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Abstract. Dependability assurance of systems embedding machine learning (ML)
components—so called learning-enabled systems (LESs)—is a key step for their
use in safety-critical applications. In emerging standardization and guidance ef-
forts, there is a growing consensus in the value of using assurance cases for that
purpose. This paper develops a quantitative notion of assurance that an LES is
dependable, as a core component of its assurance case, also extending our prior
work that applied to ML components. Specifically, we characterize LES assur-
ance in the form of assurance measures: a probabilistic quantification of confi-
dence that an LES possesses system-level properties associated with functional
capabilities and dependability attributes. We illustrate the utility of assurance
measures by application to a real world autonomous aviation system, also de-
scribing their role both in i) guiding high-level, runtime risk mitigation decisions
and ii) as a core component of the associated dynamic assurance case.

Keywords: Assurance, Autonomy, Confidence, Learning-enabled systems, Ma-
chine learning, Quantification

1 Introduction

The pursuit of developing systems with increasingly autonomous capabilities is amongst
the main reasons for the emergence of learning-enabled systems (LESs), i.e., systems
embedding machine learning (ML) based software components. There is a growing con-
sensus in autonomy standardization efforts [1] on the value of using assurance cases
(ACs) as the mechanism by which to convince various stakeholders that an LES can
be relied upon. ACs have been successfully used for safety assurance of novel aviation
applications where—like LESs—regulations and standards continue to be under devel-
opment [2]. However, LESs pose particular assurance challenges [3] and existing AC
technologies may not be sufficient, requiring a framework where the system and its AC
evolve in tandem [4]. Here too, there are specific additional challenges: first, structured
arguments1 in many ACs are effectively static, i.e., they are usually developed prior
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1 The systematic reasoning that captures the rationale why specific conclusions, e.g., of system
safety, can be drawn from the evidence supplied.
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to system deployment under assumptions about the environment and intended system
behavior. Evolution of the system or its ML components (e.g., via online learning, or
by adaptation in operation) can render invalid a previously accepted AC. In principle,
although it is possible to dynamically evolve structured arguments [4], since their role
is primarily to convince human stakeholders, it makes more sense for such updates to
happen between missions at well-defined points.

Second, an operational evaluation of the extent of assurance in an LES (or its ML
components, where appropriate) is a valuable system-level indicator of continued fitness
for purpose. That, in turn, can facilitate potential intervention and counter-measures
when assurance drops below an acceptable level during a mission. Indeed, online as-
surance updates that are aimed at machine consumption must necessarily be in a com-
putable form, e.g., using a formal language, such as a logic, or as a quantification. So
far as we are aware, prevailing notions of ACs do not yet admit such evaluation. Prior
efforts at AC confidence assessment [5,6] have focused on the argument structure rather
than the system itself, and face challenges in repeatable, objective validation due to their
reliance on subjective data. They have also not been applied to LESs. Thus, there is a
general need to capture a computable form of assurance to bolster an otherwise quali-
tative AC. Note that although a qualitative AC may well refer to quantitative evidence
items, here we are identifying the necessity to have quantified assurance as a core facet
of LES ACs.

This paper focuses on the problem of assurance quantification, deferring its use in
dynamic updates to future work. The main contribution is an approach to characterize
assurance in an LES through uncertainty quantification (UQ) of system-level depend-
ability attributes, demonstrated by application to an aviation domain LES.

2 Methodology

Previously [7], we have described how assurance of ML components in an LES can
be characterized through UQ of component-level properties associated with the corre-
sponding (component-level) dependability attributes. Here, we extend our methodol-
ogy to the system-level, relying on the following concepts: assurance is the provision
of (justified) confidence that an item—i.e., a (learning-enabled) component, system, or
service—possesses the relevant assurance properties. An assurance property is a logi-
cal, possibly probabilistic characteristic associated with dependability attributes [8] and
functional capabilities. One or more assurance properties applied to a particular item
give an assurance claim2. An assurance measure characterizes the extent of confidence
that an assurance property holds for an item through a probabilistic quantification of un-
certainty. It can be seen as implementing a UQ model on which to query the confidence
in an assurance property.3

In general, we can define multiple assurance properties (and assurance measures),
based on the LES functionality and dependability attributes for which assurance is
sought. For example, the proposition “the aircraft location does not exceed a specified

2 Henceforth, we do not distinguish assurance properties from assurance claims.
3 When the assurance property is itself probabilistic, the corresponding assurance measure is

deterministic, i.e., either 0 or 1.
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lateral offset from the runway centerline during taxiing” is a system-level assurance
claim associated with the attribute of reliability. Similarly, the assurance property “the
aircraft does not veer off the sides of the runway during taxiing” is associated with the
attribute of system safety. Such assurance properties directly map to the claims made in
the structured arguments of an LES assurance case. Thus, we can leverage the method-
ology for creating structured arguments [9] to also specify assurance properties.

For quantification, we mainly consider assurance measures for those system-level
properties that can be reasonably and feasibly quantified. For example, assurance mea-
sures for the preceding example quantify the uncertainty that the aircraft location does
not exceed, respectively, the specified lateral offset from the runway centerline (relia-
bility), and half the width of the runway pavement (safety), over the duration of taxiing.

LESs used in safety-critical applications, especially aviation, are effectively stochas-
tic dynamical systems. The insights from this observation are that we can: i) cap-
ture LES behavior through model-based representations of the underlying stochastic
process; ii) view system-level assurance properties as specific realizations of particu-
lar random variables (RVs) of that process; and iii) express confidence in the assur-
ance properties—i.e., the assurance measures—by propagating uncertainty through the
model to determine the distributions over the corresponding RVs.

One challenge is selecting an appropriate model and representation of the stochastic
process to be used to model LESs. Although there is not a generic answer for this, such
a model could be built, for example, by eliciting the expected system behavior from
domain experts, by transforming a formal system description, using model fitting and
statistical optimization techniques applied to (pre-deployment) system simulation and
execution traces, or through a combination of the three. For LESs, a formal system
description may be often unavailable. As such, we rely on elicitation and statistical
techniques, using Bayesian models where possible, making allowance to admit and
use other well-known, related stochastic process models—such as Markov chains—and
leveraging data from analytical representations of system dynamics, simulations, and
execution. The Bayesian concepts of credible intervals and regions—determined on the
posterior distribution of the RVs for assurance properties—give a formal footing to the
intuitive, subjective notion of confidence that usually accompanies claims in assurance
arguments, and ACs in general [10].

3 Illustrative Example – Runway Centerline Tracking

System Description To show our methodology is feasible, we now apply it to quan-
tify assurance in an aviation domain LES supplied by our industrial collaborators: a
unmanned aircraft system (UAS) embedding an ML component, trained offline using
supervised learning, to support an autonomous taxiing capability. The broader goal is
to enable safe aircraft movement on a runway without human pilot input. Fig. 1 shows
a simplified pipeline architecture used to realize this capability. A deep convolutional
neural network (CNN) implements a perception function that ingests video images from
a wing-mounted camera pointed to the nose of the aircraft. The input layer is (360⇥200)
pixels ⇥ 3 channels wide; the network size and complexity is of the order of 100 lay-
ers with greater than two million tunable parameters. Effectively, this ML component
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Fig. 1. Pipeline architecture to implement an autonomous taxiing capability in a UAS.

performs regression under supervised learning producing estimates of cross track er-
ror (CTE)4 and heading error (HE)5 as output. These estimates are input to a classical
proportional-integral-derivative (PID) controller that generates the appropriate steering
and actuation signals.

3.1 Assurance Properties

The main objective during taxiing (autonomously, or under pilot control) is to safely
follow the runway (or taxiway) centerline. Safety during taxiing entails avoiding lat-
eral runway overrun, i.e., not veering off the sides of the runway pavement. Although
avoiding obstacles on the runway is also a safety concern, it is a separate assurance
property that we do not consider in this paper. Thus, safety can be achieved here, in
part, by meeting a performance objective of maintaining an acceptable lateral offset
(ideally zero) on either side of the runway centerline during a taxi mission from starting
taxi to stopping (or taking off).6 In other words, the closer the aircraft is to the runway
centerline during taxiing, the less likely it is to veer off the sides of the runway.

This performance objective relates to the attribute of reliability, where taxi fail-
ure is considered to be the violation of the specified lateral offset. Here, we focus
on the corresponding assurance property, AssuredTaxi : |CTEa| < offset, where
offset = 2m is the maximum acceptable lateral offset on either side of the runway
centerline for this application and aircraft type. CTEa, which is the true (or actual) CTE
for the UAS, is a signed, real valued scalar; the absolute value gives the magnitude of
the offset, and the sign indicates where the UAS is located relative to the centerline, i.e.,
to its left or its right.

3.2 Assurance Quantification

Model Choice The assurance measure corresponding to AssuredTaxi, establishes
Pr (|CTEa| < 2m), which characterizes the uncertainty (or conversely, confidence) in
the true (or actual) CTE (CTEa) relative to the specified offset. CTEa evolves in time

4 The horizontal distance between the aircraft nose wheel and the runway centerline.
5 Heading refers to the compass direction in which an object is pointed; heading error (HE) here,

is thus the angular distance between the aircraft heading and the runway heading.
6 Our industry collaborators elicited the exact performance objectives from current and profi-

cient professional pilots.
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Table 1. DBN model variables.

Description  Variable Interval Boundaries for States

True CTE
Uncertain discrete variable with 9 states CTEa [-½w , -2, -1.43, -0.85, -0.28, 0.28, 0.85, 1.43, 2, ½w ]

Outlier detection outcome 
Observed Boolean variable  D [0, 1]

 CNN estimate of CTE 
Observed discrete variable with 6 states CTEe [-½w , -2, -1, 0, 1, 2, ½w ]

CNN estimate of HE 
Observed discrete variable with 3 states HEe [-20, -3, 3, 20]

as the PID controller responds to estimates of CTE and HE, themselves the responses
of the deep CNN component, to runway images captured by the wing mounted camera
(see Fig. 1). CTEa is thus uncertain and depends on other variables, of which those that
can be observed are the estimated CTE (CTEe), estimated HE (HEe), and a sequence
of images. We can also model the controller behavior in terms of a time series evolution
of CTEa since, during taxiing, the true CTE at a given time is affected by the controller
actuation signals at prior times.

An abstracted model of LES behavior is reflected in the joint distribution of the rele-
vant observed and uncertain variables. In fact, a dynamic Bayesian network (DBN) [11]
is a convenient and compact representation of this joint distribution, as we will see sub-
sequently in this section. It takes into account the temporal evolution of the variables
and their (known or assumed) conditional independence relations. Thus, to determine
the assurance measure, we effectively seek to quantify the (posterior) distribution over
CTEa, given a sequence of runway images, the estimates of CTE and HE produced
by the ML component, and the controller behavior, as a query over the corresponding
DBN model.

Model Variables Model variables can be discrete or continuous, and there are tradeoffs
between information loss and computational cost involved in the choice. Table 1 lists
the discrete variables we have chosen, giving the interval boundaries for their states. The
choice of the intervals that constitute the states of the variables has been based, in part,
on: i) domain knowledge, ii) an assessment of the data sampled from the environments
used for training and testing the CNN, and iii) the need to develop an executable model
that was modest in its computational needs.

Here, w is the width of the runway in meters, and negative values represent CTE
measured on the left of the runway centerline. The HE is given in degrees, while D
is dimensionless. An additional variable (I , not shown in Table 1) models the runway
image captured from the camera video feed as a vector of values in the range [0 . . . 1]
representing normalized pixel values. The Boolean variable D represents the detection
of outliers in camera image data. Such outliers may manifest due to various causes, in-
cluding camera errors and covariate shift, i.e., when the data input to the CNN has a dis-
tribution different from that of its training data. Note that the LES shown in Fig. 1 does
not indicate whether or not it includes a mechanism to detect outliers or covariate shift.
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Fig. 2. DBN structure for assurance quantification, showing two adjacent slices at times t � 1,
and t; shaded nodes represent observed variables, clear nodes are the uncertain, latent variables.

However, we include this variable here, motivated by our earlier work on component-
level assurance quantification of the CNN [7], which revealed its susceptibility to outlier
images. In fact, D models a runtime monitor for detecting out of distribution (OOD)
inputs to the CNN.

Model Structure Each variable in Table 1 is indexed over time: we will denote a
variable X at time t as X(t). The causal ordering of the model variables (Fig. 2) in-
forms the structure of the DBN: the estimated CTE and HE at time t are inputs to the
controller which, in turn, impacts the future location of the aircraft at time t + ". The
directed links between the corresponding variables in adjacent time slices capture this
dependency. For example, in Fig. 2, these are the directed links CTE(t�1)

e ! CTE
(t)
a ,

and HE
(t�1)
e ! CTE

(t)
a (and likewise for the preceding and subsequent time slices).

The directed links CTE(t�1)
a ! CTE

(t)
a model the correlation between actual vehicle

position over time, also capturing vehicle inertia.
At time t, the runway image I(t) influences the belief about the true aircraft lo-

cation, i.e., the states of CTE(t)
a , with the node D modeling the associated structural

uncertainty. This reflects the intuition that upon detecting an outlier image (more gen-
erally an OOD input), we are no longer confident that the image seen is an indicator
of the actual aircraft location. Fig. 2 reflects these dependencies by the directed edges
CTE

(t)
a  I(t), and CTE

(t)
a  D(t), respectively.

Fig. 2 shows two adjacent time slices of the DBN structure, although the actual
structure is unrolled for T time steps, the duration of taxiing, to compute the assurance
measure over the taxi phase. At time t, this is, in fact, the sum of the probability mass
over the seven states of CTE(t)

a that lie within the interval [�2, 2] (see Table 1). By un-
rolling the DBN for an additional " time steps and propagating the uncertainty through
the model from the time of the last observations, the model can provide an assurance
forecast.

Probability Distributions To complete the DBN model specification, we need to spec-
ify the conditional probability distributions (CPDs) over the model variables, as en-
coded by its structure. One way to identify the CPDs is through uncertainty quantifi-
cation of the physical system model [12]. Practically, the latter may not be available,
especially for LESs.



Quantifying Assurance in Learning-enabled Systems 7

Another alternative—the approach we take here—is to assume a functional form
for the CPDs that is then tuned based on execution and simulation data. Specifically,
to construct the CPD represented by the transition edge between the time slices, i.e.,
Pr(CTE

(t)
a |CTE(t�1)

a ,CTE(t�1)
e ,HE

(t�1)
e ), we chose a multinomial distribution with

a uniform prior, tuned using the maximum a posteriori probability (MAP) estimate on
simulation data. This choice was advantageous in the sense that the DBN produces a
uniform posterior distribution over CTEa when the observed variables take on values
from a distribution different from that of the data used to build the CPDs. For this
example, the simulation data comprised sequences of runway images, estimated CTE
and HE as produced by the CNN, and true CTE. Section 4 gives more details on the
simulation platform and data gathered.

To determine the emission probability Pr(CTE
(t)
a | I(t)), first we used the Gaussian

process (GP) model underpinning our prior work on component-level assurance quan-
tification [7]. In brief, the idea is to use a GP to model the error performance of the
CNN (i.e., its accuracy) on its input (i.e., runway images). Then, adding the error dis-
tribution to the estimate of CTE gives the distribution over the true CTE. However, for
high dimensional data (such as images), this is computationally expensive. Instead, in
this paper we used an ensemble of decision trees [13] as a classifier that ascribes a prob-
ability distribution over the states of CTEa, given a runway image, I . This approach
builds uncorrelated decision trees such that their combined estimate is more accurate
than that of any single decision tree. To identify the decision rules, we used supervised
learning over the collection of runway images and corresponding true CTE, sampled
from the same environments used to train and test the CNN (see Section 4). For this
example, we built 280 decision trees with terminal node size of at least 10, by randomly
sampling 100 data points using the Gini index as a performance metric, selecting the
model parameters to balance classification accuracy and computational resources.

4 Experimental Results

We now present some results of our experiments in quantifying LES assurance in
terms of the assurance measure, Pr (|CTEa| < 2m), based upon simulations of con-
stant speed taxiing missions.

Simulation Setup We use a commercial-off-the-shelf flight simulator instrumented to
reflect the pipeline architecture of Fig. 1. The simulation environment includes various
airports and runways with centerlines of varying quality, e.g., portions of the center-
line may be obscured at various locations (see Fig. 1). We can create different training
and test environments by changing various simulation settings, among which two that
we have selected are: i) weather induced visibility (clear and overcast), and ii) the
time of day (07:30am to 2:00pm). Two such environments are, for example, “Clear at
07:30am”, and “Overcast at 12:15pm”. More generally, we can construct environments
such as “Clear Morning”, “Overcast Afternoon”, and so on. The former refers to the
collection of data sampled from the environment having clear weather, and the time
of day incremented in steps of 15 and 30 minutes from 07:30am until noon. A similar
interpretation applies to other such environments.
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From these environments, we gathered images via automated screen capture (simu-
lating the camera output) whilst taxiing the aircraft on the airport runway, using differ-
ent software controllers, as well as different CNNs for perception: i.e., the same CNN
architecture described in Section 3, but trained by our industrial collaborators with data
drawn from the various environments identified earlier. In tandem, for each image, we
collected true CTE (from internal simulation variables), along with estimates of CTE
and HE. We used several such data sets, one for each of the different environments
identified above, from which data samples were drawn to build the CPDs of the DBN
model. Here, note that these data samples were not identical to those used to train and
test the CNN, even though the samples were drawn from the collection of environments
common to both the LES and the DBN.

Uncertainty Quantification Fig. 3 shows the results of assurance quantification for
one test scenario, visualized as a probability surface overlaid on a stretch of the runway,
itself shown as a grid. The horizontal axis—discretized using the interval boundaries
for the states of CTEa (see Table 1)—gives the true aircraft location, which is uncer-
tain during taxiing. Thus, moving from left to right (or vice versa) constitutes lateral
aircraft movement. The vertical axis (discretized into 6 steps, each of duration 0.33s)
represents the number of time slices for which the DBN model is unrolled. We selected
this based on the time taken for the UAS to laterally depart the runway after violating
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the 2m bound, given: runway dimensions, maximum allowed taxiing speed, and other
constraints on the UAS dynamics, e.g., non-accelerating taxiing.

At t = 0, the horizontal axis gives the aircraft location at the current time. The time
steps t = 1, . . . , 6 are lookahead times for which the horizontal axis gives the predicted
location of the aircraft relative to the centerline, given the CNN estimates of CTE and
HE at t = 0. Thus, moving from the bottom to the top of Fig. 3 represents forward
taxiing, i.e., the temporal evolution of aircraft position over the runway. Each cell of the
grid formed by discretizing the two axes is, therefore, a state of CTEa at a given time,
shaded such that darker shades indicate lower uncertainty (or higher confidence) and
lighter shades indicate higher uncertainty (or lower confidence). Thus, the row at t = 0

shows the DBN estimate of uncertainty over CTEa at the current time. Similarly, each
row for t = 1, . . . , 5 shows the predicted uncertainty over CTEa for those lookahead
times, given that the last known values for the observed variables are at t = 0. The solid
white line in Fig. 3 at t = 0 is ground truth, i.e., the true CTE at the current time based
on internal simulation variables. Although this may not be otherwise available during
taxiing, we show it here primarily for model validation, i.e., to show that the interval
(state of CTEa) estimated by the DBN to be the least uncertain is also the one that
includes the ground truth. The solid black line is CTE as estimated by the CNN (i.e.,
CTEe) at the current time.

Recall that assured taxiing involves maintaining CTEa between a 2m lateral off-
set on either side of the centerline. To quantify assurance in this property, we sum up
the probability mass in each cell between the two offsets. Fig. 4 shows the assurance
measure, Pr(|CTE(t=0)

a | < offset) computed for two different offset values: 2m and
1.43m.7 The interval [�2, 2] is a Bayesian credible interval within which the true CTE
lies with probability ⇡ 95%, based on Fig. 4. In other words, the DBN model is ⇡ 95%

confident that the aircraft is truly located within 2m of the runway centerline. In gen-
eral, the expected (and desired) DBN behavior is to be more uncertain over longer term
assurance forecasts, when there are no additional observations with which to update the
posterior distributions on the assurance measures.

Sufficient Assurance We must select a threshold on the assurance measure to establish
what sufficient assurance constitutes, based on which we can assert whether or not the
assurance claim holds. The criterion we have selected here is: when the DBN is � 30%

confident that the true UAS location exceeds the allowed lateral offset, the assurance
claim does not hold, i.e., Pr(|CTE(t)

a | � 2m) � 0.3 ) ¬(AssuredTaxi). We deter-
mined this threshold under conservative assumptions about vehicle behavior, leveraging
the engineering judgment of our industry collaborators, to balance the tradeoff between
safety (avoiding runway overrun) and mission effectiveness (not stopping too often).

5 Discussion

We now evaluate how the DBN performs relative to the LES, in the context of ground
truth. The intent is to show that it is a reasonable (i.e., valid) reference model of the

7 The introduction of a second offset was motivated by our industry collaborators to integrate
the assurance measure on the LES platform.
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system suitable for runtime use (i.e., simple and abstract), based on which to make
certain decisions, e.g., whether or not to stop taxiing. Moreover, we must also show that
the software implementation of the DBN can be relied upon. In this paper, we primarily
address the former, leaving the latter for future work.

Validity We compare how well the DBN and the LES can discriminate between true
positive and true negative situations when their respective outputs are transformed into
a classification on a plurality of image data drawn from multiple simulated taxiing sce-
narios for different test environments unseen by both the DBN and the LES.

A true positive (negative) situation for the DBN is one where it indicates that the
assurance property is satisfied (not satisfied) based on the criterion for sufficient assur-
ance (see Section 4), and ground truth data also indicates that it is truly the case that the
UAS location is within (exceeds) the allowed lateral offset from the runway centerline.
Likewise for the LES, a true negative (positive) situation is one where the CNN estimate
of CTE indicates (does not indicate) an offset violation i.e., CTEe � 2m (equivalently,
CTEe < 2m), and so does ground truth data.

Table 2. DBN Performance evaluation for runway centerline tracking.

Sensitivity Specificity Sensitivity Specificity
Clear at 07:30am 0.85 0.95 1 1
Clear at 10:15am 0.83 0.87 1 1

Overcast at 07:30am 0.87 0.85 1 1
Overcast at 12:15pm 1 0.01 0.8 0.99

Clear at 11:45am 1 0.2 0.98 0.8
Clear at 07:30am 1 NA 1 NA

CNN trained on Clear 
Afternoon  and Overcast 
Afternoon  environments

CNN trained on Clear 
Morning  and Clear 

Afternoon  environments

DBN Model 
PerformanceLES PerformancePerception Component Test Environment

Table 2 shows our evaluation results in terms of sensitivity (true positive rate) and
the specificity (true negative rate) of both the DBN model and the LES, varying the em-
bedded CNN used for perception. The variability arises from using CNNs trained under
two different training environments. We also used these training environments to build
the DBN for both LES variants using ⇡ 37000 image samples. These samples were not
the same as those that were used to train the CNN variants: indeed, we did not have ac-
cess to the actual training data for the different CNNs. Also, the test environments listed
in the table (and, therefore, the resulting test data), are unseen during the development
of both LES variants, and the DBN models of the same.

Based on Table 2, in the context of the sensitivity and specificity metrics shown, as
well as the criterion for sufficient assurance, we are cautiously optimistic in claiming
that the DBN models the LES reasonably well. For the test environments “Clear at
11:45am”, and “Overcast at 12:15pm”, the DBN has a lower sensitivity than the LES,
however its specificity is substantially better. This suggests that the LES may be biased
in its estimates of CTE for those operating conditions.
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Suitability The DBN model structure—in particular, the conditional independence re-
lations encoded by the structure—is informed by (our knowledge of) the causal impacts
of the identified variables and the system dynamics, and the resulting assumptions. We
note that it is always possible to relax these assumptions and learn the DBN struc-
ture as well as its parameters. However, in most cases, especially when there is limited
data available, structure learning can be an unidentifiable problem, or can produce a
non-unique solution. In our case, the conditional independence assumptions used have
turned out to be neither too strong to affect model performance nor too conservative to
impose a problem in identifying the CPDs given limited data.

Our assessment in Table 2 does not compare the DBN and the CNN that estimates
CTE. Indeed, the latter is a learned, static regression function for a component, that
associates a vector of real values with a real-valued scalar, whereas here we are assess-
ing a stochastic process model of a (learning-eabled) system (i.e., the DBN) against the
system itself. When we use the DBN for runtime assurance, we implement it as a soft-
ware component integrated into the LES. This can be viewed as an item to which we
can apply our own assurance methodology, i.e., as in Section 2, and [7]. Thus, although
we have not formulated assurance properties for the DBN, sensitivity and specificity
are probabilistic performance metrics (albeit in a frequentist sense) that we can view as
assurance measures in their own right, that we have now applied to our model.

The validation above is admittedly not exhaustive although the following obser-
vations are worth noting: the DBN is a relatively simple and abstract model of the
time-series evolution of the system, whose estimates can be updated through Bayesian
inference given observed data. Thus, it is amenable to applying other verification tech-
niques including inspection, and formal verification.

Moreover, the DBN does not produce point estimates of CTE; rather, in quantifying
confidence in a system-level assurance property, a by-product is the uncertainty in true
CTE given as a probability distribution over the range of admissible values of CTEa.
Thus, in unseen situations where the CNN can produce an inaccurate estimate of CTE
(see Fig. 3), the DBN gives a distribution over possible values of true CTE. As sucsh,
it is more conservative in potentially unsafe scenarios. Based on this assessment, we
submit that the DBN is a reasonable and suitable runtime reference model of the LES
for the autonomous taxiing application, when used for centerline tracking.

Utility A key advantage of an abstract assurance quantification model is a small im-
plementation footprint for runtime integration into the LES. As indicated in Section 1,
one of the primary motivations for quantified assurance measures is to provide feedback
signals (in a computable form) to the LES, that can be acted on, e.g., by a Contingency
Management System (CMS), in operation. In this work, the assurance measure values
were translated into commands to either stop, slow down, or continue based on i) the
chosen decision thresholds (Section 4), and ii) a simple model of the system-level effect
(i.e., likelihood of lateral runway overrun) given the assurance measure and current sys-
tem state.8 In general, deciding between a series of options in the presence of conflicting
and uncertain outcomes is a special case of decision making under uncertainty [14]. We

8 Although the content of integrating assurance measures with a CMS is very closely related to
the work here, it is not in scope for this paper, and will be the topic of a forthcoming article.
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plan to investigate such techniques as future work to develop a principled approach to
contingency management using assurance measures.

The aim of run-time assurance, also known as run-time verification, is to provide
updates as to whether a system satisfies specified properties as it executes [15]. This
is done using a run-time monitor, which evaluates the property using values extracted
from the state of the system and its environment. In a sense, therefore, the notion of as-
surance measure we have described here is a kind of monitor. However, it is worth mak-
ing several distinctions. A monitor relates directly to properties of the system, whereas
an assurance measure characterizes confidence in our knowledge of such properties.
Second, an assurance measure seeks to aggregate a range of sources of information,
including monitors. Thus it can be seen as a form of data fusion. Third, monitors typi-
cally provide values that relate to the current state of the system, whereas the assurance
measures we have defined are predictive, intended to give a probabilistic quantification
on dependability attributes.

In general, our approach to assurance quantification admits other models including
runtime monitors: recall that the node D(t) in Fig. 2 is a runtime monitor detecting data
distribution shift in the input image at time t. Indeed, our framework is not intended to
replace runtime verification, and the assurance measures generated show the assurance
contribution of the runtime monitors, additionally providing an assurance/uncertainty
forecast. We are not aware of existing runtime verification techniques that do this.

6 Related Work

The work in this paper is closely related to our earlier research on assurance case con-
fidence quantification [5]. There, although confidence estimation in an assurance claim
also uses Bayesian techniques, it relies primarily on the argument structure to build the
model. Similarly, based on the structure of an argument, the use of an evidential theory
basis has been explored for confidence quantification in assurance claims [6]. However,
neither work has been applied to LES assurance quantification. Moreover, in this paper
the focus is on those properties where quantification is possible, relying upon models
of the system that can be assessed against objective, measured data.

This paper is a natural extension of our prior work on quantifying assurance in ML
components [7]: the assurance property we consider there is CTEe accuracy. Assurance
quantification then entails using Gaussian processes (GPs) to determine the uncertainty
in the error of CTEe, which is inversely proportional to accuracy. However, the data
used are not (and need not be) time dependent and the model used applies regardless
of whether or not the aircraft position has violated AssuredTaxi. Indeed, despite a
high assurance CNN that accurately estimates CTE, it is nevertheless possible to vio-
late AssuredTaxi. However, in this paper we model the LES as a stochastic process,
including any runtime mitigations, e.g., a monitor for detection OOD images. As such,
the models used for UQ are a generalization of that in [7] to time-series behavior.

As previously indicated (Section 1), one of the motivations is to support dynamic
assurance cases (ACs). Our prior work [4] first explored this concept, which has subse-
quently been tailored for so-called self-adaptive software [16]. Again, neither work has
considered LESs, although self-adaptation is one of the properties that LESs can ex-
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hibit. In [4], confidence quantification has been situated as a core principle of dynamic
assurance which has also motivated this paper to an appreciable degree. However, that
work relies on the quantification methodology in [5]. In [16], assurance quantification
employs probabilistic model checking, which can be leveraged for LESs if they can be
represented using state-space models, e.g., as in [17] which uses hybrid model checking
instead. Neither technique is incompatible with the stochastic processes-based model-
ing approach that we have adopted. As such, they may be a candidate means to check
properties of the stochastic models that we build as a means of (meta-)assurance.

Dynamic safety management as an assurance concept has also been proposed as
a run-time assurance method [18], but it is largely speculative about applicability for
LESs. The idea of requirements-aware runtime models [19] is very closely related
to our notion of building a reference model. Quantified and probabilistic guarantees
in reinforcement learning have been explored in developing assured ML components
in [20]. That work is also closely related to what we have presented here, though its
focus is mainly on assurance of correctness properties that have a safety impact. Addi-
tionally, the assurance approach there is intrusive in the sense that the ML component
being built is modified. In our case, assurance quantification does not modify the ML
components. Benchmarking of uncertainty estimation techniques [21] has also been in-
vestigated, although mainly in the context of image classification. It is unclear if the
reported results translate to assurance quantification as applied in this paper. However,
the benchmarking principles and metrics used could be candidates for evaluating vari-
ous system models built using our approach.

Kalman filters have long been used to address uncertainty during state estimation,
and have some similarities to our approach. A Kalman filters is a special case of a DBN
where amongst the main assumptions are that sensor errors are distributed as zero mean
Gaussians, and that the uncertainty does not vary between sensing outputs. In contrast,
our model uses discrete distributions, admitting varying sensor uncertainty for each
image input, in a more general graphical model that has a different structure, whilst
including detections of OOD inputs.

7 Conclusion and Future Work

We have described our approach to quantifiable assurance using assurance measures,
run-time computations of uncertainty (conversely, confidence) in specified assurance
properties, and their application to learning-enabled systems (LESs). Assurance mea-
sures complement design-time assurance activities, each of which forms part of an
overall dynamic assurance case (DAC). In collaboration with system integrators from
industry, we have applied our framework to an aviation platform that employed super-
vised learning using a deep CNN. Collaboration was crucial to develop the contingency
management capability, which relied on engineering judgment to tradeoff safety risk
reduction and achieving performance objectives. Feedback from the end-users (i.e., our
industry collaborators) was also essential in refining the final visualizations of the as-
surance measure that we ultimately deployed in the system (based on Fig. 4). Those are
intended to provide insight into the system assurance state for safety observer crew.
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We have shown that our methodology can feasibly quantify assurance in system-
level properties of an aviation domain LES, though we have used classical UQ tech-
niques. Our work in quantifying assurance in LESs is ongoing, and we will be develop-
ing assurance measures for other autonomous platforms in the context of more complex
mission objectives that require additional ML components and learning schemes.

The work in this paper is one strand of our overall approach to assurance through
DACs. The diverse components of an assurance case, including structured arguments,
safety architecture [22], as well as the assurance measures described here, each repre-
sent one facet of an integrated DAC. There are close connections between the proba-
bilistic models underlying assurance measures and the safety architecture, as well as
between assurance properties and claims in an assurance arguments. Our future work
will place these connections on a rigorous basis. In part, this can be achieved through
use of a high-level domain-specific language (DSL) that will let us i) abstract from the
details of the individual probabilistic models, and ii) conversely, allow compilation into
a range of different models, whilst making more explicit the connections to domain
concepts used elsewhere in the assurance case.

A related avenue of future work is providing comprehensive assurance for our ap-
proach itself, and in turn, the assurance measures produced. From a verification stand-
point, we can consider correctness properties entailing i) consistency between the quan-
tification model and the other DAC components, e.g., the risk scenarios captured by
a safety architecture, and ii) correctness of the low-level implementation against the
higher level specification embodied by the quantification model. Additionally, assur-
ance measure validity is related, in part, to the limits of the statistical techniques used
to infer the underpinning stochastic models, and the data used to build them.

Indeed, one of the challenges we faced in this work was obtaining sufficient useful
data. Moreover, the quality of the data gathered also plays a key role in corroborat-
ing that the assurance quantification models sufficiently represent the system behavior
across its intended operational profile. We believe that a more principled approach to
specifying a variety of training data should be possible (e.g., to include various types
of perturbed and adversarial inputs), and that such specifications could be derived from
the DSL used to specify the assurance measures themselves. The dynamic nature of
assurance cases (ACs) will also bear further investigation, to see how real-time updates
provided by assurance measures during a mission can inform updates between missions,
to the qualitative arguments of ACs.
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