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Abstract

Amongst the essential steps to be taken towards developing
and deploying safe systems with embedded learning-enabled
components (LECs)—i.e., software components that use ma-
chine learning (ML)—are to analyze and understand the con-
tribution of the constituent LECs to safety, and to assure that
those contributions have been appropriately managed. This
paper addresses both steps by, first, introducing the notion of
hazard contribution modes (HCMs)—a categorization of the
ways in which the ML elements of LECs can contribute to
hazardous system states; and, second, describing how argu-
mentation patterns can capture the reasoning that can be used
to assure HCM mitigation. Our framework is generic in the
sense that the categories of HCMs developed i) can admit dif-
ferent learning schemes, i.e., supervised, unsupervised, and
reinforcement learning, and ii) are not dependent on the type
of system in which the LECs are embedded, i.e., both cyber
and cyber-physical systems. One of the goals of this work is
to serve a starting point for systematizing LEC safety analysis
towards eventually automating it in a tool.

1 Introduction
Learning-enabled components (LECs) are software that
leverage knowledge acquisition and machine learning (ML)
processes to implement a function or service. The dramatic
increase in the capabilities of ML algorithms over the past
decade has motivated the inclusion of LECs into larger sys-
tems, to accomplish tasks traditionally performed by hu-
man operators (in the case of physical systems), engineered
heuristics (in the case of software and mechanical systems),
or to perform functions that might otherwise have been in-
feasible. When integrated into a safety-critical context, e.g.,
transportation systems, or surgical robots, LECs can directly
cause or contribute to harm (National Transportation Safety
Board 2017).

Safety assurance arguments are structured reasoning that
relate safety claims to auditable and verifiable items of ev-
idence, and are often a core element of modern safety as-
surance cases—a comprehensive, defensible, and valid jus-
tification of the safety of a system for a given applica-
tion in a defined operating environment (Denney and Pai
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2018). Safety cases have been extensively used as a means
of safety assurance in various safety-critical domains, and
recent standardization efforts1 feature safety argumentation
as a core element of autonomy safety assurance. Safety ar-
guments can be captured in a number of forms, one of which
uses graphical notations such as the Goal Structuring Nota-
tion (GSN) (The Assurance Case Working Group (ACWG)
2018). Towards enabling reuse and ease of comprehension,
GSN-based argument structures can be abstracted and rep-
resented in the form of argumentation patterns.

The key starting point for safety analysis and assurance
is a systematic hazard analysis. Although one would usually
conduct this analysis at the higher-levels of the system hier-
archy, a variety of lower-level, bottom-up analyses applied
at a component-level stand in support. A failure modes and
effects analysis (FMEA) is a typical example of such lower-
level component-focused analysis.

(Salay and Czarnecki 2018) suggest that the difficulty of
assuring LEC safety is due to two distinct differences be-
tween an ML algorithm and a traditional software compo-
nent. First, the problems to which ML algorithms are applied
are often difficult if not impossible to specify. This condition
is often by design—if it were possible to write a specifica-
tion for a problem, an ML algorithm might not be necessary
or useful in the first place. Second, ML algorithms and their
internal logic are often uninterpretable to humans, compli-
cating their oversight. This difficulty of assuring LEC safety
presents a gap in the safety assurance practice that we seek
to address in the work presented in this paper. The goals
are to analyze and understand the contribution of the ML
elements of LECs2 to safety, when embedded into a wider
system, and to assure that those contributions have been ap-
propriately managed.

This paper addresses both objectives by, first, introducing
the notion of hazard contribution modes (HCMs)—a cate-
gorization of the ways in which LEC outputs can lead to
hazardous system states; and, second, describing how argu-

1For example, the forthcoming Standard for Safety for the Eval-
uation of Autonomous Products, UL 4600, from Underwriters Lab-
oratories, Inc.

2In the rest of this paper, we will not distinguish between LECs
and their ML elements.
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mentation patterns can capture the reasoning that provides
assurance of HCM mitigation. These two aspects of our
framework are generic in the sense that the categories of
HCMs developed i) can admit different learning schemes,
i.e., supervised, unsupervised, and reinforcement learning,
and ii) are not dependent on the type of system in which
the LECs are embedded, i.e., both cyber and cyber-physical
systems. Additionally, this work represents the first steps
towards a coherent framework to integrate applicable (and
possibly existing) analysis and verification techniques, along
with mitigation mechanisms, towards the ultimate goal of
developing assurance cases for systems embedding LECs.
Another goal is to serve a starting point for systematizing
LEC safety analysis towards eventually automating it in our
assurance case tool, AdvoCATE (Denney and Pai 2018).

2 Hazard Contribution Modes
An LEC embedded and integrated into a wider system can
migrate it to undesired states that pose the potential for
harm—hazards—through its outputs and interactions with
other system components, and the role each plays in the
overall system state. This contribution of an LEC to a hazard
may assume different forms, which we term as (LEC) haz-
ard contribution modes (HCMs). An HCM thus character-
izes the safety impact of an LEC, in terms of the relationship
between (possibly) observable LEC output and the observ-
able output (or behavior) of the wider system in which it is
embedded.

We identify two types of LEC output, namely expected
performance and unexpected performance (Figure 1). The
characterization of LEC output for both output types is the
same, though only shown fully for expected performance.
We refine each output type into modes concerning accuracy
and error (see Section 2.1 for more clarification).

As we will see later, the two hazardous modes shown un-
der the “with error” category in Figure 1 can be subsumed
under one generalized mode3. Thus, there are broadly four
categories of HCMs: Expected and Accurate (EA), Expected
with Error (EE), Unexpected and Accurate (UA), and Unex-
pected with Error (UE).

We can apply this categorization of HCMs independently
of the type of system in which LECs are embedded, be it
a physical system such as a road vehicle, or an intangible
cyber system such as enterprise software. Recognizing that
LEC output is produced from ML processes—effectively
the application of optimization algorithms with respect to
some objective functions—we hypothesize that the proposed
HCMs are agnostic to the learning scheme used, i.e., super-
vised, unsupervised, and reinforcement learning (RL). We
give examples to bolster this hypothesis in the discussion
that follows later in this section.

Applying the HCM categories can be viewed as a bottom-
up analysis similar to an FMEA. However, we distinguish
HCMs from failure modes since not all failure modes need
contribute to a hazard, whereas by definition all HCMs do,

3Henceforth, we will simply use mode when we mean hazard
contribution mode (HCM), qualifying its usage when unclear from
context.
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Figure 1: Characterization of LEC output, showing hazard
contribution modes in boldface in the highlighted boxes.

although some HCMs may indeed be failure modes (see Fig-
ure 2). HCMs are more abstract than failure modes and, from
a safety standpoint, they are broader in the sense that they
include non-failing outputs that can be hazardous. Method-
ologically, we envision that HCMs would be used alongside,
rather than as a replacement for FMEA.

Before elaborating each HCM in detail, first we discuss
relevant terminology and concepts.

2.1 Preliminaries
LEC accuracy represents the property that its outputs are
globally optimal, be it in the form of correct classification,
near-exact regression, or a selection of the reward maximiz-
ing actions in RL. Likewise, by LEC error, we mean the
divergence between LEC outputs and the reference values,
i.e., either ground truth (if available, e.g., as in supervised
learning), or the optimal values produced according to the
loss, cost, or objective functions of the optimization algo-
rithm (e.g., as in RL using reward functions). LEC accu-
racy and error are distinct concepts but intuitively related:
the greater the error, the lower the accuracy. However, de-
termining that which constitutes accurate output requires a
reference for comparison (which we elaborate on in further
detail later in this section).

It is worth contrasting LEC error, with the concept of
(software) error from dependability terminology (Avižienis
et al. 2004): although both capture a notion of divergence
(or deviation), the reference for comparison used is differ-
ent. Specifically, for the latter deviation is determined from
a required external system state, while for the former the
reference need not be a requirements specification.

Additionally, we differentiate LEC accuracy from clas-
sification accuracy. For classification tasks, LEC accuracy
refers to the classification performance on a particular sam-
ple input and is deterministic—i.e., either the classification
is accurate, or it is not. In contrast, classification accuracy
gives a frequentist probability of correct classification, and is
a metric that characterizes the (expected) classification per-
formance based on collection of sample inputs.
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Figure 2: Simplified (notional) concept for LEC output, showing different LEC error magnitudes. In reference to the bounds
on accuracy, the output is either accurate or not accurate. In reference to a requirement, an output is failed, while safety is
determined in reference to a safety threshold. Together, the Expected and Accurate (EA), and the Expected with Error (EE)
hazard contribution modes can be distinguished. The safety threshold shown is derived and applicable to the LEC.

Depending on the learning scheme, LEC error can assume
different forms. For instance, error in supervised learning
emerges from a combination of model assumptions (bias),
the type and quantity of data used (variance), and noise.
In unsupervised learning, error may emerge from an inade-
quately specified optimization objective (approximation er-
ror), model parameter choices that complicate differenti-
ation between distinct inputs (identifiability error), inade-
quate data (estimation error), and algorithmic insufficien-
cies (optimization error) (Liang and Klein 2008).

Practically, various error bounds can be specified. The
bounds on accuracy are such that LEC outputs that fall
within those bounds are considered to be accurate. In other
words, when the magnitude of LEC error does not exceed
the bounds on accuracy, LEC output is considered accu-
rate. When LEC error magnitude exceeds the bounds on
accuracy, the output may nevertheless meet the applicable
requirements. Such LEC output is not accurate but oper-
ationally acceptable, e.g., when the output is imprecise.4
When the LEC error magnitude exceeds that which is ac-
ceptable according to the requirements, it can be considered
to have failed.5

Figure 2 shows a notional concept that illustrates this
characterization of LEC output. As shown in the figure, the
bounds on accuracy and the requirement, together with the
magnitude of LEC error (labeled from "1 to "5) determine
when LEC output can be considered to be accurate, not ac-
curate, and failed. For example, the outputs with LEC errors

4Note that accuracy refers to the closeness of the output to the
reference, whereas precision refers to the variation in the output.

5In this case, error from dependability terminology and LEC
error are equivalent.

"1 and "4 are not accurate, those with LEC errors "2 and
"3 are accurate, while the output with LEC error "5 is failed.
For this paper, we will consider those outputs that are not ac-
curate or failed to be of the type “with error” (see Figure 1).

We assume that safety thresholds can be defined on
the wider system state, e.g., using a safety envelope ap-
proach (Tiwari et al. 2014). As shown in Figure 2, the safety
threshold determines when LEC output is unsafe. For ex-
ample, the LEC outputs with LEC errors "3, "4, and "5 are
all unsafe. The safety threshold shown has been arbitrarily
chosen. Practically, it is to be derived from the system-level
safety threshold and apportioned appropriately to the LEC;
although, for illustrative purposes, here we consider them to
be equivalent. Violating the safety thresholds can result in a
transition of the system from a safe state to a hazardous state
(represented in Figure 2 by the region labeled unsafe).

Note that Figure 2 is intentionally simplified to illustrate
the HCM concept. Indeed, we have assumed here that a
range of acceptable error suffices to express the require-
ment and safety threshold; instead, bounds, regions, or more
complicated manifolds—e.g., in the case of classification
problems—may be more appropriate. Suitable mechanisms
to determine and express those, are not in scope for this pa-
per, though the framework we give here provides a princi-
pled way to integrate them.

The combination of whether LEC output is safe, and its
output type is what we use to distinguish HCMs. Next,
we describe the main LEC output types and the associated
HCMs, giving representative examples towards typifying
what the mode is, and identifying plausible causes. Subse-
quently, we will discuss how we envision providing assur-
ance that the HCMs can be acceptably managed towards the
broader goal of system safety.
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2.2 Expected Performance
Expected performance is simply the required runtime LEC
output or behavior. It is expected in the sense that, for inputs
as captured within the system requirements, one anticipates
observing LEC outputs6 corroborating that it is at least as
performant in operation, as it was during model validation
and calibration. This is reflective of the input-output rela-
tionships learnt during the ML model (re)training, valida-
tion, and calibration efforts that are iteratively performed as
part of the lifecycle of LEC development, prior to deploy-
ment. As such, expected performance of an LEC is either
accurate, or with error.

Expected and Accurate Hazard Contribution Mode
The Expected and Accurate (EA) mode of an LEC is one
where its outputs are accurate and can induce hazardous sys-
tem states. Conceptually, this can be viewed as the condition
where the safe operational state space of the system has been
over-approximated resulting in an overlap with the unsafe
state space. In Figure 2, the LEC output with error ✏3 is rep-
resentative of the EA mode.

Consider, for example, a lane keeping function in au-
tomated driving, whose implementation uses a perception
LEC to classify and localize lanes whilst providing distance
estimates to lane boundaries. In this case, not considering
temporary or removed lane markings7 in the LEC training
data, may result in correct localization and accurate dis-
tance estimation from the wrong (i.e., removed) lane mark-
ings during operation. This is an instance of the EA mode
that, when unmitigated, in turn poses the potential for unin-
tended lane departure and intrusion into neighboring lanes.

The EA mode can manifest when known precursor or
contributory conditions to hazards identified during system
safety analysis—e.g., sensor malfunctions, off-nominal en-
vironmental conditions, etc.—have not been explicitly ac-
counted for during LEC development, i.e., when they have
not been i) included, or insufficiently represented, in the data
used for training and testing the ML model underpinning an
LEC, or ii) reflected in the optimization algorithm used.

Expected with Error Hazard Contribution Mode The
Expected with Error (EE) mode of an LEC is one where
the magnitude of LEC error is such that one or more safety
thresholds are violated, due to which potentially hazardous
system states are inducible. For the EE mode, the main issue
is whether the amount of error produced beyond the bounds
on accuracy is such that the output induces a hazardous sys-
tem state. As shown in Figure 2, when an LEC is in the
EE mode it produces outputs with error magnitudes (labeled
✏4 and ✏5) that are, respectively, i) not accurate (but opera-
tionally acceptable) and unsafe; and, ii) failed unsafe.

The EE mode can emerge in a number of scenarios, with
diverse local and global effects. Consider, again, our ear-
lier example of a lane keeping function using a perception

6In general, it may not be possible to observe LEC performance
directly; rather it would be inferred from the system output or be-
havior, to which LEC output would propagate.

7Possibly introduced due to roadwork, this condition of the road
environment can confuse even experienced human drivers.

LEC, although under nominal road conditions, i.e., without
temporary or removed lane markings as before. If the errors
in physical sensor values, as well as other errors introduced
due to sensor placement, scene preprocessing, sensor fusion,
etc., and their impact on violating the system-level safety
threshold are not accounted for during LEC development,
then the output error may be such that lanes are estimated to
be farther away than they actually are. As a result, a subse-
quent control action intended to maintain the current lane
may inadvertently result in a lane departure. Thus, errors
in the input (including adversarial perturbations) can cause
LEC output error magnitude to be modified such that an oth-
erwise safe output becomes hazardous.

LECs can be susceptible to the EE mode owing to the
numerous error generating processes involved in LEC de-
velopment, and how they account for the applicable safety
thresholds. For example, due to
a) inadequate sampling practices in preparing the training

data. One consequence of this can be unbalanced data
that insufficiently represents the relationship between the
inputs, outputs, and the safety thresholds;

b) assumptions made in building the ML model. This may
be reflected in an optimization objective function that in-
sufficiently accounts for the relevance and impact of the
applicable safety thresholds;

c) inadequate representation or coverage—of the conditions
of the operating environment that impact, or are impacted
by the safety thresholds—during model validation.

2.3 Unexpected Performance
Unexpected performance represents emergent runtime LEC
output, behavior, or effects at the system level, e.g., through
unanticipated feature interaction, that is not otherwise antic-
ipated to be seen in operation, and that was also not previ-
ously observed during model validation. Like expected per-
formance, unexpected LEC output can be considered as ac-
curate, or with error. Also, as mentioned earlier (also see
Figure 1), the HCMs associated with unexpected perfor-
mance mirror those identified for expected performance,
i.e., they concern hazardous LEC outputs that are both
accurate—i.e., the Unexpected and Accurate (UA) mode—
and have error—i.e., the Unexpected with Error (UE) mode.

Intrinsically, as well as from the standpoint of the impact
in inducing hazardous system states, there is conceptually
little difference between the UA and UE modes, and those
that we identified earlier. Consequently we expect that the
processes and causes from which the UA and UE modes
stem, will overlap to some degree with many of those re-
sponsible for generating the EA and EE modes.

However, unexpected LEC performance, in general, is an
operational manifestation of misconceptions about i) the na-
ture of the operating environment and ii) the system in which
the LEC is deployed, reflected in the ML algorithms used,
and the data used to train them. This, in conjunction with po-
tential inadequacies in the steps of LEC development result
in a divergence between what is required (i.e., expected per-
formance), and what is experienced at runtime (unexpected
performance). From this, we hypothesize that two particular
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reasons for the UA and UE modes include dataset shift, and
validation insufficiency.

Additionally, due to the inherently uncertain nature of
unexpected (and possibly hazardous) LEC outputs, the ap-
proaches used for mitigation and assurance are where the
UA and UE modes are likely to differ from the EA and
EE modes, respectively. In particular, although the latter
two modes may be manageable through a largely preven-
tative approach, mitigation of the former two modes is
likely to be more reliant on runtime detection, recovery, and
architecture-level safety mechanisms.

Unexpected and Accurate Hazard Contribution Mode
The Unexpected and Accurate (UA) mode characterizes
unanticipated LEC output that are nevertheless optimal or
accurate, and also hazardous.

For example, consider a collision avoidance function in
an unmanned aircraft system implemented using an LEC
trained using reinforcement learning (RL). In this case, a le-
gitimate reward maximizing action such as banking to the
left to avoid a collision can be learnt since this is an ad-
missible action for some states and situations. However, in
some collision scenarios, and in particular, under conditions
where another aircraft rapidly emerges on a head-on course
within a short range (for instance, in certain types of uncon-
trolled airspace where human-piloted general aviation also
co-operate), the established rules of air require both aircraft
to bank to the right. In this case, an otherwise optimal con-
trol action is unexpected for the operating scenario, and can
be potentially catastrophic, i.e., if the aircraft controlled by
the LEC banks to the left while the other aircraft banks to
the right, as required.

The UA mode can emerge in operating contexts where
there is no notion of ground truth, and potentially also from
the conditions and causes that precipitate the EA mode. That
is, when conditions and events known to contribute to iden-
tified hazards are not suitably accounted for, during LEC de-
velopment, either in the training and validation data, or in the
optimization objective function. Other differentiating causes
include, as mentioned earlier, dataset shift, and insufficient
model validation before deployment.

In our aircraft system example above, dataset shift may
present as unbalanced data, for example, itself potentially
due to inappropriate sampling, or due to assumptions made
whilst modeling the environment. Likewise, incomplete cov-
erage of various collision geometries, with variable aircraft
types and speeds, is reflective of inadequate model valida-
tion.

Unexpected with Error Hazard Contribution Mode
The Unexpected with Error (UE) mode categorizes unan-
ticipated LEC output that has a magnitude of error such that
it contributes to hazardous system states.

Consider, again, a perception LEC deployed in an auto-
mated driving scenario used for detecting and tracking ex-
ternal entities, in support of collision avoidance. Although in
training and validation, the average detection performance to
identify and localize pedestrians—as measured by sensitiv-
ity and specificity metrics—may indicate that the LEC will
perform as expected in operation, false positives/negatives in

specific context-dependent environmental situations reflect
unexpected outputs with an error magnitude that could be
potentially hazardous, e.g., a false negative classification of
a pedestrian with dark clothing who may be camouflaged by
an equally dark background, in a limited visibility environ-
ment, due to which vehicle brakes are not engaged, poten-
tially resulting in a collision.

In this case, the false negative is the consequence of
an edge case (Koopman 2019), a rare situation represent-
ing a special form of covariate shift that may elude non-
comprehensive model validation. Covariate shift is one spe-
cific type of the more general dataset shift condition, where
the distribution of the inputs to the LEC in operation is dif-
ferent from that which was used for its training. Other forms
of dataset shift include prior shift, where the output dis-
tributions differ between training and operation, and con-
cept shift, where the joint distribution of inputs and outputs
changes in operation from that which was represented by the
training data.

More generally, and as mentioned earlier in this section,
the UE mode can occur due to various error generating
processes in LEC development steps, including inadequate
training and validation data, and assumptions encoded in
the optimization loss, error, or objective functions, in addi-
tion to the two particular causes of unexpected performance:
dataset shift, and inadequate validation.

3 Assuring Acceptable Safety Contribution
Recall that, first, the EA and EE modes are similar to the UA
and UE modes, respectively, from the standpoints of: i) their
impact on system safety, and ii) the specific aspects of the
LEC output, i.e., accuracy and error magnitude. Also recall
that there is a degree of overlap between the causes of the
modes, due to which there is a consequent overlap in the
way mitigation is addressed. Thirdly, we hypothesized two
particular reasons for unexpected hazard contribution.

We now describe some mechanisms towards acceptably
managing the safety contribution of the identified hazard
contribution modes, which can also be considered as generic
and high-level evidence requirements.

3.1 Managing Hazard Contribution Modes
Accurate and Hazardous Output Assurance of accept-
ably mitigating the EA and UA modes can be provided, in
part, through evidence of a combination of the following:
– sufficiently reflecting in the training and validation data,

all known and identified conditions that are both known
hazard precursors and that can be associated to functions
allocated to LECs;

– penalizing the relevant hazard precursors in the loss,
cost, or objective functions of the optimization algorithms
used, e.g., as parameterized variables of a regularization
term added to a loss function. Contextually relevant ro-
bustness testing of the LEC can then provide additional
evidence assuring that the revised objective functions are
suitable to reduce the occurrence of the EA mode;

– comprehensive model testing and verification-based cov-
erage of the identified precursor conditions of the hazards
induced by the EA mode.
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Hazardous Output with Error To provide assurance that
the EE and UE modes have been acceptably managed, re-
quiring evidence of at least a combination of the following
can be useful:
– valid safety thresholds (or bounds) associated with the

LEC outputs, derived from system-level safety bounds (or
a specification of the safety envelope and associated con-
ditions);

– adequately reflecting the LEC specific safety thresholds
in the training and validation data;

– appropriately reflecting the LEC specific safety thresholds
in the loss, cost, or objective functions of the optimization
algorithms used. Reflecting appropriateness of the ML al-
gorithms, in turn, relates to demonstrating that they are
performant and robust (Ashmore, Calinescu, and Paterson
2019), with the proviso that these assurance properties ac-
count for the applicable safety thresholds;

– comprehensive model testing and verification that con-
siders error performance in relation to the relevant safety
thresholds.

Prevention and Recovery The mitigations proposed
above are preventative, broadly focusing on reducing the op-
portunities for the EA and EE modes to occur in operation.
In so doing, the idea is also that they may prevent the run-
time occurrence of the UA and UE modes, since some of the
same processes are responsible. To additionally assure that
the particular causes of the UA and UE modes have been
managed, assurance mechanisms can additionally focus on
gathering evidence of a combination of the following:
– comprehensive definition of the operating environment,

and the system context, e.g., by leveraging a rich specifi-
cation of the operating constraints for the system (Koop-
man and Fratrik 2019);

– sufficiency of the training and validation data, that is as-
surable through evidence that the data used are relevant,
balanced, complete, and accurate (Ashmore, Calinescu,
and Paterson 2019).

– model validation techniques that are comprehensive and
contextually relevant (Ashmore, Calinescu, and Paterson
2019).

Of the above, the first two items seek to provide assurance
of managing dataset shift, while the third attempts to pro-
vide evidence that model validation approaches used are ad-
equate.

Layered Mitigation For wider safety assurance, it is not
sufficient only to show that LEC HCMs have been managed;
rather a layered approach is prudent, including architectural
mechanisms to reduce or mask the impact of the HCM. As
such, from the standpoint of recovery from the HCMs once
they have occurred, and specifically to manage the UA and
UE modes, evidence of mitigation mechanisms deployed at
an architecture level can provide additional assurance. For
instance,
– runtime monitoring for detection of LEC outputs that vi-

olate the applicable safety bounds,
– fail-safe/failure tolerance mechanisms that disengage haz-

ardous LEC outputs, or the entire LEC as appropriate, by
leveraging assurance measures (Asaadi, Denney, and Pai

2019) that provide a quantified notion of confidence in
specific LEC assurance properties;

– using redundant and sufficiently diverse implementations
of the functions that LECs implement, along with runtime
monitors for detecting function disagreement.
Collectively, we believe that satisfying the generic evi-

dence requirements described above, can form part of the
wider basis for assurance that the system-level effects of
the LEC output are acceptable and do not contribute to haz-
ardous system states.

The caveat in the preceding presentation of some general
mitigations for HCMs is that some of those mitigations have
their own challenges (that we do not address in this paper).
For example, diverse data is generally useful but its inclusion
requires care, without which the optimization algorithms
used for ML may not converge on a solution. Likewise, the
application of formal analysis techniques for robustness as-
surance may have limited utility if the risks being examined
have small associated probabilities. A more complete exam-
ination of HCM mitigations is outside the scope of this pa-
per. We note that a wide variety of such techniques have been
previously surveyed, e.g., by (Ashmore, Calinescu, and Pa-
terson 2019). Our emphasis here is, rather, the framework
to marshaled those mitigations in a structured way, towards
LEC assurance.

3.2 Safety Assurance Argument Patterns
Argument Pattern Notation We give a brief overview
of the syntactic elements of the Goal Structuring Notation
(GSN) that we have used here for specifying argument pat-
terns. For comprehensive details on argument patterns and
their use, we refer to our prior work (Denney and Pai 2013).

Safety claims are represented using rectangular elements
termed as goal nodes (or, simply, goals). References to con-
textual information are given in rounded rectangles termed
as context nodes. Parallelograms are strategy nodes, specify-
ing how higher-level claims are developed into lower-level
claims, e.g., using inference rules. Assumptions are recorded
within ellipses annotated with the character ‘A’. The triangu-
lar and/or diamond decoration on nodes indicate that those
nodes can be instantiated, i.e., by replacing the abstract pa-
rameters specified within braces ‘{ }’ in the node descrip-
tions, with concrete data.

Nodes are generally connected by two types of links.
Those with solid arrowheads represent an inferential rela-
tion interpreted as ‘is supported by’, while those with hollow
arrowheads denote a contextual relation, interpreted as ‘in
context of ’. Links can be annotated with multiplicity, filled
circles with labels that specify how many times that link and
connected target node are instantiated. Additionally, there is
a special type of link for capturing a choice, which is shown
using a filled diamond symbol on a link between a source
and multiple target nodes. Such choice links can also be an-
notated with labels indicating how many of the target nodes
are to be instantiated.

Example Argument Pattern Now, we discuss how the
reasoning associated with the assurance mechanisms dis-
cussed in the preceding section may be presented in the form
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Figure 3: Argument pattern for assurance that the EA mode for a specific LEC is acceptably managed.

of patterns of assurance argumentation. Figure 3 shows the
assurance argument pattern capturing the reasoning why it is
the case that the EA mode is acceptably mitigated for a spe-
cific LEC (shown as the root goal node G1, referencing the
parameter “lecItem”). This claim references the hazardous
system state to which it contributes, as a contextual element
(node C6). The pattern then essentially provides two strands
of assurance reasoning to support the root claim.

The first leg (strategy node S1 and downwards) reasons
individually about the specific LEC outputs, requiring evi-
dence either that i) either each output is not hazardous when
it is accurate (goal node G3), or that ii) if each output is,
in fact, hazardous, its value is masked upon exceeding the
associated safety threshold (goal node G4), assuming that
this violation can be detected (assumption node A1). The
choice link between the strategy node S1 and the goal nodes

G1 and G2 captures these alternatives. The second branch
(strategy node S2 and downwards) reasons about mitigation
of each of the generic identified causes of the HCM (goal
nodes G5–G8), reflecting the generic mitigations identified
in the previous section. Since there can be multiple system
hazards to which an LEC could potentially contribute, we
would instantiate this pattern for each such hazard.

There are three remaining patterns, one for each of the
three remaining modes, following a similar rationale, but
specific to the particular causes identified. Owing to space
constraints, we do not show those patterns here. Addition-
ally, an overarching pattern (also not shown here) relates
the root claim of each of the four patterns for the relevant
modes (e.g., goal node G1 for the EA mode, as shown in
Figure 3) to a higher-level safety claim that the contribution
of the associated LEC to identified system hazards is accept-
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ably managed. The inference rule that we use to make this
link is that the overall contribution of the LEC to the rele-
vant system hazards is characterized by the individual haz-
ard contributions modes and assurance of the latter entails
that of the former. This is the essential basis of the reason-
ing underlying a bottom-up analysis such as FMEA that we
have sought to replicate but with a safety focus.

We note that, in fact, this is only provides a part of the
assurance since, in reality, component contribution often de-
pends on other components and the associated interactions.
However, that analysis is not in scope for this paper.

4 Related Work
Our taxonomy of hazard contribution modes (HCMs) shares
some similarities with other efforts examining ML safety:
For example, (Varshney and Alemzadeh 2017) character-
izes ML outputs as either desired or undesired, in contrast
with our characterization of LEC output types. Their work
also proposes a number of high-level strategies for safety,
including inherently safe design, safety reserves or factors,
fail safety, and procedural safeguards. These are well aligned
with most, if not all, of the mitigation mechanisms that we
have identified earlier in this paper.

(Amodei et al. 2016) outlines five failure modes focusing
on reinforcement learning, which (Faria 2018; 2017) builds
upon, to address additional failure mode as applied to super-
vised and unsupervised learning. Their research also points
to how the identified failure modes and safety issues may be
managed, but the associated assurance rationale is left im-
plicit. By contrast, our categorization of HCMs is broader,
including both failure modes as well as non failing modes
that have a safety impact. The associated assurance rationale
is included as an argumentation pattern that can be conve-
niently examined, augmented, and improved as appropriate.
Moreover, although the evidence requirements we identify
are far from comprehensive, the framework is intended as a
starting point for developing a more comprehensive safety
assurance basis for LECs.

Other research has addressed the problem of creating
GSN patterns for ML assurance generally: (McDermid,
Jia, and Habli 2019) introduces a high-level framework for
safety assurance of autonomous systems. This framework
is based on the observation that there is a gap between the
real world, the world as observed and the world as imag-
ined. The gap is caused by problem-inherent, procedural,
and engineering limitations of autonomous systems. Safety
assurance under this proposed framework involves exam-
ining these gaps and assuring that the negative impacts on
the safety of the system is limited. There are clear similar-
ities between this model/reality gap approach and our un-
derstanding of expected and unexpected performance due to
distributional shifts and validation.

(Bragg and Habli 2018) presents a high-level pattern for
assurance of the general safety of a reinforcement learning
system in a specific environment. This pattern is based on
the concepts of safe configuration (the model construction
and subsystem construction is safe) and failsafes.

(Picardi et al. 2019) presents a GSN pattern for assurance
that an ML decision system achieves a specific level of per-

formance, and applies this system to medical diagnosis ML,
aggregating sub-arguments of suitable benchmarks, the op-
erating environment, the learned model, the training data,
and the test data. (Burton et al. 2019) builds upon this work,
proposing a method to develop confidence arguments about
model performance from testing evidence, and applies these
methods to the problem of arguing sufficient performance in
pedestrian detection for autonomous vehicles.

The argument pattern(s) we have introduced, explicitly
capture the implicit reasoning that constitutes a system-
atic, bottom-up analysis of component-level safety contribu-
tion. We call out generic, high-level evidence requirements
that emerge from this preliminary framework of analyzing
HCMs, but we do not address the methods for assembling
or assessing the concrete evidence items that would be re-
quired, nor do we address the numerous assurance tech-
niques that may be leveraged.

For example, (Ashmore, Calinescu, and Paterson 2019)
presents a theoretical framework of safety considerations in
an ML component development lifecycle, defining specific
assurance properties for constituent lifecycle stages, and an
overview of the state of the art techniques that produce the
required assurance evidence. The gap in their work that our
paper fills, is linking the assurance properties of the lifecycle
stages and, in turn, the evidence generating techniques to
safety, via the HCMs.

Our work seeks to combine a systematic component-level
assessment of ML safety with argumentation patterns to cap-
ture the associated assurance rationale. Unique to our work
is the focus on ML embedded in a wider cyber- or cyber-
physical system: understanding how these components con-
tribute to system hazards as a starting point for creating the
arguments required to assure that those contributions have
been acceptably managed.

5 Conclusions
In this paper we have presented a framework for under-
standing the hazardous contributions of Learning-enabled
Components (LECs) to system safety, in terms of hazard
contribution modes (HCMs), characterized broadly in terms
of LEC output type and specifically in terms of accuracy,
error and performance expectations. Using examples we
have elaborated some candidate causes and conditions un-
der which they arise, and that which is entailed in providing
assurance of mitigation, seeking to be as generic as possi-
ble. However, safety effects of HCMs cannot be general-
ized, since details about the specific LEC, its interfaces to
the wider system, the system itself, and its operating context
are necessary. Hence, here we have only given illustrative
examples of potential effects of HCMs on safety. Moreover,
our characterization of the modes is not intended to be com-
plete, nor does it cover the full scope of mode causes and
mitigations. Thus, this should be seen less as an exhaustive
enumeration of all possible hazard-inducing scenarios but
rather as a guide to thinking systematically about causes, ef-
fects, and hazard conditions (including failure modes) dur-
ing a component-focused hazard analysis.

HCMs are applicable to many situations where the out-
puts, behavior, and effects of a software component at the
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system level may be difficult to specify in advance and,
hence, apply more generally than for LECs. However, tradi-
tional (i.e., non-ML) software components have traditional
hazard analysis techniques at their disposal; hence, here we
have proposed HCMs as a generic analysis framework that
can be coupled with mitigations techniques specific to ML.

We have given argument patterns (one of which has been
elaborated in detail) that captures the above characteristics
for the different HCMs, along with generic, high-level miti-
gations for the identified associated causes. Additionally, we
have elaborated the reasoning that would be used to com-
pose each mode-specific pattern into a pattern that addresses
the overall contribution of the LEC. In practice, the mode-
specific patterns would be subsequently refined and aug-
mented with more details that are specific to the particular
LEC, the learning scheme that is implemented, the system
in which it is integrated, and the environment within which
the LEC and its containing system are deployed. These also
form the data source from which the patterns would be in-
stantiated to give concrete assurance arguments. Building on
existing hazard analysis and argument generation function-
ality in our assurance case tool, AdvoCATE (Denney and
Pai 2018), we plan to develop templates for supporting the
analysis that goes with HCMs, a library of application/ML-
specific patterns, implement a guided decision process to as-
sist users with pattern selection, composition, and instantia-
tion, towards automating the steps from fundamental analy-
sis to assurance argument creation.

Finally, as future work, we plan to refine the HCMs for
LECs from a methodological standpoint, towards refining
the high-level evidence requirements into lower-level ones
that can be linked to objective quality evidence.

Acknowledgments
This work was supported by the System-wide Safety project
in the Airspace Operations and Safety program of the NASA
Aeronautics Research Mission Directorate.

References
Amodei, D.; Olah, C.; Steinhardt, J.; Christiano, P.; Schulman, J.;
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