
Assurance-driven Design of
Machine Learning-based Functionality

in an Aviation Systems Context
Ewen Denney and Ganesh Pai

KBR / NASA Ames Research Center
Moffett Field, California, USA

{ewen.denney, ganesh.pai}@nasa.gov

Abstract—We present an approach to the co-development of
an aeronautical function integrating Machine Learning (ML)
and its associated preliminary safety assurance case. Using an
Autonomous Visual Landing (AVL) application as a running
example, in which a Deep Neural Network (DNN) supports
navigation state estimation, first we describe how we identify the
contributions of ML-based functionality to system hazards. We
then give the safety and ML requirements necessary for hazard
mitigation, together with a candidate safety architecture aimed at
mitigating the ML-induced functional insufficiencies. Thereafter,
we present a structured argument embodying the rationale that
provides confidence that the ML-based function will be safe for
use. Collectively, these artifacts represent the core elements of
a multi-viewpoint safety assurance case. We discuss how that
concept is compatible with prevailing aerospace recommended
practices for safety assessment, its utility to align design-time
assurance considerations with operational safety needs, and how
it can communicate the evidence necessary for safety assurance
in an integrated way.

Index Terms—Assurance Cases, Autonomy, Design Assurance,
Machine Learning, Safety Cases, Visual Landing

I. INTRODUCTION

Realizing the vision of increased autonomy in aviation
applications is closer than ever thanks to the rapid advances in
Machine Learning (ML) technologies over the past decade, in
particular Deep Neural Networks (DNNs). However, to deploy
and operate aviation systems integrating ML, assurance must
be provided first during design and subsequently in operation
that ML-based functionality is fit for purpose and safe for use.

ML performance metrics—typically used to evaluate how
well an ML model generalizes its responses from inputs
seen in training to unseen inputs in operation—are not well-
suited to assess the contribution to safety hazards because
those metrics are often defined without considering the usage
context that determines safety relevance. Rather, ML-based
functionality should be developed and evaluated such that it
respects the requirements and constraints levied upon it by
the system layer and the operational contexts in which it will

This work was supported, in part, by the Defense Advanced Research
Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL)
under contract FA8750-18-C-0094 of the Assured Autonomy Program. The
opinions, findings, recommendations or conclusions expressed are those of
the authors and should not be interpreted as representing the official views or
policies of KBR, DARPA, AFRL, the Department of Defense, and the United
States Government.

be deployed. As such, safety assurance of ML models and
the associated artifacts (such as the code implementing those
models) needs to be tied to: on the one hand, system-level
considerations and safety analyses (that clarify the contribution
of ML to hazards); and, on the other, to concrete verification
evidence (that confirms that the system safety obligations
have been met). The associated tasks can be non-trivial for
ML and cannot be considered in isolation from assurance
of other system elements, especially those necessary to com-
pensate for ML-induced functional insufficiencies. Moreover,
development, verification, and assurance activities for ML are
interdependent, hence they need to be planned both early and
in an integrated manner.

Our prior work has explored the assured integration and
operation of machine learnt functionality in an aircraft plat-
form [1]. In particular, we have developed a computable notion
of confidence to enable run-time risk assessment. That, in turn,
has facilitated operation-time assurance using contingency
management mechanisms that intervene when the estimated
confidence in the responses from ML-based functionality falls
short of pre-determined safety-relevant thresholds. In this
paper we focus on design-time assurance, specifically the co-
development of an aeronautical function integrating ML, and
its associated preliminary safety assurance case1.

In general, a safety case conveys the rationale to underpin
confidence in system safety. Amongst other things, it serves
to convince the system stakeholders that safety risks have
been identified, are well-understood, have been appropriately
controlled, and that there are processes in place to monitor the
performance and effectiveness of risk controls.

A preliminary safety case represents an early-stage snap-
shot of the overall safety case. For our purposes, it reflects
those stages of system development when preliminary safety
analysis has been conducted and a high-level design has been
formulated to meet the applicable safety requirements, but
detailed specification, design, analysis, and implementation
have not commenced (also see Fig. 2). In effect, it can
be considered as representing the elements of a plan for
assurance of reducing risk to an acceptable level. This plan

1Henceforth, we will use the terms ‘safety case’, ‘safety assurance case’,
and ‘assurance case’ interchangeably, and qualify the usage where it is not
clear from context.

Author's preprint copy of article accepted for publication in the Proceedings of the 42nd AIAA/IEEE Digital Avionics Systems
Conference (DASC 2023). The definitive copy appears in IEEExplore.



encapsulates the intended (safety) system design, the assurance
tasks necessary for system safety, and how those assurance
tasks will be implemented by lower level verification tasks.

The work in this paper presents the first steps involved in
relating system safety objectives to the requirements on ML
functionality and capturing the necessary assurance rationale.
The scope is system-level design and assurance considerations.
Lower-level verification aspects are deferred to future work.

The paper is organized as follows: first, Section II presents
a running example to anchor the remainder of the paper: an
Autonomous Visual Landing (AVL) application that uses Deep
Neural Networks (DNNs) for (a) navigation state estimation,
and (b) vision-based perception of the runway environment
to detect collision hazards. Both functions are subsequently
employed to provide landing decision support to the pilot.
Then, focusing on assurance of navigation state estimation, in
Section III we elaborate how we co-develop both the capability
for localizing the aircraft in its environment, and the core
artifacts of the corresponding preliminary safety case using
our toolset AdvoCATE. This section additionally clarifies how
our approach:

i) is compatible with the prevailing aerospace recommended
practices, thus helping to inform system and ML devel-
opment activities (Section III-A);

ii) uses structured argumentation to communicate the overall
rationale why confidence in meeting the safety and assur-
ance objectives is justified (Sections III-B and III-C);

iii) enables closely aligning design-time assurance consid-
erations with operational safety needs (Sections III-D2
and III-D3; and

iv) facilitates an integrated organization of the heterogeneous
evidence necessary for safety assurance (Sections III-D4
and III-D5).

Section IV concludes the paper, describing both the related
work in the literature, and the additional work that we believe
will further mature the initial steps of our approach.

II. EXAMPLE: AUTONOMOUS VISUAL LANDING

A. Operating Concept and Limitations

We consider the assurance of ML used to implement per-
ception and decision making support within the context of
an Autonomous Visual Landing (AVL) application. Landing
procedures require that the aircraft enter a traffic pattern that
comprises particular phases at which the pilot in command
(PIC) makes specific decisions to land safely.

For this application, the ML-based functionality is invoked
when the aircraft is on the final phase. In this phase, the
aircraft must be aligned with the runway (i.e., parallel to
the horizon and heading in the same direction as the runway
centerline) and descend at a steady rate whilst staying aligned.
Typically, the descent follows a glide path that has a fixed
angle (between 3◦ – 5◦) to the horizontal plane of the runway.
The decision whether to continue to land or to go-around, i.e.,
abort the landing, can be made by the PIC at any point in the
aircraft descent trajectory, depending on the advisory received
from the ML-based function on the (perceived) state of the

Perception Sensors 
(Cameras)

Runway Clear (ML-
based Detection and 

Tracking)

Landing Decision

Pose Estimation (ML-
based navigation state 

estimation)

Object Track 6DOF Parameters

Land / Go-around

Pose Estimate

Map Data

Object Track
Object Bound

Airport environment scene

Runtime Assurance
Vehicle Manager

Autonomy Executive
Flight Display (to Pilot)

Image stream

Fig. 1. High-level functional architecture for ML-based functions supporting
an Autonomous Visual Landing capability (data inputs/outputs in italics).

runway (e.g., the potential for a collision hazard from a runway
incursion), and the stability of the aircraft configuration as it
descends. The Decision Height (DH) is the distance above
the runway at which the PIC (first) decides whether or not to
continue landing or to execute a missed approach (or a go-
around). The Concept of Operations (CONOPS) makes the
following assumptions:

• Single runway operations under Visual Flight Rules
(VFR) and Visual Meteorological Conditions (VMC);

• No crosswind operations;
• No terrain obstructions on the glide path (e.g., treetops,

built-up structures, etc.);
• Non-towered airport environment: Class G uncontrolled

airspace, without air traffic control services, non-co-
operative (i.e., non-transponder equipped) air traffic.

Additionally, the following operational limitations apply: the
ML-based perception capability is invoked when the aircraft is
2NM from the runway, and is used until the aircraft is 150 ft
above the runway threshold.

B. System Description

Fig. 1 shows the high-level functional architecture for the
AVL example application. As shown, this capability is aided
by two functions that are to be implemented using ML:

• Runway Clear (RWYCLR), the function responsible for
perception, detection, and tracking of potential collision
hazards, and estimation of the future position of the
detected hazards relative to the aircraft after it lands;

• Pose Estimation (POSESTM), the function responsible
for determining the pose of the aircraft relative to the
runway, i.e., its 3-D orientation in space, and translational
position relative to the touchdown location on the runway.
Effectively this sub-function localizes the aircraft.

Both functions receive as input, a stream of full high defi-
nition (1920× 1080 pixel) color images at a 10Hz rate (from
wing-mounted cameras in the flying platform, and alternatively
from a simulated 50mm and 12mm optic, in the hardware-
in-the-loop, iron-bird, test platform). Both image streams are
synchronized. POSESTM additionally receives external map
data as input. In response to these inputs:
a) RWYCLR produces as its output, the location of the

centroid of a detected object in (x, y) coordinates relative



Aircraft FHA

Preliminary Aircraft Safety Analysis

System FHA

PSSA
SSA

Aircraft Safety Analysis

Concept Development Preliminary Design Detailed Design

HW & SW 
Development 

Processes

Integration and Verification

System Development Process

Safety Assessment Process
Aircraft 
Level

System 
Level

Item 
Level

Item level safety 
verification evidence

System-level 
verification evidence

Subsystem-level 
verification evidence

Aircraft function failure conditions, 
System design targets, 

Criticality, 
Allocations

System failure condtitions, 
Assurance requirements, 

Subsystem design targets, 
Safety requirements, 

Allocations.

(Safety) Assurance Case Elements

Preliminary Safety Case

Interim Safety Case
Pre-operational Safety Case

Safety Case Stages

Aircraft failure condtitions, 
System Safety requirements 

Hazard Log Safety and Assurance Requirements
Safety Architecture

Safety Verification 
Evidence Items

Structured Argument

Captured in

Modeled using

Fig. 2. Relating the conventional aerospace system development and safety assessment process to the stages of a safety assurance case and its core elements.
A mapping from the initial safety process stages to the preliminary safety case stage is shown, along with the core elements that realize a safety case.

to the landing location, together with an estimate of the
velocity vector, and the diameter of the detected object;

b) POSESTM produces as its output, the Six Degree of
Freedom (6-DOF) aircraft pose estimate, along with the
pixel locations of the keypoints of the runways, i.e., specific
points of interest in an image or scene. For this example, 16
runway keypoints are relevant: 4 end-points of the runway,
4 end-points of the runway threshold, and 4 end-points of
each of the left and right aiming point markers on either
side of the runway centerline.

A Landing Decision (LNDDESC) function uses both sets of
outputs to produce a Boolean landing advisory as a response:
(continue to) land, or go-around. The pose estimate and the
landing advisory are used by other aircraft functions as shown
in Fig. 1, as well as by the pilot.

For simplicity, we assume a physical architecture com-
prising dedicated subsystems to which each of the functions
aiding the AVL capability are allocated. That is, we assume
that POSESTM is allocated to a Pose Estimation Subsystem.
Likewise RWYCLR is allocated to a Runway Clear Subsystem,
and LNDDESC is allocated to a Land Decision Subsystem.
Additionally, there are other subsystems that either provide
the inputs or consume the outputs of those functions, e.g.,
a Perception Subsystem contains the cameras that supply the
scene imagery of the operating environment, a Navigation and
Aircraft Database is the source of map data, and a landing

advisory is displayed to the pilot on a Flight Display.

III. SYSTEM AND ASSURANCE CASE CO-DEVELOPMENT

A. Methodology

In our system and safety case co-development methodology,
the core elements of a safety case include a hazard and risk
analysis, safety and assurance requirements, a safety architec-
ture, assurance rationale captured using structured arguments,
and a compendium of heterogeneous evidence [2]. Our prior
work [1] describes a methodology for developing each of these
elements, also describing in greater detail the role that each
plays in the the provision of assurance. In brief, the approach is
to leverage existing methods from conventional processes for
aircraft system development [3] and safety assessment [4] for
hazard analysis, developing safety and assurance requirements,
and a safety architecture. For the latter, in particular, we use
barrier models and the Bow Tie Diagram (BTD) notation [5].
Also, we use the argument development methodology detailed
in [6] to develop the structured arguments that capture assur-
ance rationale, using the Goal Structuring Notation (GSN) to
graphically depict them. Due to space constraints, we do not
describe either notation in this paper, and refer readers to [5]–
[7] for more details.

Fig. 2 shows an adaptation of the aerospace recommended
safety assessment process [4], and a notional mapping from
its stages to those of safety case evolution, i.e., preliminary,



interim, and pre-operational. We mainly highlight the mapping
to the preliminary safety case, though it is similar for the
remaining stages. One or more of the safety case elements
for each of the stages represents the artifacts of the safety as-
sessment process. For instance, a hazard log can be developed
using Functional Hazard Assessment (FHA), while fault tree
analysis (FTA) can inform safety architecture development.

To apply our methodology in the context of functions
integrating ML, at a system-level the approach involves:
1) conducting the safety assessment to determine ML con-
tributions to system hazards; 2) determining the safety and
ML requirements necessary to mitigate those safety-relevant
contributions; 3) developing a safety architecture, described
using barrier models, to give an overview of how the safety
mitigations collectively address system hazards; 4) capturing
safety assurance rationale in the form of structured arguments;
and 5) determining the relevant and necessary evidence items
and the corresponding evidence requirements.

B. Safety and Assurance Objectives

For this paper, we mainly consider assurance of POSESTM,
in particular, its contribution to overall landing safety. As
such, the main safety assurance objectives are to provide suffi-
cient confidence that under all specified operating conditions:
1) neither the intended behavior of POSESTM nor its failure
conditions lead to an unacceptable outcome, and 2) POS-
ESTM does not exhibit any unintended behavior that could
lead to an unacceptable outcome at a rate more frequent than
that corresponding to an acceptable risk level—or equivalently,
a Target Level of Safety (TLOS)—for those outcomes.

For our example, the unacceptable outcomes to be avoided
are: a tail-strike landing; Controlled Flight Into Terrain (CFIT);
a landing in an area other than the intended runway; and a
runway excursion. These outcomes are causally preceded by
landing safety hazards: a combination of uncontrolled system
states and specific environmental conditions that occur during
landing. For the operational context relevant to POSESTM,
the relevant landing safety hazard is, primarily, an unstable
approach, i.e., when the aircraft does not maintain its essential
flight parameters (such as its attitude, landing configuration,
speed, descent rate, and power settings) within the limits
established for an airworthy aircraft type design.

We assume here that RWYCLR has established that there is
no collision hazard in the landing trajectory. We additionally
assume for simplicity that only a single object in the air-
port environment can pose a collision hazard at any given
time. Thus, from a system safety standpoint, an additional
unacceptable outcome to be avoided during landing (to which
RWYCLR contributes) is collision with objects on the ground,
such as a ground vehicle on the runway or taxiway, or another
aircraft. Referring to the functional architecture of Fig. 1, the
LNDDESC function uses the pose estimate and the track of a
detected object to inform the decision/advisory of whether or
not to land. Effectively, this involves predicting whether the
track of the detected object is such that a runway incursion is
likely, or whether the approach is unstable at and after DH,

Safety 
Assurance 
Argument

AVL 
safety 
claims

AVL system description, 
functional and physical 

organization, safety 
objectives/claims

Navigation 
Other 

Functions

Sensing
Nav. State 
Estimation

Contingency
Pose 

Estimation GPS/IRS

Keypoint 
estimation (ML)

PnP 
solver

Pose 
Fusion

ML model and 
implementation

ML training, 
validation, 

and test data 

Performance 
metricsVerification 

MethodsMonitors

Verification 
Evidence

Safety Architecture

Safety Requirements 
Decomposition and Allocation

System Hazards
Functional failure conditions

Fig. 3. Schematic of AVL assurance case architecture, and the assurance
aspects being addressed. Grayed out nodes are not addressed in this paper.

and either of these conditions should result in a go-around
advisory.

C. Assurance Case Architecture

An assurance case architecture gives a high-level overview
of (the structure of) the rationale used to substantiate that the
specified assurance objectives have been met. Fig. 3 shows a
graphical schematic of the same for the AVL example.

The graph in Fig. 3 (whose root node is labeled “AVL system
description, functional and physical organization, safety objec-
tives/claims”) represents the structure of the overall system-
level assurance case. Each node itself abstracts a fragment
of the underlying assurance argument. The curly braces and
associated labels (e.g., the label “AVL safety claims”) indicate
the assurance aspect being addressed by the corresponding
argument. For instance, the root node and its immediate child
nodes abstract a fragment of the assurance case that concerns
safety claims about the AVL system that refer to the system
hazards and functional failures. Likewise, lower levels of this
assurance case architecture address the scope as shown in
Fig. 3. For example, the portion labeled “Safety Requirements
Decomposition and Allocation” concerns arguments that in-
voke a requirements decomposition and allocation inference
strategy for the system elements listed, i.e., Navigation, Sens-
ing, Nav. State Estimation, Pose Estimation, GPS/IRS, etc.

The interpretation of this graph is as follows: assurance
of AVL system safety involves claims about system-level
safety objectives, which we then decompose into claims about
the various system functions (shown here as the Navigation
function and Other functions). Since our focus here is on
POSESTM, a function that in essence supports aircraft nav-
igation, only that branch of the assurance case architecture



has been shown, while the other parts (e.g., for Sensing) are
not in scope. In particular, the Navigation function includes
lower-level functions for Sensing, Navigation (Nav.) State
Estimation, and for Contingency Management. That fragment
of the assurance case architecture thus indicates that assurance
of higher-level system safety claims relies, in part, upon
assurance of those lower-level functions.

Nav. State Estimation, in turn, leverages the pose estimates
produced by POSESTM, which itself relies upon the ML-
based keypoint estimates (shown here as Keypoint Estimation
(ML)), a so-called Perspective n-Point (PnP) solver, and Pose
Fusion. The PnP solver implements an algorithm that estimates
the 6-DOF pose based on three-dimensional (3D) points in
space and their corresponding two-dimensional (2D) image
projections (i.e., the keypoints).

Assurance of Keypoint Estimation involves providing con-
fidence that the implemented ML model used for estimating
keypoints fulfills the allocated assurance objectives. This as-
surance may also rely upon evidence of appropriate ML model
training, validation and testing, and can be further supported
through performance metrics that characterize its behavior on
known as well as unseen data.

D. Assurance Case Elements

1) Hazards and Requirements: We conduct an FHA to
identify system hazards, the contributing functional failures,
and their potential causes and effects, along with candidate
mitigations. As previously mentioned, the main landing hazard
to which POSESTM can contribute is an unstable approach2.
The (safety) requirement corresponding to avoiding this hazard
is stated as follows: the aircraft shall have a stable final
approach lined up with the designated runway descending on
a constant angle glide path (between 3◦ – 5◦ glide slope)
towards the aiming point. We can decompose this requirement
into lower-level requirements that specify what constitutes a
stable final approach in terms of the aircraft system state
parameters, e.g., airspeed, attitude, position of the landing gear
and control surfaces, power/thrust settings, descent or sink
rate, altitude/height above touchdown, etc.

The safety requirement that mitigates (more specifically,
recovers from) the unstable approach landing hazard is stated
as follows: the aircraft shall reject landing and execute a
go-around if the approach is unstable at the decision height
appropriate for the aircraft type and landing procedure.

A precursor event to the unstable approach landing hazard
is navigation state error. The pose estimates produced by
POSESTM, which characterize the 6-DOF orientation of the
aircraft (i.e., the rotational parameters roll, pitch, yaw, and the
translational parameters surge, heave, sway), are the compo-
nents of the navigation state of the aircraft. As such, errors
in pose estimation contribute to the navigation state error and
thereby to the unstable approach landing hazard.

In turn, a precursor to pose estimation errors are errors
in runway keypoint estimates, whose potential causes include

2Also known as an unstabilized approach. In this paper, both terms are
used interchangeably.

errors in the sequence of input images, and adversarial image
inputs, amongst others. Mitigations for the aircraft-level hazard
include redundancy in the means of localization (e.g., using
inertial sensors in addition to ML), as well as contingency
management and runtime assurance mechanisms.

We record the safety and mitigation requirements that result
from FHA in a requirements log using our tool AdvoCATE.
This contains, in addition to the requirements description
statements, information on the type of requirements, their
allocation (to the elements of the functional and physical
architectures), proposed verification methods, the location of
the verification results, and relations between the requirements.
These aid assurance activities such as ensuring internal consis-
tency amongst the requirements, traceability between require-
ments, verification methods, and the evidence that results from
applying those methods.

The main requirement on POSESTM is stated as follows:
The pose estimate of aircraft attitude, location, and velocity
shall be consistent with the true aircraft pose. This is both a
functional and a safety requirement3, since an incorrect pose
estimate can lead to an unstable approach due to the control
system compensating when not required. This requirement
includes aspects of timing safety (i.e., on the worst-case
execution time and real-time deadlines that apply during pose
estimation), and the required navigation performance (i.e.,
the accuracy and precision bounds on the pose estimates
produced). Although these concerns are within the scope of
the safety case, they require specific implementation choices
that were not in the scope of this effort; hence we do not
consider them further.

2) Subsystem Safety Analysis: Subsequent to the FHA, the
safety analysis of the Pose Estimation Subsystem, to which
POSESTM is allocated, additionally involves characterizing
the impact of various kinds of inputs (including propagated
failure conditions from upstream subsystems/items) in terms
of the local and next-level effects.

For instance, perception sensor (camera) failure conditions
can manifest as so-called Out-of-Distribution (OOD) inputs
and/or adversarial inputs4 that can lead to failure conditions
of the Runway Localization and Keypoint Estimation sub-
functions. If those failure conditions are, in turn, not detected
and corrected/mitigated they will propagate to the PnP solver,
leading to navigation state estimation failure conditions.

Fig. 4 shows the relevant portions of the internal sub-
functions of POSESTM, showing it uses image inputs to
produce runway keypoint estimates and segment masks (not
indicated) using ML, following which the PnP solver produces
6-DOF pose estimates. A list of potential deviations from
the required inputs to each function, and their effects is also
given. For example, OOD or adversarial inputs can produce

3In our methodology, requirements that can have a safety impact are
considered as safety requirements, in contrast to the conventional aircraft
safety assessment process where safety requirements are mainly those that
result from the application of that process.

4Camera failures are not the only cause of OOD or adversarial inputs, and
mainly serve as an example here.



ML-based Keypoint Estimation 
and Runway Localization

Perspective n-
Point (PnP) 

Solver

Images

6-DOF Pose 
Estimates

Map Data

Pose Estimation

Local effects of sensor failures
- Out of distribution input
- Adversarial input

Runway Keypoint 
Estimates

Assumed accurate

Pose Estimation Failure Conditions
- Total loss of Pose Estimation
- Malfunction (State estimate errors)

• Spurious state
• Out of sequence state
• No state
• Wrong state
• Excessive along track error
• Excessive cross track error 
• Excessive height error 
• Excessive roll error
• Excessive yaw error 
• Excessive pitch error

Local Effects of ML-based Keypoint 
Estimation Failure Conditions
- Total loss of Keypoint Estimation
- Malfunction (Keypoint estimation errors)

• No keypoints
• Wrong keypoints
• Spurious keypoints
• Out of sequence keypoints

- Malfunction (Segmentation errors)
• Wrong segment mask
• No segment mask
• Too large segment mask
• Too small segment mask

Fig. 4. Pose estimation subsystem safety analysis indicating failure conditions
and local effects for ML-based keypoint estimation and the PnP solver.

any one or more of the following erroneous responses from
an ML model and the corresponding item: no keypoints,
wrong keypoints, spurious keypoints, keypoints produced out
of sequence, no segment mask, wrong segment masks, or
inaccurate segment masks. Those erroneous inputs, in turn,
can lead to a variety of state estimate errors, or malfunctions
in pose or state estimation.

3) Safety Architecture: We can model the system and func-
tional hazards, their precursors, and the contributing failure
conditions—identified via the FHA and the subsystem safety
analysis (see preceding discussion)—and their inter-relations
in terms of a risk scenario, i.e., causal event chains showing
how initiating events lead to loss of control events (hazards)
that eventually manifest as the undesired effects that are to be
avoided. Fig. 5(a) gives an example of one such risk scenario
modeled as a Bow Tie Diagram (BTD) [5], showing initiating
events (e.g., Adversarial image input) leading to the top event5

“Errors in runway keypoint estimates”, that eventually leads to
the effect “Pose estimation and localization errors”. Thus, this
risk scenario partially models function failure conditions due
to the propagation of sensor errors across the function interface
to the ML model that implements the Runway Localization and
Keypoint Estimation sub-functions of POSESTM.

Also shown in the BTD in Fig. 5 are a suite of hierarchically
organized mitigations, (known as barriers and controls, re-
spectively, in BTD terminology), that are meant to reduce risk
by either preventing or recovering from the identified hazard.
For example, Runtime Assurance is a barrier function that
serves to mitigate the risk posed by the errors in a sequence of
input images. More specifically, this barrier invokes a control:
a monitoring capability to observe sequences of input images
to detect errors, and OOD inputs. Likewise, when errors in

5A top event in BTD terminology corresponds to a hazard in FHA.

keypoint estimation inevitably occur, additional mitigations are
to be invoked, including:

• Safety post-processing, which involves two controls:
(i) shifting keypoints by a safety factor such that they are
within a predetermined error bound of the ground-truth
keypoint; and (ii) estimating new, corrected, keypoints
from the runway instance that is enclosed by a safe
segmentation mask; and

• Runtime Assurance, which involves monitoring and de-
tecting keypoint errors that may persist despite safety
post-processing, by using the map data input from the
Navigation and Aircraft Database.

Thus, by constructing several such risk scenarios, each mod-
eling the different causal chains of events and the associated
mitigations, and composing those risk scenarios, a new model
can be formed which we refer to as the safety architecture. It
specifies: 1) the mitigations used to manage hazards, and their
causes and effects; and 2) the circumstances (scenarios) under
which the mitigations are invoked. See [5] for more details on
the specifics of safety architecture development.

Fig. 5(b) gives a zoomed-out fragment of the AVL safety
architecture. As shown, the shaded rectangular regions reflect
the portion of the safety architecture that we have modeled as a
BTD. The shaded oval regions highlight the barriers represent-
ing the modifications to the subsystem architecture (Fig. 4).
Those have been introduced to mitigate the contribution of
the failure conditions identified in the POSESTM subsystem
safety analysis to the unstable approach landing hazard.
The mitigations contribute to providing assurance that POS-
ESTM will meet its requirement of producing pose estimates
that are consistent with the true aircraft pose. Fig. 6 shows the
resulting modified functional architecture.

The following correspondence between the mitigation func-
tions of the modified functional architecture (Fig. 6), and the
BTD view, i.e., Fig. 5(a), of the AVL safety architecture can
be observed:

• The block labeled Out of Distribution Detection (Fig. 6)
implements the risk mitigation control for errors in se-
quences of images input to POSESTM as specified in
the Runtime Assurance prevention barrier, i.e., the first
barrier on the left in Fig. 5(a).

• The Safety post processing barrier in Fig. 5(a) contains
two recovery controls: the first is implemented by the
functions associated with the blocks labeled Keypoint
safety post processing and Segmentation safety post
processing, respectively (Fig. 6). The second recovery
control of the Safety post processing barrier in Fig. 5(a)
is implemented by the block labeled Runway Geometry-
based Keypoint Estimation (Fig. 6).

• Third, the Runtime Assurance recovery barrier/control,
i.e., the fourth barrier in Fig. 5(a), corresponds to the
blocks labeled Map-based Keypoint References and Com-
parison and Voting (Fig. 6).

• Lastly, the responses of the OOD Detection function, i.e.,
the OOD status and the Comparison and Voting function,
i.e., channel agreement status, can be used to produce a



(a) (b)

5/29/23, 3:30 PM btd.svg

file:///Users/GPai/Library/CloudStorage/OneDrive-KBR/toARC/publications/dasc2023/dasc2023-ac/Boeing-CP31/exports/btd.svg 1/1

Autonomous Visual Landing 
(AVL) Approach

SS: Aircraft on final (airborne)
EC: VMC, No crosswinds

Run time Assurance

Monitor input image
sequence and detect

out of distribution input
images

Barrier Integrity: 0.75

Run time Assurance

Monitor and detect runway
keypoint errors using map
data from navigation and

aircraft database

Barrier Integrity: 0.75

Safety post-processing

Estimate runway keypoints
from runway instance

geometry of safe
segmentation mask

Barrier Integrity: 0.6

Safety post-processing

Shift keypoint by safety
factor to maintain allowed

error bound

Barrier Integrity: 0.6

Errors in runway
keypoint estimates

IRL: 1A (High)
RRL: 1A (High)

Adversarial image input

Likelihood: A (Frequent)

Error in sequence of input 
images

Likelihood: B (Probable)

Pose estimation and 
localization errors

IL: A (Frequent)
IS: 1 (Catastrophic)
IRL: 1A (High)
RL: A (Frequent)
RS: 1 (Catastrophic)
RRL: 1A (High)

Fig. 5. (a) BTD for errors in keypoint estimation shown as a view of a fragment of (b) the safety architecture for POSESTM. The shaded oval regions
correspond to mitigations reflected in the modified functional architecture shown in Fig. 6.

ML-based Keypoint Estimation 
and Runway Localization

Perspective n-
Point (PnP) 

Solver

Map Data

Runway Keypoint 
Estimates

Images

6-DOF Pose Estimates

Out of distribution 
(OOD) detection

In-distribution images / image sequence

OOD Status (T, F)

Keypoint Safety 
Post Processing

Segmentation Safety 
Post Processing

Runway Geometry-based 
Keypoint Estimation

Runway Instance 
Segmentation Mask

Map-based 
keypoint 

references

Comparison 
and Voting

Safe Segmentation Mask 
(Always includes runway instance)

Safe Keypoints (Always 
within accuracy bounds) 

Safety post-processed keypoints

Channel 
Agreement 
Status (T, F)

Keypoint 
Estimation 
Fault Flag 

(T, F)

Fig. 6. Modified POSESTM functional architecture for high assurance. Data
flow between the blocks has been shown in italic text.

fault flag that indicate pose estimation faults. That, in
turn, can be used to invoke a contingency mechanism
implemented by, say, a Contingency Manager subsystem.

Note that the modified functional architecture in Fig. 6
serves to provide assurance of keypoint estimation fidelity.
However, the approach to POSESTM assurance additionally
requires assurance of the PnP solver, since pose estimates are
in fact produced by applying the PnP algorithm to the key-

Pose estimation 
safe for use

Allocated system 
safety requirements 

satisfaction

Functional safety 
requirements 
satisfaction

PnP solver accurate

Keypoint estimation 
accurate (item)

Keypoint estimation 
accurate (ML Model) 

ML Model 
performance 
acceptable

ML Model 
development data 

adequate

Subsystem 
failure 
conditions 
mitigation

Keypoint estimation 
failure conditions 
mitigation

Keypoint estimation 
generalization 
guarantee

Hazardous 
interactions 
mitigation

Fig. 7. Argument architecture for POSESTM showing the high-level structure
of the overall safety argument. Each node encapsulates concrete arguments,
node labels indicate the scope of the argument, and node colors reflect the
layers of the system hierarchy as follows: function/subsystem (blue), sub-
function/item (yellow), model (green), data (violet). Node links indicate a
support relation, meaning that arguments in lower-level nodes support those
in the higher-level nodes.

points received as input from the Keypoint Estimation function.
Although we do not considered assurance of the PnP solver
in this paper, we indicate its role in the assurance rationale
component of the assurance case (discussed subsequently).

4) Assurance Rationale: Fig. 7 shows an argument ar-
chitecture for POSESTM. It is a high-level structure that
abstracts the safety rationale that follows in the rest of this



(a) (b)

Fig. 8. Fragment of (a) top-level safety argument structure for POSESTM and (b) safety argument structure invoking generalization guarantees for the ML
model used for keypoint estimation, each shown in the Goal Structuring Notation (GSN). The dotted ovals highlight the nodes of the argument architecture
of Fig. 7 that abstract each of these argument fragments.

section. Note that the argument architecture shown here has
itself been abstracted by the two nodes labeled “Keypoint
estimation (ML)” and “ML model and implementation” in the
AVL assurance case architecture of Fig. 3.

We give a narrative description of the rationale that the
argument architecture abstracts, interspersed with fragments of
some of the graphical argument structures created in the GSN
using AdvoCATE. For example, Fig. 8(a) shows a concrete
argument structure and its relation to the argument architec-
ture. The top-level of the argument architecture highlighted
by the dotted oval region abstracts: the decomposition of the
main safety claim into three sub-claims, the sub-arguments
supporting each of those sub-claims (elaborated next), and the
clarification of the necessary and relevant context.

As shown in Fig. 8(a), we formulate the main safety claim
for POSESTM as follows: (G30) POSESTM is acceptably
safe for use. Here, “acceptably safe” is defined in terms of
the unacceptable outcomes to which POSESTM contributes
(see Section III-B) not occurring more frequently than the
rate corresponding to the TLOS considered acceptable for
those outcomes. We decompose that safety claim based on
the safety objectives stated earlier (Section III-B) into the
following sub-claims: (G31) POSESTM satisfies its allocated
system (safety) requirements; (G32) all identified failure con-
ditions of POSESTM are sufficiently mitigated; and (G29)
all identified hazardous interactions of POSESTM are suffi-
ciently mitigated. The first two relate to the intended behavior
and the corresponding failure conditions not leading to an
unacceptable outcome, i.e., satisfying its functional safety
requirements; the third relates to POSESTM not exhibiting
unintended behavior.

For this paper, we will focus on the branch of the argument
associated with satisfying the allocated system safety require-

ments, in particular assurance of the claim corresponding to
the functional safety requirement for POSESTM: The pose
estimate of aircraft attitude, location, and velocity shall be
consistent with the true aircraft pose. This can be shown to
hold with high confidence6 when POSESTM responses, i.e.,
the estimates of the 6-DOF parameter values, are consistent
with the true aircraft orientation and location in the appropriate
reference frame. In other words, it must be shown with high
confidence that POSESTM produces accurate estimates of
the 6-DOF parameters. The acceptable uncertainty bounds (or
equivalently, the margins of error) in the parameter estimates
considered accurate is a part of the contextual information that
must be made explicit in the assurance argument (however, we
have not defined those bounds in this paper).

The outputs of POSESTM are in fact the outputs of the
PnP solver. Thus, for the 6-DOF parameter estimates to be
accurate, the PnP solver must produce the correct outputs for
the given keypoint inputs. More specifically, it must correctly
transform the keypoints inputs, and the keypoints themselves
must be both valid (within the set of admissible values) and
accurate (true). Correct PnP transformation requires that no
errors are introduced in processing the input keypoints and in
producing 6-DOF parameter estimates. That is, we must show
that the specification of the PnP algorithm is valid, and that
its implementation is correct with respect to its specification.

Informally, accuracy of keypoint inputs implies a 1-to-1
correspondence between the ground truth, and the points iden-

6We have not specified what constitutes “high confidence” in this paper.
One approach could be to consider it to be the 95% or 99% binomial
proportion confidence interval for the probability of producing an accurate
pose (i.e., consistent with true pose), Pr(Accurate Pose Estimate), where the
corresponding probability of failure (to produce an accurate pose estimate)—
given as Pr(Pose Estimate Failure) = 1 – Pr(Accurate Pose Estimate)—is not
greater than the acceptable TLOS for the unstable approach landing hazard.



tified in the 2D projection of a 3D scene on an image. Since
the keypoint inputs to the PnP solver are the outputs of an ML
model (i.e., an implementation of a DNN model that realizes
the Runway Localization and Keypoint Estimation functions),
keypoint inputs to the PnP solver are accurate when: 1) the
ML model produces accurate keypoint estimates as the output
in response to a stream of image inputs from the perception
sensors; and 2) any errors in ML-based keypoint estimation are
detected and corrected before they are propagated to the PnP
solver. Note that this corresponds to the Safety post processing
and Runtime assurance recovery barriers shown in Fig. 5(a).

To show that the ML model produces accurate keypoint
estimates, we must show, first, that the ML model produces
accurate keypoint estimates on unseen in-sample data, i.e., on
image streams collected for validating that ML model behavior
is as required, prior to its deployment into operation. Second,
the ML model behavior exhibited on unseen in-sample data
should be shown to generalize to unseen, out-of-sample data.
This constitutes a so-called generalization guarantee [8]. For
this paper, we have not defined what precisely constitutes a
generalization guarantee, although one possible formulation
involves claiming and showing that the Object Keypoint
Similarity (OKS)-based Mean Average Precision (MAP) is
no worse in deployment than the values obtained during ML
model development. Fig. 8(b) shows a graphical depiction
of this argument using GSN. The argument also supports,
in part, the objective of showing that POSESTM does not
exhibit unintended behavior. We elaborate on the evidence for
preceding two arguments subsequently (see Section III-D5).

Third, we must also show that the ML model receives inputs
consistent with its Operational Design Domain (ODD) [9]—
the specification of the full space of inputs that the ML model
is expected to encounter in use, in which it must properly
function—and that any inputs not consistent with its ODD are
detected and filtered. Note that this corresponds to the Runtime
Assurance prevention barriers shown in Fig. 5(a).

Due to the first and the third arguments above, we must
additionally show that the data sampled for training and
validation (during ML model development) is appropriate. In
the corresponding argument (not shown here due to space con-
straints), the claim of appropriate data being used to develop
the ML model is decomposed and refined as follows: first, by
showing that the concrete data conforms to the specified data
requirements for ML model development; then, reasoning over
each type of data (i.e., training, validation, and testing) used,
by showing that the following data properties are satisfied: the
data are complete, balanced, relevant, and accurate. Accuracy
of data in particular can be decomposed into (at least) the
following claims: 1) the data is representative of the ODD
for POSESTM; 2) the ground truth runway instance segment
mask always strictly contains a runway; 3) the ground truth
keypoint labels always strictly correspond to the true runway
keypoints in the data; and 4) the data frame rate used in ML
model development corresponds to the input image frame rate
in operation.

5) Evidence: The earlier discussion highlights, in the func-
tional safety argument for POSESTM, the necessity for the
ML model to produce accurate keypoint estimates. The evi-
dence for it can include, for example, the results of verification
that for all usage situations specified in the CONOPS, over
the entire duration of the intended use, for all images in a
sequence of a predetermined length, the ML model produces
as output: 1) keypoints that always lie within a region that
includes the ground-truth keypoints, and the dimensions of that
region are within the acceptable margin of error; 2) runway
instance segment masks that always contain the ground-truth
runway instances. Additional evidence to support the safety
argument can include quantitative metrics that characterize
ML model performance in terms of accuracy: for instance,
keypoint estimation error rates (which are shown to be no
worse than the acceptable error rate) and OKS-based MAP.

The safety argument also asserts that the ML model gives
a generalization guarantee. The supporting evidence for this
can include a verification of generalization behavior in dif-
ferent verification environments, e.g., in simulation, in a real
and constrained environment, or incrementally in a real and
unconstrained environment.

More generally, the following kinds of evidence artifacts
can support the assurance arguments of the preceding section:
(i) safety architecture design including architectural mecha-
nisms such as runtime monitoring, and function output cor-
rection; (ii) specifications of ODDs, operational envelopes,
and the CONOPS; (iii) results of verification of the properties
applicable to the ML model and its implementation (i.e.,
the ML item) such as those involving pixel-level keypoint
estimation accuracy, segmentation mask accuracy, keypoint to
segmentation mask relations, and robustness; (iv) subsystem
architecture verification results of various properties, including
those concerning the accuracy of correcting errors in keypoint
estimation and segmentation masks, worst case execution time
(WCET), and navigation state accuracy; (v) testing-based
statistics on the ML model and item performance metrics on
properties such as inference accuracy; (vi) verification results
of properties characterizing the accuracy, representativeness,
coverage, completeness, and relevance of the data used during
ML model development; (vii) verification results of the fidelity
of the transformation of the ML model to an implementation,
e.g., preservation of the semantics of the ML model and any
optimizations performed.

The non-exhaustive list of evidence above contains a num-
ber of items that result from the verification stages of the
system development and safety assessment processes (Fig. 2).
As such—in much the same way as the preliminary safety case
that is the focus of this paper—we can map those artifacts to
the core elements of the interim and pre-operational safety
cases.

IV. CONCLUDING REMARKS

A. Related Work

In [10], an open-source dataset has been compiled for ML
and vision-based landing. The goal there is to advance both the



AVL capability through high-quality data, and its assurance by
serving as a resource to improve techniques analyzing dataset
quality—i.e., to support the techniques aimed at confirming
data properties such as accuracy, representativeness, coverage,
completeness, and relevance. Assurance of ML-based func-
tionality in the context of aircraft landing has been considered
in substantial detail in [11]. The approach there has close
similarities to our work, for example in using techniques from
prevailing aircraft development and safety processes at the
system layers. However, its rationale for safety assurance is
mostly implicit. In contrast, our work is differentiated by an
explicit capture of assurance rationale that relates evidence
to safety claims. Additionally, that work develops a learning
assurance process, applying development assurance principles
to ML. In contrast, our methodology aims at a goals-based
decomposition and refinement of safety claims, towards iden-
tifying and incorporating the substantiating evidence.

B. Summary and Future Work

We have described an approach to co-developing an ML-
based function and its preliminary safety case, illustrated with
a running example of Autonomous Visual Landing (AVL).
Our approach leverages the existing system development
and safety assessment processes to create the key elements
constituting the preliminary safety case. We can also map
the stages of those conventional processes to the stages of
safety case evolution. In this paper, a notional mapping to
a preliminary safety case stage gives an initial indication that
our methodology is compatible with conventional development
assurance. An avenue of future work is to better characterize
this compatibility by mapping conventional process stages to
the subsequent safety case stages, i.e., to interim and pre-
operational safety cases.

Our concept of multi-viewpoint assurance case is under-
pinned by a metamodel (implemented in our tool AdvoCATE)
that unifies different elements from conventional safety and
assurance processes (e.g., hazard analyses, safety and assur-
ance objectives and requirements) with evidence from the
corresponding verification processes. In part, this is achieved
via explicit rationale captured as arguments. Additionally, the
metamodel also links those elements to a model of safety
architecture that gives a global perspective how hazard mit-
igations are invoked in the context of risk scenarios.

Since risk scenarios can represent operational events and
situations, the safety architecture gives a means to relate oper-
ational safety needs to design-time assurance considerations.
An example of this is the modification of the POSESTM func-
tional architecture by introducing safety post-processing and
diversity in keypoint estimation to mitigate functional insuf-
ficiencies (Fig. 6). Future work along those lines includes
documenting the evidence necessary for assurance of the risk
reducing elements of the safety architecture (i.e., barriers),
via the interim and pre-operational safety cases. The idea is
that through safety case refinements and evolution, we can
identify the assumptions that need monitoring, as well as
potential gaps of design-time assurance that monitoring can

reduce. Moreover, by modeling the dependencies between the
elements of a safety case and evidence artifacts, and between
the evidence artifacts themselves, we can give an integrated
model of how evidence is constructed, together with how it
contributes to assurance in the safety case.

Our work in this paper has presented the first steps of a
broader methodology for assurance-driven design. We intend
to further mature that methodology through several lines of fu-
ture research including: 1) deriving evidence requirements by
refining the preliminary safety case; 2) augmenting assurance
arguments with counter-arguments and defeaters as a means to
reduce assurance deficits; 3) using the model of evidence de-
pendencies that AdvoCATE contains to determine the potential
gaps in evidence and verification; 4) characterizing the extent
and type of evidence necessary for defined levels of assurance;
and 5) developing an explicit notion of assurance plan that
encapsulates the various tasks involved in co-development and
assurance.

ACKNOWLEDGMENT

We thank our colleagues from the DARPA Assured Auton-
omy program who provided the challenge problem that we
adapted for the running example in this paper.

REFERENCES

[1] E. Asaadi, S. Beland, A. Chen, E. Denney, D. Margineantu, M. Moser,
G. Pai, J. Paunicka, D. Stuart, and H. Yu, “Assured Integration of
Machine Learning-based Autonomy on Aviation Platforms,” in 2020
AIAA/IEEE 39th Digital Avionics Systems Conference (DASC), 2020,
pp. 1–10.

[2] E. Asaadi, E. Denney, J. Menzies, G. Pai, and D. Petroff, “Dynamic
Assurance Cases: A Pathway to Trusted Autonomy,” IEEE Computer,
vol. 53, no. 12, pp. 35–46, 2020.

[3] S-18, Aircraft And System Development And Safety Assessment Com-
mittee, ARP 4754A, Guidelines for Development of Civil Aircraft and
Systems, SAE International, Dec. 2010.

[4] ——, ARP 4761, Guidelines and Methods for Conducting the Safety
Assessment Process on Civil Airborne Systems and Equipment, SAE
International, Dec. 1996.

[5] E. Denney, G. Pai, and I. Whiteside, “The Role of Safety Architectures
in Aviation Safety Cases,” Reliability Engineering & System Safety, vol.
191, 2019.

[6] E. Denney and G. Pai, “Tool Support for Assurance Case Development,”
Journal of Automated Software Engineering, vol. 25, no. 3, pp. 435–499,
September 2018.

[7] The Assurance Case Working Group (ACWG), “Goal Structuring
Notation Community Standard Version 3,” SCSC-141C, May 2021.
[Online]. Available: https://scsc.uk/r141C:1

[8] European Union Aviation Safety Agency (EASA), “First Usable Guid-
ance for Level 1 Machine Learning Applications,” EASA Concept Paper
Issue 01, December 2021.

[9] F. Kaakai, S. Adibhatla, G. Pai, and E. Escorihuela, “Data-centric Op-
erational Design Domain Characterization for Machine-learning Based
Aeronautical Products,” in Proceedings of the 42nd International Con-
ference on Computer Safety, Reliability, and Security (SAFECOMP
2023). Springer, September 2023 (to appear).

[10] M. Ducoffe, M. Carrere, L. Féliers, A. Gauffriau, V. Mussot, C. Pagetti,
and T. Sammour, “LARD – Landing Approach Runway Detection –
Dataset for Vision Based Landing,” CoRR preprint arXiv: 2304.09938,
2023.

[11] G. Balduzzi, M. Bravo, A. Chernova, C. Cruceru, L. van Dijk,
P. de Lange, J. Jerez, N. Koehler, M. Koerner, C. Perret-Gentil, Z. Pillio,
R. Polak, H. Silva, R. Valentin, I. Whittington, and G. Yakushev,
“Neural Network Based Runway Landing Guidance for General Aviation
Autoland,” FAA, William J. Hughes Technical Center, NJ, Technical
Report DOT/FAA/TC-21/48, November 2021.




