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Abstract

We give a first rigorous characterization of Operational Design Domains (ODDs) for Machine Learning (ML)-
based aeronautical products. Unlike in other application sectors (such as self-driving road vehicles) where ODD
development is scenario-based, our approach is data-centric: we propose the dimensions along which the parameters
that define an ODD can be explicitly captured, together with a categorization of the data that ML-based applications
can encounter in operation, whilst identifying their system-level relevance and impact. Specifically, we discuss how
those data categories are useful to determine: the requirements necessary to drive the design of ML Models (MLMs);
the potential effects on MLMs and higher levels of the system hierarchy; the learning assurance processes that may be
needed, and system architectural considerations. We illustrate the underlying concepts with an example of an aircraft
flight envelope.

1 Introduction

Artificial Intelligence (Al)-enabling technologies like Machine Learning (ML) have the potential to transform the
aviation industry by creating new products and services, and by enhancing the existing ones. However, ML introduces
a new paradigm for design activities since the intended behavior of a function is inferred from a body of data using
statistical learning algorithms, rather than being specified and programmed. Data is thus central to the implementation
of a final product design.

In traditional aviation domain systems engineering, operational requirements capture the conditions under which
an end-product is expected to fulfill its missions. Those requirements, which are an expression of stakeholder needs,
contain parameters and values that define an operational environment, or operational domain (OD), in which an
aviation system must properly operate. When requirements are elicited from and allocated to different layers of
the system design—namely: function or system, subsystem, and eventually item'—the OD is also correspondingly
allocated, resulting in operational design domains (ODDs) corresponding to those layers.

*Contribution to the paper with support from the System-wide Safety project under the Airspace Operations and Safety Program of the NASA
Aeronautics Research Mission Directorate.
'We use the standard aviation domain terminology for the layers of a system hierarchy/design.



1.1 Motivation and Contributions

Specifying, refining, and allocating ODs to the system layers that will eventually integrate ML are activities not
as well-understood as they are when going from a system/function layer to lower layers in conventional aviation
systems development processes. Thus, a key challenge for the aviation systems domain is how to define, analyze,
and manage the ODDs resulting from the allocation of the OD to the system layers integrating ML.?> Addressing this
challenge is especially important because it not only drives the data collection activities needed to ensure that a dataset
representative of the intended operations is gathered, but also it influences the design of those layers and the underlying
ML Models (MLMs).

To that end, this paper makes the following main contributions: (i) in Section 2.3, an identification of the dimen-
sions along which the parameters that define an ODD for ML-based aeronautical products can be explicitly captured;
(ii) in Section 3, a rigorous data-centric characterization of ODDs based on categorizing the data that ML-based func-
tionality can encounter in operation. An aircraft flight envelope example also concretizes the underlying concepts;
and (iii) in Section 4, an illustration of how the identified data categories can be used to determine the potential ef-
fects on the system layer integrating ML, along with the learning assurance activities and the system architectural
considerations needed to mitigate those effects.

The approach in this paper is one of the cornerstones of a future process guidance document [15] for the develop-
ment and certification/approval of safety-related aeronautical products implementing Al. That guidance is currently
being developed through an aviation industry-based consensus process, jointly by the SAE Committee for Al in Avia-
tion (G-34), and the EUROCAE working group for AI (WG-114).

1.2 Related Work

The concept of ODD was initially introduced and developed by the automotive systems industry [16]. As such, the
current literature on specifying, developing, and using ODDs is largely in an automotive systems application context.
For example, ODD specification for automated driving systems (ADSs) can be aided by a domain-specific language
(DSL) using structured natural language founded on a formal, machine-processable domain model, to support both
human comprehension and programmatic manipulation [7]. A divide-and-conquer approach to automotive function
ODD development can be employed using a concept of so-called ©ODD [11] that partitions an ODD to place useful
bounds on various safety-relevant parameters. Such partitions can then be tied to validation tests, whilst also encoding
situation-specific parameter information. This approach is closest to our work, although the partitioning we achieve
is data-centric, and orthogonal to 4 ODD-based partitions. In [17], a hierarchical ODD definition is used to develop a
scenario-based test framework for ADSs.

The ODD concept is being progressively matured in the automotive industry via ODD-related standards [1], [9], as
well as automotive system-centric safety standards concerning ML and AI [8], [18]. Each of those guidance documents
gives a mutually consistent definition for the ODD concept, emphasizing its relationship to safety. Nevertheless,
automotive domain guidance cannot be directly applied to safety-critical aeronautical products owing to a variety
of constraints, including: (a) differences in the regulatory approach between the automotive and aviation sectors;
(b) the need for standards to be compatible with aviation regulations and regulatory acceptance of the associated
compatibility arguments; (c) the stringency of assurance requirements in the aviation sector; and (d) consistency with
the existing ecosystem of recommended engineering practices, e.g., for safety assessment [13], and aviation system
development [14].

All of those factors, besides the key challenge discussed earlier, have additionally motivated the work in this paper.
Next we give our notion of ODD.

2 System-level Considerations

2.1 Operational Domains (ODs)

When designing a product system, it is an established and well-understood aviation systems engineering practice to
capture and analyze stakeholder needs at an early stage, along numerous dimensions such as the mission to be fulfilled,
the expected performance in different system operating phases, and specific environmental conditions encountered.

2 Additional related challenges (not in scope for this paper), such as the need to adapt requirements definition and validation processes to account
for dataset requirements, have been comprehensively elaborated in [6].



An OD is one of the results of such early-stage analysis, and it is embodied by the operational requirements for
that system. In other words, the OD is captured in the form of requirements via a specification activity of a well-
defined requirements development process. Thus, we consider an OD to be a specification of all foreseeable operating
conditions under which an end-product is expected (and should be designed) to fulfill its missions. For instance, a
flight envelope specifies, at a minimum, a combination of altitude and Mach number® values that define an operational
environment in which an aircraft type must properly operate.

2.2 Operational Design Domains (ODDs)

We define the allocation of an OD to be the operational design domain (ODD). This is largely aligned with other
definitions of ODD [12], [15], [16], [18]. Just as requirements are allocated across the different layers of the system
design, and then refined with various criteria in mind, e.g., safety, architectural options, implementation choices, and
physical considerations, an OD is also allocated to the lower design layers, and further refined so that each layer has its
own ODD, i.e., the portion of the associated OD in which it should properly function. Such refinement can potentially
(but not always) lead to rich and complex ODDs.* The principles and procedures governing OD allocation rely upon
established aerospace practices [14]. As such, we can allocate the entire OD or a portion thereof to the subsystems
that will be implemented using ML technologies (which we refer to, henceforth, as ML-based subsystems). Moreover,
refining requirements as indicated earlier will bring forth corresponding enhancements of the OD reflecting the same
considerations.

2.3 Describing ODs and ODDs

To describe an OD or ODD we elicit a variety of parameters, their range of admissible values, and, when relevant,
distributions of occurrences over particular time intervals. In general, these define a multi-dimensional region. In
practice, an OD or ODD is often likely to be a subset of that region. Although there are many ways to group parameters,
the following is typical in practice:

* Environmental Parameters: These are variables outside the product (e.g., aircraft) system boundary, including
weather conditions (ambient air temperature and pressure, wind conditions, humidity/rain/snow/ice, dust or sand
levels, etc.) as well as application-specific parameters, e.g., brightness, contrast levels, and blur levels for optical
sensor systems.

* Operational Parameters: These are parameters within the system boundary, examples of which include altitude
and Mach number limits specified by a flight envelope, as well as ranges for angle of attack, pitch, roll, yaw
angles, or their rates of change.

o System Health Parameters: These specify whether the system is expected to work only under nominal (non-
failure) conditions, or whether it should be able to handle deterioration over time, sensor failures, or failures in
specified system components (e.g., a failed actuator or a damaged flight control surface).

2.4 ML Constituent (MLC)

Traditional systems engineering activities need to transition to ML activities at a certain stage of system development
when integrating ML. In light of this, current regulatory guidance for introducing ML technologies into safety-related
aeronautical applications [5], as well as ongoing standardization activities [15] have introduced a concept of ML
Constituent (MLC) for systems integration purposes.

Effectively, an MLC represents the lowest-level of a functional decomposition from a system perspective that
supports a subsystem function. It is a grouping of hardware and/or software items implementing one or more ML
Models (MLMs) and their associated data pre- and post-processing items. Pre-processing may include (but is not
restricted to) data cleanup, normalization, and feature computation. Similarly, post-processing may involve, among
other actions, denormalization and blending of outputs from sub-models.

We qualify the ODD based on its allocation. Thus, allocating an OD to an MLC gives an MLCODD (i.e., the
design space for an MLC), and likewise, the allocation to an MLM results in an MLMODD. An MLMODD may be
identical to the MLCODD, though in practice it may be smaller. Additionally, an MLC can contain multiple MLMs

3Mach number is the ratio of true airspeed to the local speed of sound.
4Characterizing the complexity of an ODD is not in scope for this paper.



each of which have their respective MLMODDs. Also, an MLMODD (or MLCODD) may be the same as the OD for
the system, its superset (to provide robustness), or a subset thereof (to limit the design to a feasible region).

Thus, when a product will eventually integrate ML (e.g., as software whose design was learned through an ML
training process) understanding the MLCODD is crucial to ensure that: (1) the data used for training is representative
of that OD; and (2) the ML designer comprehends the complexity of the portion of the OD that has been allocated to
machine learned functionality.

3 New ODD Concepts for Aviation

From the preceding narrative, it should be evident that developing an OD/ODD is itself not a new phenomenon in
aviation systems engineering practice. However, it is the transition from an OD/ODD description to data collected for
MLM training that is the major change relative to the way ODs are typically specified during conventional (i.e., non-
ML based) product development. This change requires alternative approaches that are the focus of learning assurance
processes [5], [10].

We now give a data-centric conceptual characterization for ODDs, that partitions them based on categories and
kinds of data. Henceforth, when we refer to “ODD” and “ML”, we mean the MLMODD (or MLCODD), and the
MLM (or MLC), respectively, and we will qualify our usage of those terms when it is not clear from context.

3.1 Categories and Kinds of Data

We define the following data categories:

(i) Nominal: Set of data points that lie in the interior of an ODD statistical distribution, that is correct with respect
to the corresponding ML requirements.

(i1) Outlier: Set of data points outside an ODD. Some data can be mistaken to be Outlier data when they should have
been Nominal data, had that ODD been correctly characterized by including at least one additional parameter.

(iii) Edge Case: Set of data points on an ODD boundary where exactly one ODD parameter has a valid extreme
(maximum and minimum) value.

(iv) Corner Case: Set of data points where at least one ODD parameter is at their respective extremum (minimum
and maximum value) of the range of values for those parameters that are admissible (or valid) for a given ODD
(see Figure 1 for examples). There are two types of Corner Case data:

* Feasible: those that are part of the functional intent and, thus, within a given ODD (specifically at the
vertices® of that ODD);

* Infeasible: those that are not part of the functional intent and, thus, outside the ODD. Note that all Infeasible
Corner Case data are a special case of Outlier data.

(v) Inlier (InL): Set of data that lie in the interior of the ODD following an error during data management, e.g., due
to incorrect usage of units and dimensions. Inlier data are difficult to distinguish from Nominal data, and hence
difficult to detect/correct.

(vi) Novelty: Set of data within an ODD according to the parameters used to describe that ODD, but which should
have been considered to be Outlier data, had that ODD been correctly described by introducing at least one
additional ODD parameter. In this sense, Novelty data points for an ODD could be seen as duals of those data
points that are mistakenly considered to be Outlier data, when they should, in fact, have been Nominal data for
that ODD. Novelty data usually arise from insufficient ODD characterization.

We can group the Inlier, Outlier (including Infeasible Corner Case), and Novelty categories into a single Anomaly
data category. Data drawn from all the aforementioned categories may also be characterized as among the following
kinds of sets:

(a) In-Sample (InS): Data used during MLM learning which the implementation of the MLM will have to process

during inference in operation.

(b) Out-of-Sample (0utS): Data not used during MLM learning that the implementation of the MLM will have to

process during inference in operation. It is on out-of-sample data that acceptable generalization behavior (and a

corresponding guarantee) of the implemented MLM can be reasonably expected.

50DDs without vertices e.g., an oval region, will therefore not have feasible corner cases.



(¢) In-MLMODD (InMOD): Data that the implemented MLM will have to process during inference in operation.
In-MLMODD data contribute to the intended function(s) of the MLM. We have: InMOD = InS U OutS and
InS N OutS = ()

(d) Out-of-MLMODD (0utM0D): Data not seen during MLM learning that the implemented MLM should not process
during inference in operation. Out-of-MLMODD data contributes to the intended function(s) of the MLC, e.g.,
specific processing to detect anomalies (see Section 4 for more details). We have: InMOD N QutMOD = ().

(e) In-MLCODD (InCOD): Data contributing to the intended function(s) of the MLC. We have: InCOD = InMOD U
OutMOD.

(f) Out-of-MLCODD (0utCOD): Data not seen during MLM learning that the implemented MLC should not process
during inference in operation. Out-of-MLCODD data contributes to the intended function(s) of the ML-based
subsystem. We have: InCOD N 0utCOD = {).

Real Data in Operation (and their associated statistical distributions), RDO, can now be defined as the set of all data
seen in operation: RDO 2O (InCOD \ InL) U OutCOD.

The preceding concepts will serve as reference terms in forthcoming aviation industry specific guidance [15]. Nev-
ertheless, we believe they are generic enough to be applicable in other domains, although there are some differences,

e.g., our concept of Edge Case data differs from what is considered in [18].

3.2 Illustrative Example (Aircraft Flight Envelope)

We now give an illustrative example of an aircraft flight envelope to concretize the preceding concepts. Informally,
a flight envelope specifies the allowable combinations of two parameters—altitude (A1t) and airspeed, given here
as a Mach number (Mach)—at which an aircraft design should function. Intuitively, this characterization of a flight
envelope represents an Operational Domain (OD) of the aircraft system, and we refer to it, henceforth, as the system
OD (SOD). This is closely related to a functional OD for the system which may include a specification of, for example,
aircraft takeoff gross weights, the city pairs between which flight operations are intended, the routes (flight paths) that
aircraft of a particular type design are expected to fly, the airports involved, the climb segments, and the landing
approaches to be followed.

Figure 1 presents a notional flight envelope covering all phases of flight (shown as the irregular hexagonal region
A). Mach and Alt values within this SOD are allowed, and therefore they are expected to be encountered in operation.
Values of those parameters outside the SOD are disallowed since operating outside the flight envelope is usually
dangerous in most circumstances.

Consider that a portion of this SOD is allocated to an ML-based subsystem to be used during the takeoff flight
phase. Its ODD (not shown in Figure 1) is the takeoff regime at the bottom of the SOD which, in turn, we refine and
allocate to an MLC (contained by that ML-based subsystem). The resulting MLCODD parameters are: 0 < Mach <
0.4 and —1300 ft < A1t < 15000 ft. In Figure 1, this As-specified MLCODD is the irregular pentagon with the solid
dark border (region C).

For this ODD, observe that the upper bound for the airspeed parameter is Mach 0.4. However, aircraft with
greater maximum takeoff weights, e.g., cargo aircraft, can often exceed this bound during takeoff. Thus, there are
two possibilities: either the design was to be restricted to non-cargo aircraft, or there is a missing requirement that
would be discovered in operation with cargo aircraft. For the latter case, the as-operated MLCODD would then have
an increased upper bound on airspeed, e.g., 0 < Mach < 0.5. In Figure 1, this is the irregular pentagon (region B)
that includes the earlier As-specified MLCODD (region C). Now, further consider that there is insufficient takeoff data
for altitudes below sea-level to apply ML. Hence, we restrict the MLM to takeoff operations for A1t > 0ft. Thus,
the MLMODD is a sub-region of the MLCODD allocated to the MLM contained in the MLC. In Figure 1, this is
the irregular pentagon with the dashed border (region D), with the same range for Mach as its containing MLCODD,
but with sea-level as the lower bound on Alt. Figure 1 also zooms into these regions to give examples of the various
categories and kinds of data described earlier.

Data inside the MLMODD (and/or MLCODD) can be drawn from the Nominal, Edge Case, Feasible Corner Case,
Inlier, and Novelty data categories. The following observations are noteworthy: first, the MLM must demonstrate
generalization from Nominal, In-Sample training data to Nominal, In-Sample test data, as well as to Nominal, Out-
of-Sample data, all of which are In-MLMODD. Moreover, the MLM must exhibit correct behavior (i.e., the behavior
meets the allocated requirements) on Edge Case as well as Feasible Corner Case data.

Next, the preceding data categories are disjoint relative to a specific allocation. For example, Outlier data for
an MLM cannot also be a Feasible Corner Case for that MLM, though it can be one for the containing MLC. In
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Figure 1: An example flight envelope (region A) representing an aircraft system OD, whose refinement and allocation
to an MLC and MLM give, respectively, an As-operated MLCODD (region B), containing an As-specified MLCODD
(region C), itself containing the MLMODD (region D), for the takeoff regime. The shapes representing the different
ODDs are practically congruent, but have been shown slightly offset here to differentiate each from the other. Zoomed-
in views of the respective ODDs highlight the different categories and kinds of data used to characterize them.

Figure 1, the data point (Mach 0.4, A1t : —1300 ft) is one such example of an Outlier for the MLMODD that is also
an Out-of-Sample, Feasible Corner Case for the containing As-specified MLCODD.

We associate data points with specific categories relative to an allocation. In Figure 1 for instance, the data point
at (Mach 0.1, A1t : 0ft) is an Edge Case for the MLMODD, but is Nominal data for the containing As-specified
MLCODD. Similarly, each of the data points at (Mach 0, A1t : 0ft), and (Mach 0.4, A1t : 0 ft) is a Corner Case from
an MLMODD perspective but an Edge Case for the MLCODD.

Likewise, we can have Outlier data to the MLMODD that are within the MLCODD. In Figure 1, examples of this
case comprise any data point in the region of the As-specified MLCODD not included in the MLMODD, i.e., in the
region defined by 0 < Mach < 0.4, and —1300ft > Alt > 0ft. As shown, such points are Outlier data for the



MLMODD, but can be Nominal, Edge Case or Feasible Corner Case data for the MLCODD. In the same way, points
in the rectangular region of the takeoff envelope between 0.4 < Mach < 0.5 and 0ft < Alt < 15000 ft are Outlier
data to both the MLMODD, and the As-specified MLCODD, but are within the As-operated MLCODD. For example,
the data point at (Mach 0.5, ALt : —1300 ft) is a Feasible Corner Case for the As-operated MLCODD.

Recall that Infeasible Corner Case data are a special case of Outlier data that may not be reasonably encountered
in operation, where two or more ODD parameters simultaneously take the extreme values admissible for that ODD.
Figure 1 (bottom right) shows one such example: the corner case at (Mach 0.0, A1t : 15000 ft) is infeasible for both
the MLMODD and MLCODD because no airport runways exist at 15 000 ft altitude.

Inlier data are within the MLCODD and/or MLMODD due to errors in data processing, scaling, normalization,
and usage of incorrect units. In Figure 1, the Inlier data point at (Mach 0.35, A1t : 2000 ft) is the result of a data
preparation and scaling error of the Outlier data point at (Mach 0.35, ALt : 20000 ft). The result of processing such
Inlier data is an incorrect response from the MLM, for example a flight control parameter value appropriate for the
outlier data point is incorrectly produced at a lower altitude within the takeoff envelope.

Novelty data are within the MLMODD (and thus, also within the MLCODD), but are, in fact, data that should have
been Out-of-MLMODD (or MLCODD). Novelty data are not excluded from the MLMODD due to an insufficiency in
the number and variety of parameters used to specify the MLMODD.

In Figure 1, the data point (Mach 0.3, A1t : 14000 ft) is Novelty data producing a response appropriate for the
Nominal data point at (Mach 0.225, A1t : 14000ft). This occurs because the SOD and, in turn, the MLCODD
and MLMODD have been specified using only two parameters (altitude and airspeed), either ignoring the effect of
additional parameters such as air temperature, or implicitly assuming that the operations occur in the same environment
as that in which the in-sample data were collected. In this example, operating in warmer air temperatures results in a
lower Mach number, due to which the MLM receives an input that is invalid for the operating context, but is nonetheless
Nominal.

In general, discovering data from the Inlier, Novelty, and Outlier categories that should be part of the required
(or intended) MLCODD or MLMODD, occurs either during testing, during validation of the relevant ODDs, or from
analysis of the data gathered from in-service experience. That usually results in re-defining the respective ODDs,
e.g., by expanding its dimensions by including additional parameters, or modifying the admissible range of existing
parameter values.

4 Support for System-level Analysis

The combination of the category and kind of real data in operation, RDO, facilitates partitioning an MLMODD (and
equivalently, an MLCODD) at a higher level than, say, partitioning by equivalence classes of inputs.® Then, from a
safety standpoint for example, for each such partition we can analyze the contribution of the MLM (or the correspond-
ing MLC) to system hazards in terms of the effects produced in response to inputs drawn from that partition. Examples
of such effects include: an underperformance of the MLM; a hazardous failure condition; MLM or MLC malfunction;
or, more generally, MLM and MLC failure modes and hazard contribution modes [3].

Subsequently, we can establish the (high-level) requirements that an MLM and its containing MLC should fulfill.
These can include, for instance, restrictions on MLM behavior, constraints on data processing, limitations of use, as
well as requirements necessary to manage the safety impact of the identified effects. The latter, in turn, also informs
the selection of the mitigation measures appropriate for sufficient safety assurance. Such mitigations include the
application of learning assurance processes (at the MLM layer), architectural mechanisms (at the MLC, ML-based
subsystem, and system layers), as well as traditional development assurance processes as appropriate.

The tables given in Figure 2 and Figure 3 illustrate how we can use the partitions of an ODD to analyze the impact
on an MLC and MLM: the row and column labels for a cell in the table correspond to the kinds and categories of data,
respectively, and their combination is the partition of RDO we analyze. The content of a cell describes the results of
a particular analysis for that partition, i.e., the effects of encountering data from that partition, and the considerations
that emerge on the requirements, architectural mitigations, and on learning assurance. When the analysis is common
to multiple partitions, we show this in a cell that spans multiple columns. Note that these kinds of analyses can
be applied to any ML-based subsystem, MLC, or MLM, and is agnostic to their allocated function. Also note that

©TIn fact, we can combine those two ways of partitioning an ODD, e.g., by selecting an equivalence class of inputs within a nominal, out-of-
sample, and In-MLMODD partition.



DATA CATEGORIES
KIND OF DATA
(Real Data in Operation) Nominal Edge Case Feacs;l;te((écér)ner
E: MLM underperformance on particular known E
inputs * MLM performance degradation
o A * Incorrect MLMl response
o * MLM Malfunction
g * Input detection and failover
9 « Input masking/filtering A
£ * Input value replacement « Extreme value monitoring
a « Envelope protection and failover
8 L: Data augmentation
=
5' E: MLM underperformance in localized regions E
< ° A mtm perlfform?nce degradation
=] g— « Detection of regions of MLM mafiunction
8 3 underperformance A
3 -.é « Distribution drift monitoring « Extreme value monitoring
= - « Input routing/switching to alternative function » Envelope protection and failover
£ 8 * MLM output range monitoring and failover * MLM output range monitoring and failover
* MLM output masking * MLM output masking
* MLM output value replacement * MLM output value replacement
R: MLM shall not receive inputs from these data categories
a R: MLC shall receive and process input from these data categories
[=]
) A A
E  Input masking/filtering using pre-processing » Input masking/filtering using pre-processing items
g items of MLC of MLC
? « OOD detection (of Out-of-MLMODD inputs) at | « Extreme value monitoring
g ML-based subsystem level + OOD detection (of Out-of-MLMODD inputs) at
 Input routing/switching to alternative function ML-based subsystem level
 Input routing/switching to alternative function
a E: MLC malfunction
8 R: MLC shall not receive inputs from these data categories
9 A A
‘E._ « Input masking/filtering at ML-based subsystem | « Extreme value monitoring
3 level * OOD detection (of Out-of-MLCODD inputs) at
8 « Input routing/switching to alternative function ML-based subsystem level
* Input routing/switching to alternative function

Figure 2: Assessing the impact of an ODD on an MLM and the corresponding MLC in relation to the partitions induced
by the categories and kinds of real data in operation (specifically the Nominal, Edge Case, and Feasible Corner Case
data categories) described in terms of the potential effects (E) of the data, the requirements (R) induced, the learning
assurance (L) processes that may be needed, and candidate architectural (A) options for mitigation.

Figure 2 and Figure 3 are mainly examples, hence they are not comprehensive or complete. Thus, some effects (and
the corresponding architectural options) can be common to the different partitions.

For brevity, here we highlight some specific example options from a combination of analyses. In practice, however,
each analysis would be separately undertaken since the identified learning assurance techniques only apply during
design, whereas the identified architectural options are primarily relevant in use.

Figure 2 shows an analysis from a safety standpoint: the potential effects of the ODD partition characterized by In-
MLMODD, In-Sample, Nominal data include MLM underperformance on specific inputs (as observed during training
and testing). In some applications, the exact inputs from that partition may also be encountered in operation. Thus,
architectural mitigations for such data can include monitoring to detect those specific inputs, together with input value
replacement, masking, or filtering, and/or failover.

Similarly, other partitions of the ODD can be characterized by In-MLMODD, Out-of-sample, Edge Case (or Fea-
sible Corner Case) data. Figure 2 shows these combined into a single partition since the high-level effects (such as
MLM malfunction), as well as the corresponding architectural mitigations (e.g., extreme value monitoring, or enve-
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Figure 3: Assessing the impact of ODDs characterized by Anomaly data, i.e., Novelty, Outlier (including Infeasible
Corner Case), and Inlier data categories, similar to the assessment in Figure 2.

lope protection and failover) are similar for each. However, we note that for particular applications involving a specific
MLM, the individual effects (and therefore the necessary architectural mitigations) from Edge Case inputs are likely
to differ from those resulting from Feasible Corner Case inputs.

Likewise, a common requirement is induced by the ODD partition(s) formed by (each of) the In-MLCODD, Out-
of-MLMODD, Nominal data (and Edge Case, or Feasible Corner Case data respectively). For example, an MLM shall
not receive and process input data drawn from those partitions of the ODD. Consequently, the architectural options
available are also largely similar, although extreme value monitoring mainly applies to Edge Case and Feasible Corner
Case data, rather than to Nominal data. Additionally, note that for Out-of-MLCODD kind of data, there is no distinction
between Nominal, Edge Case and Corner Case data from an MLC standpoint. However, those categories are distinct
from the perspective of the OD allocated to the containing ML-based subsystem, which induces distinct architectural
mitigations as shown.



Figure 3 shows a similar analysis from a system development standpoint for the Novelty, Outlier (including In-
feasible Corner Case), and Inlier data categories. Such data are not part of the functional intent, and therefore a
requirement on MLM development is to exclude such data for model training. As such, the learning assurance process
must include data selection and management activities to assure that the training data indeed excludes inputs drawn
from those data categories to preclude an MLM from producing responses that are inconsistent with the functional
intent.

The partitions of the ODD characterized by In-MLMODD, Out-of-sample, Novelty (and likewise In-MLMODD,
Out-of-Sample, Inlier) data need special attention: specifically, Novelty data may not be detectable through operational
monitoring. Indeed, if such data could be detected at runtime, the relevant features would then have been included
in the set of MLMODD parameters, rendering such data Nominal rather than Novelty. Inlier data are also similarly
difficult to detect in operation. To mitigate MLM failure conditions resulting from the former, learning assurance activ-
ities are particularly important, especially those facilitating a rigorous and comprehensive identification of MLMODD
parameters and features.

In some circumstances, it may be possible to detect and recover from the effects of Novelty data if the responses
produced result in a range violation. For those situations a range of output monitoring, masking, replacement, and
failover mechanisms offer an architectural solution to risk mitigation. To mitigate the effects of Out-of-Sample, In-
MLMODD, Inlier data, dissimilar and/or independent inputs with cross-checking is a candidate architectural pattern.

An MLM cannot receive In-MLMODD, Out-of-Sample, Outlier data since those are, by definition, Out-of-MLMODD.
However, in a similar vein to Novelty and Inlier data, the ODD partition characterized by In-MLCODD, Out-of-
MLMODD, Outlier data also needs particular attention: as we saw earlier (Section 3.2, Figure 1), it is possible to
encounter Outlier data that ought to have been included in the MLCODD—and by allocation, also in the MLMODD—
but were not. This situation can occur due to an error in the requirements, a deficiency in the data collection process, or
a lack of knowledge (epistemic uncertainty). This induces a learning assurance feedback step (see Figure 3) to analyze
Outlier data to validate and potentially update both the MLMODD and the MLCODD from in-service experience.

5 Conclusions and Future Work

We have clarified the dimensions along which the parameters that define an ODD for an ML-based aeronautical
product can be captured, whilst identifying the categories and kinds of data that can be encountered in operation. We
have concretized the underlying concepts using an aircraft flight envelope example considering its allocation to an ML
Model (MLM) for the takeoff regime. Our data-centric ODD characterization gives a useful framework to identify and
organize system development, safety, and assurance activities, which we have illustrated through examples of some
high-level effects of the data both on the MLM and its containing ML Constituent (MLC), along with the architectural
options available for mitigation.

The work described here has emerged from an ongoing, aviation industry-led, consensus based effort. As such,
validating the relevance, applicability, and utility of the underlying concepts and approach largely relies on a committee
consensus agreement and, eventually, regulatory endorsement. To that end, aviation industry practitioners are applying
the approach to a variety of real-world applications such as airborne collision avoidance [2], safe flight termination’,
and time-based separation of transport aircraft in terminal approaches [4]. These use cases corroborate our earlier
assertion (see Section 4) that the work in this paper is sufficiently generic to be applicable to ML-based aeronautical
products used both in airborne systems, and for air traffic management/navigation services. As a key avenue of future
work, we are committed to take the lessons learned from those validation efforts—of the successes, insights, and
possible gaps—to refine and further mature our approach. A related, crucial aspect of our future effort is to leverage
the concepts and approach presented here to define a rigorous process for MLCODD development and validation, and
MLCODD coverage verification (to be elaborated in a forthcoming paper). Such a process does not yet exist in the
prevailing aviation standards and guidance on recommended practices. Thus, it will represent a concrete extension to
the state-of-the-practice.

Our data-centric ODD characterization (Section 3), though rigorous, would benefit from a formalization of the
identified categories and kinds of data, and their interrelations. This could facilitate assessing whether certain desirable
properties hold, e.g., that the data categories cover an ODD in some formally defined sense, and that they are internally
complete. This paper has mainly considered singleton MLMs and MLCs. We intend to extend our approach to the
situations of multiple MLCs within a single ML-based subsystem, and multiple sub-MLMs within a single MLC.

7See: https://safeterm.eu/
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These cases have interesting safety and architectural implications from which we expect to gain a deeper insight into
hazardous behavior emerging from the interactions of multiple MLMs and MLCs. In a similar vein, the support for
system-level analysis (Section 4) can be further elaborated towards a more comprehensive and complete description
of the potential effects of real data encountered in operation, together with the requirements induced, architectural
options available for mitigation, and the learning assurance activities necessary.

This paper has given a new data-centric characterization for ODDs that is not an extension, enhancement, or
tailoring of prior automotive domain ODD concepts. A related avenue of future work is to compare and contrast our
ODD concept and principles with those of other safety-critical domains such as automotive, healthcare, rail, and space.
We remain cautiously optimistic that our work is sufficiently general to be adopted, extended, and applied in those
domains by the associated subject-matter experts.
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