND

A. Terminology

Assurance is the provision of justified confidence that a
system, item, or service possesses the required assurance
properties. An assurance property is a logical, possibly proba-
bilistic, characteristic associated with assurance concerns, i.e.,
functional capabilities and dependability attributes. Applying
one or more assurance properties to an item gives an assurance
claim for that item. For instance, in the assurance claim “the
aircraft does not depart the runway pavement during taxiing”,
the aircraft is the system for which the assurance property of
interest (associated with the dependability attribute of safety)
is “not departing the runway pavement during taxiing.”

We distinguish development assurance, which provides con-
fidence during system development to support the decision to
deploy a system into operation, from operational or dynamic
assurance, which is a continuous assessment and provision of
confidence under changing system and environment state.

B. Dynamic Assurance Cases

DACs offer a multi-viewpoint model-based framework for
communicating various aspects of development and opera-
tional assurance of AAS embedding ML-based components.

1) Assurance during System Development: A technical
basis for sufficient assurance—in terms of the risks to safety
(as well as performance and mission) objectives, and the
associated risk mitigation requirements—is given by assur-
ance policies.We use tabular models to record the above, also
capturing the assumptions made, as well as the mappings to
system components and functions from, respectively, the safety
objectives, the associated hazards, and the required functional
and non-functional guarantees.

An assurance architecture shows how system functions and
components contribute to risk modification. It can be seen as
an architecture-level realization of assurance policies, modeled
as event-chain based risk scenarios, that capture the impact
of both design-time and operational risk mitigations. For this
purpose, we have adopted and extended an earlier notion of
safety architecture that composes barrier models represented
using bow-tie diagrams (BTDs) [5].

Assurance rationale exposes the reasoning why it should be
concluded that (there is sufficient confidence that) the system
has met its safety (or performance, or mission) objectives, as
embodied by the requirements captured in assurance policies.
This reasoning is underpinned by a compendium of heteroge-
neous verification and validation (V&V) evidence items, e.g.,
development artifacts such as the results of mathematical anal-
yses, modeling and simulation, formal verification, testing, etc.
We present assurance rationale as structured arguments in the
goal structuring notation (GSN) [6]. GSN is a standardized,
graphical notation to present the structure and elements of an
assurance argument, namely: claims2, qualifying contexts and
assumptions, reasoning steps (strategies) with which claims
are further developed, applicable justifications, and references
to evidence items (solutions). For an example, see Fig. 4.

Assurance quantification primarily applies to measurable
assurance properties, and it helps to establish a quantita-
tive baseline level of confidence in those properties towards
supporting the decision to release a system into service.
To characterize confidence in assurance properties, we use
uncertainty quantification (UQ) techniques on suitably abstract
probabilistic models of the system behavior.

Of the above DAC components, the assurance policies,
architecture, and rationale components mainly facilitate a qual-
itative assessment of the sufficiency of the confidence that a
system is fit for operational use, while assurance quantification
gives a quantitative basis for that decision. Together, they
establish a baseline level of assurance for an AAS that ought
not to change in operation, and that stakeholders can inspect,
negotiate, and agree upon as acceptable; hence, we refer to
them as static DAC components (Fig. 1). In this paper, we do
not discuss how the qualitative and quantitative assessments
of confidence are to be reconciled into an internally consistent
and valid determination of sufficient assurance; however, we

2 Practically, an assurance claim is a requirement captured in assurance
policies, for which there is supporting evidence. As such, that requirement is
effectively an assurance property that has been allocated to a system or item
(see Section II-A).

2

Author Pre-print Version. 39th IEEE/AIAA Digital Avionics Systems Conference (DASC 2020).

note that both types of assurance are inevitably required in
practice.

2) Assurance during System Operation: Assurance mea-
sures implement the models used for assurance quantification
during development as executable components suitable for
deployment during AAS operation. Thus, by using operational
data as input, we can use assurance measures to evaluate
whether or not the quantitative level of confidence in (certain)
assurance properties—that was established as an acceptable
baseline during development—continues to be maintained
during system operation.

Our concept of dynamic assurance integrates assurance mea-
sures into an AAS, so that a run-time confidence assessment
is feasible. In turn, that can support decision making and
continuous risk mitigation during system operation. Concep-
tually, the integration architecture is closely related to the
simplex architecture, and its variants [7]: a decision logic that
is typically a form of high-assurance run-time monitoring or
run-time verification, taking system and environment state as
input to evaluate whether or not system properties are satisfied,
and switching to a high-assurance, low-complexity safety
controller in the latter case. In contrast, assurance measures
provide an additional level of analytic redundancy, taking both
the inputs and outputs of run-time monitoring to quantify the
uncertainty in whether or not system properties are satisfied.
Thus, assurance measures can be considered as a form of
monitoring albeit with a wider scope, fusing information from
a range of sources that include other run-time monitors, whilst
providing an assurance forecast.

By separating the decision logic from the inputs used to
make decisions (here, the confidence in assurance properties,
among others), the integration of assurance measures can
provide both a passive run-time risk assessment, as well as
active mitigation support, as appropriate. Section III-C gives
a concrete architecture in the context of our proof-of-concept
example, which will further illustrate the above concepts.

C. Methodology

Fig. 1 shows the static and dynamic DAC components from
the preceding discussion and a methodology for their use
for dependability assurance of AAS. Collectively, the static
components constitute an assurance toolkit. As such, we can
use some or all of them to provide confidence in the concrete
system-specific DAC components themselves, e.g., giving ex-
plicit rationale to justify the otherwise implicit assumptions in
the particular assurance architecture for a system. Thus, as we
will see subsequently, we use the static DAC components to
provide confidence in both the quantification models and the
assurance measures derived from them.

First, we develop the static DAC components focusing on
the system requiring assurance, itself characterized by the
physical and logical system descriptions (including the ML
components), and the concept of operations. Our methodology
is compatible with prevailing standard processes, practices,
and techniques in aircraft development [1], and safety assess-
ment [8]. Moreover, to facilitate easier adoption into practice,

Autonomous Aviation
System (AAS)

Physical & Logical Architecture
Concept of Operations

Assurance Policies (Hazards & Requirements)
Assurance Architecture (Risk Scenarios)

Assurance Rationale (Structured Arguments)
Heterogeneous Evidence Items

Assurance Quantification Models

Trustworthy AAS

Assurance Measure(s)

Run-time Monitors

Assurance Policies (Hazards & Requirements)
Assurance Rationale (Structured Arguments)

Evidence items

Compilation and Optimization

Development
Assurance

Dynamic Assurance Case (DAC)

Decision Mechanism

System requiring assurance

Development
Assurance

Dynamic Assurance

External Dashboard

Dynamic Assurance

Static DAC Components
(System Focus)

Static DAC Components
(Integration & Quantification Focus)

Fig. 1. DAC methodology and concept: development assurance focuses on
both the AAS and (the integration and quantification aspects of) assurance
measures. Dynamic assurance entails compiling and deploying quantification
models for a run-time assessment of confidence in assurance properties, which
is then input to a decision mechanism, or optionally displayed externally (as
shown by the dashed arrow and box labelled “External Dashboard”).

some DAC components intentionally capture information that
overlaps with the results of applying those techniques.

Thus, for example, in formulating assurance policies at
an aircraft function level, we can apply a functional hazard
analysis (FHA), while guide-word based deviation analyses
applied systematically to the inputs and outputs of specific
ML-based functions—as in methods such as systems theoretic
process analysis (STPA) [9]—can provide component-focused
assurance policies. Likewise, a fault tree analysis (FTA) can
assist in developing an assurance architecture as it elaborates
specific failure scenarios, while applying STPA can identify
scenarios leading to unsafe control actions. Following the
safety assessment steps in [8] aids to iteratively refine the
assurance policies and architecture. During these steps, we
additionally formulate evidence requirements that specify, for
example, the techniques to be used to validate the identified
safety requirements and to verify the implementation against
those requirements. This is similar, for example, to the type
of requirements that result from the interaction between a
traditional aircraft development assurance process [1], and its
safety assessment process [8].

We then develop structured arguments, e.g., by following
the steps in [3], to provide the rationale why the assurance
claims are themselves valid, why the results of verification
substantiate those claims and, thereby, the requirements stated
in assurance policies (See footnote 2).

For assurance quantification during development, in general
we use stochastic process models whose underlying random
variables (RVs) describe the system state space. The assurance
properties of interest are specific realizations of those RVs. We
express the uncertainty (conversely, confidence) in those prop-
erties as probability distributions over those RVs which we can
later update using Bayesian approaches, when observations of
the state space are available.

Together with assurance policies, quantification models help
to identify and discriminate between properties for which

3

Author Pre-print Version. 39th IEEE/AIAA Digital Avionics Systems Conference (DASC 2020).

Taxiing requirement: ± x meters from centerline with 2𝜎 confidence

Runway Centerline

True lateral offset

Estimated
lateral offset

Position error

Allowed lateral offset

2x

Side stripe

Fig. 2. Concept of operations for autonomous taxiing: the aircraft must track
a runway centerline for the duration of taxiing, not exceeding a defined lateral
offset of x = 2m on either side of the centerline.

run-time monitoring may be sufficient, and those for which
assurance measures are more appropriate. For instance, mon-
itoring of assumptions made in verifying certain component-
level properties may be sufficient, while assurance measures
may be better suited to system-level properties affected by
emergent behavior. In general, we assume that there exist run-
time monitors, some of which are part of the system requiring
assurance, while others are tied to the validity of the evidence
items used.

Earlier (Section II-B2), we discussed how assurance mea-
sures facilitate dynamic assurance. In addition to supporting
decision-making on board the flight platform of an AAS,
we can also passively provide a real-time confidence assess-
ment via dashboard-based visualizations (see Section IV for
an example) for those scenarios where remote intervention,
possibly involving humans, may be necessary. Integrating
assurance measures necessitates additional confidence in both
the measures being fit for purpose and the safety of integration.

As discussed at the beginning of this section, we develop
additional static DAC artifacts to address properties such
as assurance measure timeliness in the context of decision-
making, forecast accuracy, and the absence of unintended
functionality and hazardous interactions.

III. EXAMPLE: AUTONOMOUS TAXIING

A. System Description

We consider an un-piloted, single engine, fixed-wing aircraft
system implementing an autonomous taxiing capability over
taxiways and runways, as an example AAS. Fig. 2 shows one
of the scenarios in this operational concept, where the aircraft
is to track and follow the runway centerline without exceeding
a pre-specified lateral offset on either side. The aircraft is
one part of the overall testbed that we use to demonstrate
assured ML-based autonomy; the other parts include an iron
bird facility for real-time HIL testing, and simulation tools.
The experimental results reported in this paper are based on
Boeing flight software integrated with the assurance measure
for the system, executed within the HIL iron bird.

To realize autonomous taxiing, a deep convolutional neural
network (CNN) implements a perception function that ingests
video images from a wing-mounted camera pointed to the
nose of the aircraft. In effect, after being trained under a
supervised learning scheme, this ML component performs
regression over input images to produce estimates of cross
track error (CTE) and heading error (HE) as output. Here,
CTE is the horizontal distance between the aircraft nose wheel
and the runway centerline; HE is the angular distance between
the aircraft heading (the compass direction along the aircraft
roll axis) and the runway heading (the compass direction of
the runway centerline). These are then supplied as inputs to
the appropriate controllers that generate the required steering
and actuation signals.

An efficient MobileNetV2 deep learning architecture [10]
implemented3 using the state-of-the-art inverted residual
blocks forms the base CNN model. For protection from
outliers, the output layer is a soft sign activation function,
selected due to its difficulty to saturate. L1 and L2 weight
regularization as well as dropout improve the capability of
the model to generalize its results. For training and testing
the CNN during development, a classical proportional-integral-
derivative (PID) controller abstracts the autonomous executive
(AE) and vehicle management system (VMS) of the aircraft
platform and its surrogate HIL simulator (see Fig. 7).

B. Development Assurance

Our toolset AdvoCATE [3] provides a model-based imple-
mentation of the DAC concept and its static components.4 We
now give illustrative excerpts and fragments of the DAC we
are building to provide development assurance for autonomous
taxiing.

1) Assurance Policies: Safety during autonomous taxiing
can be characterized as avoiding lateral runway excursions,
i.e., veering off the runway pavement by crossing the side
stripes (see Fig. 2). Although avoiding obstacles on the runway
is also a safety concern, we do not address it for this paper.
A related performance objective is to maintain an acceptable
lateral offset (ideally zero) on either side of the runway
centerline. Assurance that this performance objective holds
also contributes to safety assurance since the closer the aircraft
is to the runway centerline during taxiing, the less likely it is to
cross the side stripes (equivalently, the more confidence there
is that the aircraft is on or near the centerline, the lower the
uncertainty that it is located at or past the side stripes).

AdvoCATE provides a tabular assurance policy model,
implemented as a collection of hazard and requirements tables.
Assurance policies thus include the requirements correspond-
ing to the objectives above. For example, one such requirement
is: “the aircraft CTE shall not exceed a specified offset whilst
taxiing.” We model this as the assurance property (see Sec-
tion II-A) AssuredTaxi : |CTEa| < offset, allocated to the
system Aircraft that is declared in a physical decomposition

3In Keras (https://keras.io/) and Tensorflow (https://www.tensorflow.org/).
4At present, we develop quantification models using external probabilistic

modeling tools. We plan to integrate them into AdvoCATE in the future.

4

https://keras.io/
https://www.tensorflow.org/

Author Pre-print Version. 39th IEEE/AIAA Digital Avionics Systems Conference (DASC 2020).

Threat 1
(Functional Deviation)

Threat 2
(Hazardous Control)

Top Event
(Performance Assurance

Property Violation)

Consequence
(Safety Assurance
Property Violation)

Hazardous Activity
(Operating Context)

Recovery Barrier

Prevention Barrier

Fig. 3. Annotated BTD fragment, showing one out of a collection of risk scenarios that may be encountered in autonomous taxiing. The composition of
different such BTDs gives the assurance architecture DAC component for the system. Annotations highlight BTD notational elements.

model available natively in the tool. Here offset is the
maximum acceptable lateral offset on either side of the runway
centerline, and CTEa is the true CTE. For this application and
aircraft type, offset = 2m, and CTEa is a signed, real valued
scalar whose absolute value gives the magnitude of the offset,
and whose sign indicates the location relative to the centerline
(i.e., to its left or right).

Assurance policies additionally include hazards that can
lead to a violation of the above objectives, their causes, as well
as the corresponding assurance requirements, including those
for hazard mitigation. For instance, some candidate causes of
the hazards to performance and safety include:

• functional deviations, e.g., aligning the aircraft nose with
a different runway marking instead of the centerline;

• hazardous control, e.g., providing a steering actuation in a
direction other than as required from the current operating
situation and aircraft location; and

• item malfunctions or failure modes, such as stuck actua-
tors or control surfaces, and sensor failures.

Likewise, precursors of these causes can include hazard
contribution modes (HCMs) of the ML components [11], e.g.,
accurate CTE estimates from runway markings other than the
centerline. To complete the assurance policy specification, we
give mitigations to the above conditions, which can include,
for example, a combination of i) system-level prevention and
recovery devices, e.g., emergency brakes, or redundant aircraft
localization; and ii) design modifications aimed at improving
ML component accuracy, e.g., retraining the ML component
using training data augmented with test data from prior or
lower-accuracy variants.

2) Assurance Architecture: As previously indicated (Sec-
tion II-B1), we use bow-tie diagrams (BTDs) to model the
scenarios that, when composed, eventually constitute the as-
surance architecture for the system. Fig. 3 shows a snapshot of

a partially developed operational risk scenario, modeled using
a BTD. which captures the risk posed to safe autonomous
taxiing by a performance property violation. We model the
operational context for this scenario as a hazardous activity:
“taxiing at a speed of 25 knots on a wet runway under low
visibility conditions at dusk, when there are no crosswinds.”

Here, a violation of the AssuredTaxi property (shown by
the central, top event) can lead to a safety mishap (shown
by the terminal, consequence event). This scenario shows two
potential initiating events (threats, in BTD terminology), one
of which is a functional deviation (labelled Threat 1), while
the other is a hazardous control action (labelled Threat 2).
Barriers represent mitigations that modify risk in specific ways
on this chain of events: here, a combination of redundancy,
failover mechanisms for the perception and control compo-
nents, runtime monitoring, and emergency braking, invoked to
assure that taxiing is both safe and performant. A quantitative
barrier integrity reflects the extent of risk modification that a
barrier provides [5].

This scenario is partially developed because we can further
refine it based on the assessment of residual risk levels (RRLs)
of the relevant top events and consequences. For instance, if
the RRL is at an unacceptable level, additional risk mitigations
may be required. Although not shown here, potential causes
of the two threats given in Fig. 3 are the HCMs of the
deep CNN. For instance, a CTE estimate due to incorrectly
perceiving a non-centerline runway marking as the centerline,
can potentially produce a steering action that deviates the
aircraft away from the centerline when it should otherwise
have maintained the prevailing heading, i.e., Threat 2. We
can develop this model and refine the associated scenario-
driven analysis not only at the level of the system (as discussed
here), but also at a lower, component-level: e.g., by modeling
the escalations that can compromise or render ineffective each

5

Author Pre-print Version. 39th IEEE/AIAA Digital Avionics Systems Conference (DASC 2020).

Root goal

Strategy

Context

Undeveloped
sub-goal

Sub-goal

Fig. 4. Fragment of assurance rationale captured as an argument in GSN; Text
annotations outside the corresponding node types indicate the notational ele-
ments. This argument supports the claim (G40) that operating the autonomous
taxi deep CNN outside its operational profile is acceptably managed, based on
an emergency maneuver that can be synthesized (G45, further developed in
Fig. 5), and whose implementation safely brings the aircraft to a halt (G46).

of the identified barriers, and identifying the escalation factor
barriers that mitigate those lower-level threats. In this way, the
assurance architecture can relate system-level operational as-
surance concerns to component-level mechanisms that provide
assurance both during development and in operation.

3) Assurance Rationale and Evidence Items: As explained
in Section II-B1, we use the GSN for rationale capture.
Annotations in Fig. 4 and Fig. 5 show some of the notational
elements used, e.g., goal nodes (G40, G41, . . .) specify the
assurance claims, and strategy nodes (S22, S24, . . .) give
the reasoning steps being used. Besides the specific types of
nodes shown, the GSN provides two types of relations between
nodes: inferential support via is supported by links (shown
with filled arrowheads), and contextual clarification using in
context of links (shown with open arrowheads). More details
on GSN are in [6].

Fig. 4 presents an argument fragment embodying the ratio-
nale to be confident that it may be acceptable for the CNN
to be used outside its operational profile during autonomous
taxiing. Specifically, the reasoning being conveyed here is that
when so-called out-of-distribution (OOD) inputs are supplied
to the CNN component, they are reliably detected (goal G41),
and that a recovery mechanism intervenes (goal G42). G41 is
an undeveloped goal, meaning that it is yet to be supported by
evidence (indicated by the diamond decoration on the node).

To show G42, the argument proceeds by refinement to
claim: i) in G45, that an emergency controller exists that

Solution

Assumption

Justification

Fig. 5. GSN argument further developing the claim (G45, also the leaf claim
in Fig. 4) that there exists an emergency controller that constrains the aircraft
trajectory to meet the safety specification, shown by the solution (E3) of a
specific form of reachability analysis (S25, G49). Again, text annotations
outside the corresponding node types indicate additional notational elements.

constrains the future aircraft trajectory to meet the safety
specification (clarified in context node C18); and ii) in G46,
that the emergency controller to which the claim in G45
alludes is a failover mechanism for a nominal controller. That
is, when perception fails or when there are OOD inputs, the
system switches from a nominal controller (that is both optimal
and uses perception) to a safe emergency controller that is
optimal but does not require perception.

The argument supporting G46 is yet to be developed, while
the claim in goal G45 (further developed in the argument
shown in Fig. 5) is supported by evidence (solution node
E3) produced by applying a particular type of formal reach-
ability analysis5 (strategy node S25) that uses the solution of
Hamilton-Jacobi partial differential equations (HJ-PDEs) [12]
(goal node G50)—itself a transformation of a game-theoretic
model of the system (context node C19)—which facilitate
a numerical analysis (justification node J1). This evidence

5The authors of [12] performed this analysis.

6

Author Pre-print Version. 39th IEEE/AIAA Digital Avionics Systems Conference (DASC 2020).

is a safety kernel that is more conservative than the safety
specification.

The root assurance claim in Fig. 4 is, in fact, related to
component-level causal factors of some of the hazards to
assured performance and safety. In particular, the argument
documents how assurance is provided against misperception,
a class of HCMs of the CNN component that can produce
inaccurate outputs when processing OOD inputs. The latter is
a manifestation of covariate shift, the phenomenon where the
distribution of operational inputs to an ML component differs
from that of its training data.

At a system level, misperception can lead to inadequate
controller responses, potentially unsafe control (e.g., as dis-
cussed in Section III-B2) and, eventually, to a violation of
performance and safety assurance properties. Although not
shown here, we capture the rationale that these (and other)
risk scenarios have been mitigated through argument structures
similar to those shown in Fig. 4 and Fig. 5. Thus, those
arguments would show how the root goal in Fig. 4 (G40)
emerges from a systematic decomposition and refinement of
the system- and component-level assurance claims (them-
selves, captured in the assurance policies DAC component).
Moreover, arguments additionally capture the rationale for the
sufficiency and efficacy of i) the mitigations represented in the
assurance architecture DAC component, ii) the assurance ar-
chitecture itself, iii) the quantification model (described next),
and iv) the corresponding assurance measure (Section III-C).
Due to space constraints, we do not give those arguments here.

In general, the evidence for static assurance includes ar-
tifacts from system development and verification. For this
example, we used both formal and descriptive models of the
environment and the aircraft system, scenario descriptions,
simulation results, specifications of safety properties and con-
straints, and formal verification results, e.g., of reachability
properties as highlighted in the preceding discussion.

A key observation is that rationale capture, as in Fig. 5,
explicitly highlights the various assumptions made (nodes A2,
A3, A4) in such kind of formal-verification based evidence.
These assumptions are either to be validated as part of devel-
opment assurance, or monitored for violation at run-time to
preclude continued operation if the verification is invalidated.

In a completed argument, undeveloped goals are supported
by concrete evidence items that include, among other things,
additional assurance claims to support and enforce those goals,
validation data showing that those goals were appropriate, and
verification data to show that the claims hold.

4) Assurance Quantification Model: We capture system
behavior due to autonomous taxiing as a stochastic process
model of the time series evolution of true CTE (CTEa),
in particular a dynamic Bayesian network (DBN) that takes
into account both the temporal evolution of the underlying
RVs, and the known and assumed conditional independence
relations (Fig. 6). Assurance quantification using this model
aims to query the DBN model for the posterior probability that
the true aircraft location is within the specified lateral offset
bounds, that is the interval (−2, 2), at a given time. If that

CTEa CTEa

CTEe

HEe

I

D

CTEe

HEe

I

D

CTEa

t – 1 tt – 2 t + 1

Fig. 6. DBN structure to quantify assurance in the AssuredTaxi reliability
property [13]. Two adjacent slices are shown at times t−1, and t. The shaded
nodes represent the observed variables, i.e., CNN estimates of CTE (CTEe)
and HE (HEe); image inputs (I), a detection of outliers in image inputs (D).
The clear nodes are the uncertain, latent variables, i.e., true CTE (CTEa)
and true HE (HEa). For more details, see [13].

value is, say, 0.98, then (−2, 2) is a 98% credible interval for
the true aircraft position. In other words, based on the model
we can be 98% confident that the aircraft is truly located within
the allowed lateral offset. For a more detailed discussion on
how we built and validated this model, see [13]. A component-
focused model can also be developed in a similar way, e.g.,
to quantify the confidence in the accuracy of the CNN for
estimating CTE and HE. We refer the reader to [14] for more
details.

C. Platform Integration of Assurance Measures

The platform system architecture constrains how the assur-
ance measure is implemented and deployed. As indicated in
Section III-A, for this paper the integration platform is the
iron bird HIL testbed (Fig. 7 shows a block diagram). The
software components of this platform leverage the open source
robot operating system (ROS)6 framework for integration
and communication, where each component is implemented
as a ROS node. Asynchronous internode communication is
achieved through a publish-subscribe pattern. Dedicated com-
munication channels are implemented as so-called ROS topics
to which ROS nodes subscribe (receive) or publish (send). All
software components, except communication with the X-Plane
software7 use ROS topics for communication. Communication
with X-Plane leverages the open source XPlaneConnect8 plu-
gin, which uses user datagram protocol (UDP) sockets.

As shown Fig. 7, assurance measure outputs are actively
used for onboard contingency management, and also pro-
vided as a passive run-time risk assessment to an external
visualization dashboard, shown here as inputs to the synoptic
displays. We now mainly focus on the role of the assurance
measure, the decision logic and the contingency manager
components, which are relevant to realize our concept of
dynamic assurance. We defer the discussion of the remaining
components to Section IV-A.

As clarified in Section II-B2, the assurance measure here is
an executable ROS node that implements the quantification
model shown in Fig. 6. This receives simulator inputs of
images as would be sent from the camera during an actual

6Robot operating system (ROS): http://wiki.ros.org/
7X-Plane 11 Flight Simulator: https://www.x-plane.com/
8NASA XPlaneConnect: https://github.com/nasa/XPlaneConnect

7

http://wiki.ros.org/
https://www.x-plane.com/
https://github.com/nasa/XPlaneConnect

Author Pre-print Version. 39th IEEE/AIAA Digital Avionics Systems Conference (DASC 2020).

Copyright © 2019 Boeing. All rights reserved. NOT FOR PUBLIC RELEASE. Distribution Limited – see title slide.

Platform options for Phase 1 demos

62

Challenge Problem 2 – Object Detection

Boomer1 – Ground Vehicle w/ Avionics

Aircraft – Cessna Grand Caravan

Challenge Problem 1 – Centerline
Tracking

ZBRA1 – Iron Bird w/ Avionics

Camera Input Image Convolutional
Neural Network

Simulation – X-Plane

Camera

Assurance Measure

Synoptic
Display(s)

Autonomous
Executive

Deep CNN

Vehicle
Management

System

Simulated
Motion

Images

Images

Actuation Command

Route Plan
Commanded Speed

Quantified
Confidence

Decision
Logic [-1, 0, 1]

Estimated CTE
Estimated HE

Onboard
Sensors and

Monitors

IRS, GPS, …

Contingency
Manager

Iron Bird Autonomy Testbed

Fig. 7. Assurance measure integration architecture: The assurance measure
is an executable component computing a quantitative value of confidence in
the AssuredTaxi property, from a stream of images and CNN estimates of
CTE and HE, which is then input to a decision logic that triggers contingency
actions under conditions leading to taxiing hazards.

taxiing mission, along with CNN estimates of CTE and HE.
Although it is also possible to receive additional inputs from
other run-time monitors and sensors (e.g., position information
from onboard localization systems, shown in Fig. 7 as GPS
and IRS), for this proof-of-concept the only run-time monitor
considered is an OOD detector that is already a part of the
quantification model [13] (also see Fig. 6).

The output from the assurance measure is a probability
distribution over the states of CTEa forecasted for a time
interval corresponding to the time taken to laterally depart the
runway, when there are no mitigations. A decision logic con-
sumes this output to produce a fault code for the contingency
manager, selected from its application interface specification:
[−1, 0, 1] ⇔ [HALT, SLOW, TAXI]. The code to be selected is
based on

• a decision criterion applied to the assurance measure
output: when there is ≥ 30% confidence that the true CTE
exceeds the allowed lateral offset, the assurance claim
does not hold; and

• a simple model of the system-level effect, i.e., the proba-
bility of, and time to, a lateral runway overrun given the
current system state, the assurance measure output, and
assumptions about vehicle dynamics.

The decision logic is simply that when AssuredTaxi holds
then the default code, 1, is maintained, otherwise the time to
the unsafe consequence determines which of the remaining
two fault codes, [−1, 0], are sent.

The assurance measure described here itself presents a con-
sequence to be characterized and a risk to be managed. This
can employ established safety assessment processes together
with our DAC methodology (Fig. 1). Accordingly, the overall
DAC for this AAS would additionally include a structured
argument with an integration focus that justifies the design
decisions made above, through diverse evidence including, for
example, Monte Carlo simulations of aircraft braking profiles
under various operating conditions, HIL platform based sim-
ulations of the integrated system, and flight platform testing.

IV. EVALUATION AND DISCUSSION

A. Simulation Environment

The simulation environment to assess the efficacy of dy-
namic assurance consists of the components shown by the
system architecture in Fig. 7. Here, the X-Plane software
simulates taxiing by streaming runway images to the deep
CNN component—as well as to the assurance measure, and
to the synoptic displays (described subsequently)—at a pre-
defined frame rate. This is based on the vehicle dynamics,
and the steering control and actuation inputs that it receives
from the iron bird HIL platform.

Those, in turn, are the responses to the rudder actuation
commands received from the VMS, which itself also simulates
brake and throttle actuation. The VMS contains the control
logic for vehicle steering and it uses the CNN estimates
of CTE and HE embedded in the route plan inputs that it
receives from the autonomous executive (AE) component,
along with speed commands. The AE, for its part, manages
the route plan and speed profile of the vehicle, also calculating
stopping distance horizons. Both the AE and the VMS receive
contingency signals as shown in Fig. 7, based on the fault
flags signaled by decision logic based on assurance measure
outputs, as discussed in Section III-C.

The synoptic displays (Fig. 8) show, in general, system
status and telemetry information. Here, they display the cam-
era images streamed from the X-Plane simulator, the moving
map output from the AE, and—the focus here—an assurance
dashboard (Fig. 8, bottom right). This dashboard contains
visualizations of confidence quantification outputs from the
assurance measure, specifically: i) the probability of violating
the AssuredTaxi property for a predefined number of look-
ahead time steps and for different values of offset (1.43m
and 2m), in the AssuredTaxi property, and ii) a forecast
of the uncertainty in the true lateral aircraft position on the
runway.

This display implements the visualization specified dur-
ing the development of the underlying quantification model
(Fig. 8, bottom left), showing the true location (CTEa), the
uncertainty in the true location (the shaded blue regions), and
the deep CNN output (CTEe). The horizontal axis discretizes
CTEa, also showing the runway centerline and specified
offsets, while the vertical axis discretizes time. Note that to
validate the assurance measure, CTEa must be known a priori;
therefore it appears in the visualization display. For more
details, see [13]. The assurance dashboard additionally shows
the relevant aircraft modes—i.e., initial roll-out and taxi—for
this operational concept, and aircraft state in terms of the fault
codes selected by the decision logic, visualized as a stoplight:
[HALT, SLOW, TAXI]. A batch simulation script is used for
gathering data from the simulation runs.

B. Data Collection and Experimental Assessment

The goal in building the data generation scenarios for
evaluation was to cover as large a region of the input space to
the deep CNN component as reasonably possible. A diverse

8

Author Pre-print Version. 39th IEEE/AIAA Digital Avionics Systems Conference (DASC 2020).

Moving map display
(Aircraft position)Camera view 3rd-person chase view

-4 -2 0 2 4

0
1

2
3

4
5

6
7

CTE(m)

Lo
ok

ah
ea

d
Ti

m
e

St
ep

s
(0

.3
3

se
c)

CTE Response of GPS (Ground Truth)
CTE Response of LEC

Safety Bounds
Centerline

CTE (meters)

Ti
m

e
St

ep
s

(x
 0

.3
3

se
co

nd
s)

Current time

Lookahead

Runway
Centerline

+offset-offset

CTEe

CTEa

Pr (|CTE$(&)| < 2m)

Visualization of quantification model results

Implementation

Assurance measure and
Contingency manger display

Fig. 8. Synoptic displays for run-time evaluation showing the run-time behavior of the system with the assurance measure integrated into the HIL platform, in
terms of simulated images from the wing-mounted camera, a third-person chase plane, and a moving map display. An assurance measure display additionally
visualizes run-time assurance quantification and decision logic outputs.

set of trajectories was generated that, in turn, resulted in
different positions and headings relative to the runway and its
centerline. Image instances were also generated with varying
amounts of tyre rubber marks (since they could influence CNN
output accuracy), at different times of the day (a relevant factor
for the model because of the position of the shadow of the
airplane) and under different cloud conditions. For evaluation,
three variants of the CNN were used, representing ML models
trained under differing cloud conditions and time of day. The
test instances were generated based on wider distributions over
the environment variables (i.e., position, heading, cloud, time-
of-day, tyre marks), such that the robustness to low density
regions of the data could be tested.

Boeing developed the operational concept and the trained
deep CNN component, also supplying data (drawn from the
training and validation environments of the CNN) to support
assurance measure development. Boeing also supplied the HIL
testbed, and formulated the evaluation test scenarios, whilst
providing data drawn from the environments representative of
the test scenarios for tuning the assurance measure prior to
platform integration. The authors from KBR developed the
DAC, its constituent assurance measure, the initial decision
logic, and the assurance measure visualization. The latter two
were then jointly refined to ensure that component interfaces
were consistent and compatible.

Twenty four different scenarios involving different simu-
lated environmental conditions were executed, followed by
qualitative and quantitative assessments. The qualitative as-

sessment was performed based on the observed behavior of the
simulated aircraft during testing. Fig. 8 (bottom right), shows
a snapshot from one test simulation run under overcast con-
ditions. Here, the assurance measure shows a low probability
of violating the 2m offset, also indicating that there is more
confidence that CTEa lies in the interval (1.43m, 2m), than
in other intervals for the current and the next three subsequent
time steps. Consequently, the aircraft continues to taxi, as
shown by the green TAXI state.

However, due to the tight bounds on the assurance prop-
erties, most evaluation scenarios ended with the assurance
measure triggering a contingency management action stopping
the aircraft during the execution of its route. In only one of the
24 scenarios, a potential safety violation was observed, in par-
ticular at runway intersections, emerging from unanticipated
behavior at the interface between the decision logic required
to integrate the assurance measure and the aircraft avionics.

This emergent behavior was, itself, the consequence of a
decision logic design resulting from the choices made during
its development: e.g., the criteria for sufficient assurance and
the temporal conditions necessitating contingency actions. We
relied upon engineering judgement for design decisions so as
to the balance the conservative behavior that safety demands,
with the need for a more permissive and performant system,
i.e., to avoid frequent, unnecessary stopping.

In general, deciding between a collection of options in the
presence of conflicting and uncertain outcomes is a special
case of decision making under uncertainty [15]. We plan to

9

Author Pre-print Version. 39th IEEE/AIAA Digital Avionics Systems Conference (DASC 2020).

investigate such techniques to develop a principled approach
to integrate assurance measures. Moreover, our assurance
measure did not integrate inputs from on-board localization.

The quantitative analysis uses 49050 messages from 31
ROS bags, collected during the experiments, which contain the
outputs of both the deep CNN component, and the assurance
measure. From these, 9887 (20.16%) were used to evaluate
the effectiveness of the combination of the assurance measure
and decision logic. The analysis yielded, respectively, a false
alarm rate of 2.1% and a false negative rate of 4.9% for the
SLOW contingency action, while for the HALT action, those were
0.8%, and 5.7% respectively.

Here we have presented the results of assessing the in-
tegrated system that embeds the assurance measure. The
assessment is generally suggestive of the need for further
study to better understand the requirements for assurance
measure integration, and how to monitor and enforce assurance
requirements due to ML components. For details on how we
built, calibrated, and empirically assessed the system- and
component-level assurance quantification models themselves,
see [13] and [14], respectively.

V. CONCLUDING REMARKS

The aviation industry is examining the potential roles of
ML components to enhance aircraft performance and safety
while defining ways to address the uncertainty in their behav-
ior, but recognizes the limitations of established compliance
approaches. Hence, a practicable approach to the development
and deployment of autonomous aviation system must address
both the needs of real-time assurance and the longer term
needs of certification. To that end, in this paper, we have
described the dynamic assurance case (DAC) concept and
an accompanying methodology for assurance during develop-
ment, and subsequently, continuously in operation, incorporat-
ing both qualitative and quantitative aspects.

Our framework addresses assurance concerns of the in-
tegrated system (i.e., the baseline system augmented with
assurance measures), from both a system focus, and from an
integration focus. We have described the main DAC compo-
nents, and its application to the assurance of an autonomous
taxiing capability, integrated on a single engine fixed-wing
aircraft system platform, as a proof-of-concept.

To assess our approach, we have relied upon a hardware-in-
the-loop (HIL) simulator that is a surrogate for the airworthy
flight platform. One of the challenges we faced was obtaining
sufficient useful data to build the models underpinning assur-
ance measures. We believe that a more principled approach
to specifying training data should be possible and that such
specifications could be derived from a high-level domain-
specific language (DSL) that will let us abstract from the
details of the individual probabilistic models, while ensuring
consistency with the other DAC components.

A broad set of assurance objectives for autonomous systems,
have been formulated in [16], while a category of additional
objectives and methods for generating evidence to meet those
objectives have been summarized in [17]. In [18], an assurance

lifecycle for ML components has been proposed, along with
approaches to characterize so-called generalization bounds on
ML models. Both the safety analysis process and the assurance
lifecycle proposed in [18], as well as the assurance objectives
and supporting methods from [16], [17] are fully compatible
with our methodology, and can be mapped to one or more of
the DAC components since the latter are largely agnostic to the
specific processes used. Indeed, specific assurance objectives
can be mapped to DAC assurance policies, while the artifacts
produced constitute DAC evidence items. Moreover, assurance
rationale is a core DAC component by which justification
can be provided as to why and how the proposed assurance
artifacts and methods entail platform or application-specific
assurance claims.

REFERENCES

[1] S-18, Aircraft And System Development And Safety Assessment Com-
mittee, ARP 4754, Guidelines for Development of Civil Aircraft and
Systems, SAE International, Dec. 2010.

[2] Underwriter Laboratories Inc., “Standard for Safety for the Evaluation
of Autonomous Products UL 4600,” April 2020.

[3] E. Denney and G. Pai, “Tool Support for Assurance Case Development,”
Journal of Automated Software Engineering, vol. 25, no. 3, pp. 435–499,
September 2018.

[4] R. Clothier, E. Denney, and G. Pai, “Making a Risk Informed Safety
Case for Small Unmanned Aircraft System Operations,” in 17th AIAA
Aviation Technology, Integration, and Operations Conference (ATIO
2017), AIAA Aviation Forum, AIAA 2017-3275, June 2017.

[5] E. Denney, G. Pai, and I. Whiteside, “The Role of Safety Architectures
in Aviation Safety Cases,” Reliability Engineering & System Safety, vol.
191, 2019.

[6] The Assurance Case Working Group (ACWG), “Goal Structuring
Notation Community Standard Version 2,” SCSC-141B, Jan. 2018.

[7] ASTM International, “Standard Practice for Methods to Safely Bound
Flight Behavior of Unmanned Aircraft Systems Containing Complex
Functions,” ASTM F3269-17, 2017.

[8] S-18, Aircraft And System Development And Safety Assessment Com-
mittee, ARP 4761, Guidelines and Methods for Conducting the Safety
Assessment Process on Civil Airborne Systems and Equipment, SAE
International, Dec. 1996.

[9] N. Leveson and J. Thomas, “STPA Handbook,” March 2018.
[10] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. Chen, “Mo-

bilenetV2: Inverted residuals and linear bottlenecks,” in 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2018, pp.
4510–4520.

[11] E. Denney, G. Pai and C. Smith, “Generic Safety Argument Patterns for
Learning-enabled Components,” in AAAI Workshop on Artificial Intelli-
gence Safety (SafeAI), AAAI. CEUR Workshop Proceedings, 2020.

[12] F. Laine, C.-Y. Chiu, and C. Tomlin, “Eyes-Closed Safety Ker-
nels: Safety for Autonomous Systems Under Loss of Observability,”
arXiv:2005.07144 [eess.SY], May 2020.

[13] E. Asaadi, E. Denney, and G. Pai, “Quantifying Assurance in Learning-
enabled Systems,” in 39th International Conference on Computer Safety,
Reliability, and Security (SAFECOMP 2020). Springer, 2020 (to appear).

[14] E. Asaadi, E. Denney, and G. Pai, “Towards Quantification of Assurance
for Learning-Enabled Components,” in 2019 15th European Dependable
Computing Conference (EDCC). IEEE, September 2019, pp. 55–62.

[15] M. J. Kochenderfer, Decision Making Under Uncertainty: Theory and
Application. MIT Press, 2015.

[16] Safety of Autonomous Systems Working Group, “Safety Assurance
Objectives for Autonomous Systems,” SCSC-153A, February 2020.

[17] R. Ashmore, R. Calinescu, and C. Paterson, “Assuring the Ma-
chine Learning Lifecycle: Desiderata, Methods, and Challenges,”
arXiv:1905.04223v1 [cs.LG], 2019.

[18] J. M. Cluzeau, X. Henriquel, G. Rebender, G. Soudain, L. van Dijk,
A. Gronskiy, D. Haber, C. Perret-Gentil, and R. Polak, “Concepts of
Design Assurance for Neural Networks (CoDANN),” European Union
Aviation Safety Agency (EASA) and Daedalean AG, Public Report
Extract Version 1.0, March 2020.

10

	Introduction
	Background
	Terminology
	Dynamic Assurance Cases
	Assurance during System Development
	Assurance during System Operation

	Methodology

	Example: Autonomous Taxiing
	System Description
	Development Assurance
	Assurance Policies
	Assurance Architecture
	Assurance Rationale and Evidence Items
	Assurance Quantification Model

	Platform Integration of Assurance Measures

	Evaluation and Discussion
	Simulation Environment
	Data Collection and Experimental Assessment

	Concluding Remarks
	References

