The content of this author pre-print version has been accepted for publication after peer review but is not the Version
of Record. The Version of Record appears in the Proceedings of the 43nd International Conference on Computer
Safety, Reliability, and Security (SAFECOMP 2024), Florence, Italy.

Reconciling Safety Measurement and Dynamic Assurance®

Ewen Denney and Ganesh Pai
KBR / NASA Ames Research Center, Moffett Field, CA 94035, USA
{ewen.denney, ganesh.pai} @nasa.gov

Abstract

We propose a new framework to facilitate dynamic assurance within a safety case approach by associating safety
performance measurement with the core assurance artifacts of a safety case. The focus is mainly on the safety
architecture, whose underlying risk assessment model gives the concrete link from safety measurement to operational
risk. Using an aviation domain example of autonomous taxiing, we describe our approach to derive safety indicators
and revise the risk assessment based on safety measurement. We then outline a notion of consistency between a
collection of safety indicators and the safety case, as a formal basis for implementing the proposed framework in our
tool, AdvoCATE.

1 Introduction

Software-based self-adaptation and machine learning (ML) technologies for enabling autonomy in complex systems—
such as those in civil aviation—may induce new and unforeseen ways for operational safety performance to deviate
from an approved baseline of acceptable risk. This phenomenon, known as practical drift [13], emerges from the
inevitable variabilities in real-life operations to meet service expectations in an operating environment that is inherently
dynamic. Conceptually, it can be understood as progressively imperceptible reductions in the safety margins built into a
system in part due to initially benign operational tradeoffs between safety and performance. A system therefore appears
to be operating safely but, in fact, is operating at a higher level of safety risk than what was originally considered
acceptable, or approved for service. Left unchecked, practical drift may suddenly manifest as a serious incident or
accident. Assessing the change in operational safety risk is thus key to identifying practical drift, its impact, and the
mitigations needed.

1.1 Related Work

The conventional approach to operational safety assurance in aviation largely relies upon hazard tracking and safety
performance monitoring and measurement, as part of a larger safety management system (SMS) [10]. The contem-
porary safety case approach to assurance has similarly employed safety monitoring and measurement: for example,
our earlier work on dynamic safety cases [5] first suggested connecting safety monitoring to assurance argument
modification actions. Subsequently, an approach to defining performance metrics and monitors by identifying the
defeaters and counterarguments to a safety case has been developed in [12]. The concept has since also been applied
to safety assurance of self-adaptive software [4], and to detect operational exposure to previously unknown hazardous
conditions [18]. More recently, the use of safety performance indicators (SPIs)—a concept with a well-established
history of use in aviation safety [13]—has been proposed for evaluating safety cases for autonomous vehicles [15].
These approaches all share a common motivation: using measurement based assessment to confirm at deployment,
and maintain in operation, the validity of the assurance arguments of a safety case.

Although such an approach suggests which parts of an argument may have been invalidated, and thus require
changing, the nature and extent of the change to operational safety risk levels is left implicit. Such analyses can also

*This work was performed under Contract No. 80ARC020D0010 with the National Aeronautics and Space Administration (NASA), with support
from the System-wide Safety project, under the Airspace Operations and Safety Program of the NASA Aeronautics Research Mission Directorate.
The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government
retains a non-exclusive, paid-up, irrevocable, worldwide license to reproduce, prepare derivative works, distribute copies to the public, and perform
publicly and display publicly, or allow others to do so, for United States Government purposes. All other rights are reserved by the copyright owner.

meaningfully inform what modifications may be needed to the system and its safety case, especially when—due to
practical drift—improved system performance is observed without detrimental safety effects, even though parts of
the safety argument have become invalid. Current safety case approaches that use safety performance measurement to
validate assurance arguments give limited guidance on how to facilitate what this paper considers as dynamic assurance
(see Fig. 3): continued, justified confidence that a system is operating at a safety risk level consistent with an approved
risk baseline.

There are other variations of the dynamic assurance concept [17], [21] that aim to optimize operational system
performance, and thus opt for situation-specific runtime tradeoffs between safety and functional performance, instead
of designing for the worst case. However, such tradeoffs may result in the initiating conditions for practical drift.
Our proposed framework rather aims to identify and contain practical drift, whilst considering that a safety case for
a system is always for a design that accounts for the worst credible safety effects. In [18], dynamic assurance refers
to the automated aspects of so-called continuous assurance: a concept that, in effect, extends our prior work [5], by
using monitors for different kinds of uncertainty that then trigger modifications to the system and its assurance case.
The relationship of testing and operational metrics to safety assurance has been explored in [19], similar to our work
in this paper (see Section 4), though there the focus is on providing confidence that a system meets its safety target,
given evidence of mishap-free operation. In contrast, our focus here is on determining how safety risk has changed
given similar measurement evidence.

1.2 Contributions and Paper Organization

To facilitate a framework for dynamic assurance within a safety case approach, the focus of this paper is on associ-
ating safety performance measurement with the safety architecture of a system, in addition to assurance arguments
(Section 2). Using an aviation domain system (Section 3) as motivation, we present our approach to define safety
metrics and indicators, through a concept of safety measurement basis (SMB), then revise the operational safety risk
assessment based on safety measurement, and characterize the change to safety risk levels (Section 4). Additionally,
we give illustrative numerical examples. Then (Section 5) we formalize a notion of consistency between the SMB
for a system and the arguments of its safety case. We conclude (Section 6) by describing a preliminary implementa-
tion in AdvoCATE, and with a discussion of our future plans to further advance this work. The contributions above
differentiate our work from prior related research.

2 Conceptual Background
2.1 Safety Case Metamodel

Our safety case concept [1] communicates confidence in safety through multiple viewpoints via a collection of core,
interlinked assurance artifacts, namely: hazard, requirement, and evidence logs, a safety architecture, and an assurance
rationale. Of those, the last two are particularly relevant for this paper. Assurance rationale captured as structured
arguments expresses the reasoning why safety claims ought to be accepted on the basis of the evidence supplied. A
safety architecture [6], [8] models the mitigations (and their interrelations) to the events characterizing the operational
risk scenarios for a system, thereby offering a system-level viewpoint on how safety risk is reduced.

Fig. 1 shows a fragment of the metamodel associated with our safety case concept (as unshaded class nodes),
for which we have a model-based implementation in our tool, AdvoCATE [7]. We use the goal structuring notation
(GSN) [20] to represent structured arguments, and bow tie diagrams (BTDs) to represent views of a safety architecture.
Those views capture a causal chain (e.g., see Fig. 2) of threats (initiating events) causing a top event (a hazard) that
can lead to consequence events (undesired safety effects), along with the barriers (mitigations) necessary to reduce the
safety risk posed. Each such event chain requires a combination of hazardous activity, environmental condition, and
system state (together representing the operating context'), and can admit an arbitrary number of intermediate events
between the initiating threat and terminating consequence events. Each barrier is itself a system comprising underlying
controls; thus, it can have its own associated safety architecture, giving the overall model a layered structure that can
mirror the system hierarchy.

A risk assessment model underlying a safety architecture gives the formal basis to: (i) characterize the extent of
risk reduction, and (ii) link safety metrics and indicators to operational safety risk (see Section 4). In brief, this model

! Also known as an operational design domain (ODD) for systems integrating ML [14].

Operating

Indicator 17 T Environment [T

Development
Process

_______________ » System

Threshold Metric

- Safet
SO Assurance Artifact Meacirotment
| Expression | | Measure | Basis

Safety
[[Safety Arguments Architecture
| Safety Architecture | | Argument | |Evidence|)
,—Y—‘ ,—?—‘ Requirement .
Safety Evidence

| Event | | Barrier | | CIaim| |Assumption|

Safety Case

Figure 1: Fragment of AdvoCATE safety case metamodel (on the left) extended with measurement concepts that
are part of a safety measurement basis (shown on the right), which is the interface between quantities in the system,
its environment, its development process, and the assurance artifacts comprising a safety case (solid arrows denote
consistency relations).

relates the risk of consequence events, i.e., their probability and severity, to that of the precursor events, and to the
integrity® of the applicable barriers and their constituent controls. Depending on the stage of system development, we
can interpret each of an event probability and barrier/control integrity both as a design target and verification goal. For
the rest of this paper, we mainly consider the risk reduction contribution of barriers.

2.2 Safety Measurement

We extend the safety case metamodel in AdvoCATE with concepts for safety performance measurement (shown by
the shaded class nodes in Fig. 1) as follows: we link the indicators to the core assurance artifacts—in particular, the
event and barrier elements of a safety architecture, the claims and assumptions in arguments, to requirements, and
to evidence artifacts. An indicator consists of a metric along with a threshold, representing the target that a metric
should (or should not) reach, over a specified exposure, expressed either as a duration of continuous time or a specified
number of occurrences of a discrete event. Indicators that have a bearing on safety can be called safety indicators
(SIs) or safety performance indicators (SPIs). Metrics are computed values based on measures—directly observable
parameters of the system, its environment, and its development process—and other metrics, which we represent using
an expression language. Thus, they are arithmetic expressions over measured variables drawn from the most recent
mission—which we term as a data run—or the missions conducted over the lifetime of the system. They can also refer
to values referenced in assurance artifacts.

As shown in Fig. 1, a safety case can be seen as comprising a dynamic portion (indicators, metrics, and measures)
and a static portion (safety arguments and safety architecture), with links associating the two. We refer to the set
of interconnected indicators, metrics, and measures, along with their traceability links to the assurance artifacts of a
safety case as a safety measurement basis (SMB). Roughly speaking, the connection between the dynamic and static
portions is that the indicators represent the objectively quantifiable content of the arguments and the safety architecture
which, in turn, give the justification for how those indicators collectively provide safety substantiation. Put another
way, we want the SMB to be consistent with the static portions of the safety case, especially the arguments and the
safety architecture (see Section 5).

ZIntegrity is the probability that a barrier or control is not breached, i.e., it delivers its intended function for reducing risk in the specified
operating context and scenario [8].

Controller steers the
aircraft when not
required

Prevention Barriers

Likelihood: A (Frequent)

Controller Failover

(A A & & 4

Taxiing at 25
knots, at dusk,
low visibility, wet
runway, no
crosswinds

‘ Hazardous Activity
‘ (Operating Context)

Runtime Monitoring E
Threat Compare commanded Disengage PID controller B5 4
(Initiating Event) heading with reference when deviation = d Aircraft deviation from] Lateral runway overrun
heading and alert upon meters or duration of the runway centerline
deviation = h degrees deviation = t seconds, exceeds allowed lateral IEAY(Freqdsnt)
then command a speed offset o (iinc)
\ reduction RL: D (Extremely Remote)
Barrier Integrity: 0.8 \ RS: 4 (Minor)
Barrier Integrity: 0.99 RRL: 4D (Low)
A\
E \ Emergency Braking
2 \
\ Apply emergency Consequence
Runway centerline]] brakes when lateral
Imarkings not visible or Bg Controls B4 Top Event offset is exceeded for (Safety Effect)
lobscured more than k seconds
/ (Hazard)
Likelihood: A (Frequent)
/ / E3 Barrier Integrity: 0.99
/
/
Redundancy / Perception Failover

Use redundant / Recovery Barrier

localization as alternative
reference for heading,
and location

Disengage ML-based
perception when deviation
from reference location = d

meters or duration of
deviation = t seconds, then

command a speed reduction

Barrier Integrity: 0.88

Barrier Integrity: 0.75

Figure 2: Annotated BTD fragment for an autonomous taxiing capability, showing how a lateral runway overrun is
mitigated under specific initiating events leading to centerline tracking violation.

3 Motivating Example

We motivate this work using an aviation domain use case of autonomous aircraft taxiing [1]. This system uses a
runway centerline tracking function comprising a classical controller coupled to a deep convolutional neural network
that estimates aircraft position from optical sensor data. The functional objective is to maintain both the cross-track
error (CTE) and the heading error (HE) within pre-defined bounds. CTE is the horizontal distance between the runway
centerline and the aircraft body (or roll) axis; HE is the angle between the respective headings of the runway centerline
and the roll axis. The safety objective is to avoid a lateral runway overrun (also known as a runway excursion), i.e.,
departing the sides of the runway.

Fig. 2 shows a BTD fragment for this example (annotated to show its graphical elements and their identifiers) as a
view of its wider safety architecture (not shown), which composes [8] similar such BTDs, albeit for different operating
contexts, threats, top events, and consequences. Here, the operating context involves a relatively low speed (25 kn),
low visibility taxi operation on a wet runway, at dusk, under no crosswind conditions. The hazard to be controlled
(E3) is a violation of the allowed lateral offset from the runway centerline, failing which a lateral runway overrun (Ey4)
could occur. Two (out of many) initiating causes for this hazard have been shown: a controller malfunction that steers
the aircraft away from the centerline when not required (E;); and runway centerline markings that are not visible, or
are obscured (E»).

3.1 Baseline Safety

To characterize the safety risk level of an operating scenario, we use the risk assessment model associated with the
safety architecture to establish a baseline level of operational safety risk for the identified safety effects.

For the scenario in Fig. 2, the initial risk level (IRL) of the consequence event E, is labeled 4A(Medium). That is,
E4 has a medium level of unmitigated risk, and is assigned the risk classification category 4A. That refers to a region
of the overall risk space that has been discretized using a classical 5 x 5 risk matrix of categories of consequence
event probability, ranging from Frequent (A) to Extremely Improbable (E), and consequence event severity, ranging

from Minimal (5) to Catastrophic (1). For a definition of those categories, see [10]. A similar interpretation applies to
residual risk level (RRL) which, for Eg4, is shown as 4D(Low), representing the risk remaining after mitigation using
the indicated barriers and the associated controls. Specifically, By: Runtime Monitoring, Bo: Controller Failover,
Bs: Redundancy, and By: Perception Failover, serve as prevention barriers for exceeding the allowed CTE, while Bs:
Emergency Braking is a recovery barrier invoked after the top event occurs.

For aeronautical applications, civil aviation regulations and the associated certification or approval processes gen-
erally establish what constitutes acceptable and approved baseline risk levels respectively. The two can be the same
(though they need not be) and, typically, are given in terms of a so-called target level of safety (TLOS), which specifies
the (maximum acceptable) probability of the undesired safety effect per unit of operational exposure, e.g., 10~° lateral
runway excursions per taxi operation. How TLOS is established and approved is out of scope for this paper?; as such,
in Fig. 2, either of the values of the IRL, 4A(Medium), or the RRL, 4D(Low), may plausibly meet the TLOS, and
therefore could be an approved baseline level of safety risk. For the purposes of this example, we assume that the RRL
shown is the approved baseline that meets the TLOS. Once a system is deployed, note that the RRL for an event is, in
fact, dynamic, i.e., as a sequence of values starting from the approved baseline, it represents how the risk of that event
evolves over the system lifetime (also see Fig. 3).

3.2 Practical Drift

Some barriers or controls in the safety architecture of a system may be relaxed in operation to improve the performance
of system services and/or to make local optimizations that address the operating context. In our running example, for
instance, to increase runway throughput whilst operating on large runways in better environmental conditions (e.g.,
clear weather, and dry runway surface), the time an aircraft spends on a runway could be reduced. For that purpose,
suppose that disengagement of the perception function or the controller is delayed (see Fig. 2), or that more permis-
sive CTE bounds are admitted. In those cases, the system may enter certain states that would have been prohibited
otherwise. In particular, such states represent violations of the barrier/control requirements that were stated as claims
in the pre-deployment safety case.

However, when there is improved system performance without observed safety consequences or mishaps, those
states are not perceived as violations that increase residual risk. This can lead to misplaced assurance in operational
safety when the system as operated deviates from its safety case. Practical drift can then emerge when multiple
safety mitigations may be progressively loosened, and continued, incident-free system operations under such changes
obscure the increase in operational safety risk. It is important to emphasize that relaxing mitigations to improve
performance represents an operational tradeoff rather than a deliberate attempt to subvert safety. An analogy, for
example, is highway driving at the speed of traffic that exceeds the posted speed limits—a practice that is not always
unsafe, but poses higher risk in general.

4 Framework

Dynamic assurance within a safety case approach gives a proactive means to assess and contain practical drift through
continued assurance that the operational safety risk level for the system is aligned with its approved baseline (see
Fig. 3). A framework that enables this must at least: (i) characterize how operational safety risk levels have changed;
(ii) determine which mitigations, if any, may be legitimately relaxed without safety deteriorating; and (iii) identify
the necessary modifications to both the system and its safety case, so that the two are mutually consistent during
system operation. Next, we discuss how relating safety performance measurement to the safety architecture in a safety
case, in addition to its arguments, gives the necessary elements and technical foundations for the first of the preceding
three requirements—the main focus in this paper. The examples presented next are meant to be illustrative and not
comprehensive.

4.1 Defining Safety Metrics and Indicators

A safety architecture and its associated risk assessment model [8] give a basis to allocate safety targets to the safety
functions, and subsequently confirm them (analytically and empirically). TLOS is a system-level safety target always
assigned to consequence event probability. Decomposing and allocating the TLOS across the elements of the safety

3Interested readers may refer to [3].

Risk Risk
Dynamic Assurance

Practical drift

LR ——————— Exposure —

Time

System (and Environment) Evolution

Figure 3: Pre-deployment assurance gives justified confidence in the reduction of an initial risk level (IRL) of the
safety effects in a system concept, through system development, to a baseline residual risk level (RRLg) that meets the
TLOS at deployment. Dynamic assurance provides confidence in operation that the approved baseline is maintained,
by identifying and managing practical drift.

architecture gives the safety integrity targets for barriers and controls, along with precursor event probabilities that we
interpret as scenario-specific safety targets. Relating safety targets to safety performance measurement in general, and
safety indicators (SIs) in particular, facilitates tracking and confirming that the mitigations are performing in operation
as intended. One way to embed TLOS into an SI is by simply converting the corresponding probability value into
an event frequency threshold applied to an appropriate safety metric used during development or in operation. In this
section we focus on the operational safety metrics, addressing the metrics used during development in Section 4.2.

TLOS and the corresponding SIs can be generic, i.e., apply to all relevant operating contexts of a safety archi-
tecture, or scenario-specific, i.e., applicable to a particular operating context. For instance, let the TLOS for lateral
runway overrun under all relevant operating conditions of the example system be 10~ per taxi operation. We can then
define a corresponding generic SI, Zge: opLatRwyEx < 1in 10° taxi operations, where opLatRwyEx is an operational
safety metric* for the number of lateral runway overrun events in operation, whose threshold value is 1, measured
over an exposure of 10° taxi operations. Another commonly used unit of exposure is flight hours [11], and the SI can
be given equivalently as Zgg : opLatRwyEx < 1in 10 x ¢ flight hours, where ¢ is the average time in flight hours of
a taxi operation.

Scenario-specific SI definition proceeds in the same way, but is applied to specific operating contexts after first
decomposing and allocating the TLOS of a consequence event to its scenario-specific instance. For example, if 10%
of all taxi operations occur under the operating context of Fig. 2, then we can modify the exposure of Z g to 10° taxi
operations to get the scenario-specific SI for the consequence event E4.

Similarly, we can define generic and scenario-specific SIs for the remaining safety architecture elements by con-
verting the associated event probability and barrier integrity values as applicable. Moreover, recalling that a barrier
can have its own safety architecture (Section 2.1), we can iteratively define SIs for the lower layers of a system
hierarchy. Thus, in Fig. 2, we can define the scenario-specific SI for the barrier By: Perception Failover as Zppg:
opPcpDisEngF < y in n taxi operations. In Section 4.4, we illustrate one approach to instantiate y and n.

Here, opPcpDisEngF is a metric related to the integrity of By (itself a metric) that counts the number of failed
disengagements of ML-based perception in operation; its threshold value is y, to be measured over an exposure of
n taxi operations conducted in the stated operating context for the specified scenario. This metric relies upon a
precise definition of a failed disengagement (not given here), which may itself be given in terms of other metrics,
e.g., those associated with its functional deviations (i.e., violation of the requirements for the barrier, its constituent
controls, or their verification), and its failure modes (of the physical systems to which the barrier function is allocated).
Additional operational safety metrics related to barrier integrity include opTxLowVisW, counting the number of taxi
operations conducted at dusk under low visibility, no crosswind, and wet runway conditions (i.e., the operating context
of Fig. 2), from which we may infer the number of successful disengagements of ML-based perception as the metric
opPcpDisEngS = opTxLowVisW — opPcpDisEngF.

“4Henceforth, identifiers with the prefix ‘dev’ refer to metrics used during system development, and the prefix ‘op’ indicates an operational safety
metric.

4.2 Updating and Revising the Operational Risk Assessment

A pre-deployment safety case represents what (we believe) a system design achieves at deployment, and will continue
to achieve in operation. Some of the metrics and SIs applicable during system development constitute measurement
evidence verifying safety performance, e.g., during pre-deployment system testing or flight testing. Thus, by associat-
ing those metrics and SIs with the safety architecture, we get the prior values of event probability and barrier integrity.
For the scenario and operating context of Fig. 2, some of the metrics used during system development for the barrier
B4 are: devTxLowVisW: the number of tests for By = t (say); devPcpDisEngS: the number of successful disen-
gagements of ML-based perception = s; and devPcpDisEngF: the number of failed disengagements of ML-based
perception = (t — s) = f.

If the test campaign during system development is designed as a Bernoulli process [16] then we can model the
sequence of test results as a binomial distribution, Binom (x : 7, §), whose parameters are x: the number of successes,
7: the number of independent trials, and 6: the probability of success in each trial. Hence, we can assign the values
of the metrics devPcpDisEngS and devTxLowVisW, respectively, to the first two parameters as x = s, and 7 := ¢.
Let 6 := p, the unknown (fixed) probability that each test produces a successful disengagement. We can model p
as the conjugate prior beta distribution, 7(p) ~ Beta («, 3). The hyperparameters (i.e., the parameters of the prior
distribution) represent our prior knowledge of the number of successful and failed tests during development. Hence
we assign to them the values of the metrics devPcpDisEngS and devPcpDisEngF, respectively, as a = s, and
B = f. The beta distribution mean, p, = s/t, gives a point estimate of the prior barrier integrity, and its variance,
012, = sf/t?(t+1), gives the uncertainty in that estimate.

In operation, safety performance measurement yields a sequence of observations of the state of the safety system.
We can transform this data into a likelihood function, i.e., a joint probability of the observations given as a function of
the parameters of a model of the underlying data generation process. In our example, a binomial probability density
function (PDF) is a reasonable initial model (i) assuming that the pre-deployment safety case provides the argument
and evidence that testing is representative of actual operations (as would likely be necessary), and (ii) since a binomial
distribution models the sequence of test results. Thus, supposing that over n taxi operations conducted in the operating
context of Fig. 2, there were x failures to disengage ML-based perception on demand. We now have the operational
safety metrics opTxLowVisW = n, and opPcpDisEngF = z, so that opPcpDisEngS = (n—x) = v, and the likelihood
function is £ (p|n,y) = (Z) pY(1 — p)*. As before, p is the unknown probability of a successful disengagement of
ML-based perception on a random demand, representing a surrogate measure of barrier integrity.

Bayesian inference gives the formal procedure to update the priors into posterior values of barrier integrity (and
event probability), which represent what the operational system currently achieves. Thus, for our running example,
the posterior integrity for By is given by (the proportional form of) Bayes’ theorem as 7 (p|y) o L (p|n,y) x 7(p).
Since the beta prior and the binomial likelihood are a conjugate pair, the posterior has a closed form solution, 7(ply) ~
Beta (s +y, (t — s) + x). The distribution mean, j,,|,, = (s+¥)/(t+n), is the updated point estimate of barrier integrity.
To get a revised assessment of the operational safety risk level for the system, we propagate the posterior barrier
integrity through the risk assessment model underlying the safety architecture.

4.3 Characterizing the Change to Safety Risk

We use risk ratio (RR), a metric of relative risk, to quantify the change in operational safety risk. In operation, the
RR for a consequence event is the ratio of its current estimated probability of occurrence and the approved baseline.
More generally, we will (re)compute the RR for any event of interest in the safety architecture, typically after the
operational risk assessment has been revised (as in Section 4.2) as the ratio of its updated (i.e., prior or posterior, as
appropriate) probability to its (scenario-specific) safety target. Denoting the RR for event E; by RR(E;), RR(E;) > 1
indicates an increase in the safety risk of E;. Similarly, RR(E;) < 1 indicates a decrease, while RR(E;) = 1 indicates
no change. By itself, RR reflects how effective the safety architecture is in reducing the risk of the identified safety
effects.’ By considering the trend of RR over time, we can construct a powerful SI of practical drift, e.g., by fitting
a linear trend line to a temporally ordered sequence of RR values computed over some pre-determined exposure, the
sign and magnitude of the slope indicate, respectively, the direction and the rate of the change in safety risk.

SRR has also been used as a development safety metric, e.g., in designing aircraft collision avoidance systems [9)].

4.4 Numerical Examples
We now give some numerical examples to concretize the preceding discussion.

Example 1 (Prior Barrier Integrity). During the development of our running example system and its pre-deployment
safety case, assume we have a total of devTxLowVisW = 32 flight tests in which there are devPcpDisEngF = 8 failing
tests for the Perception Failover barrier. Thus a prior distribution for its integrity is 7(p) ~ Beta(24, 8), whose mean
is pup = 0.75, and variance is ag = 0.0057. The mean gives a point prior value of barrier integrity which we show in
the corresponding node in the BTD of Fig. 2.

Example 2 (Scenario-specific Barrier Safety Indicator). Recall that a scenario-specific SI for the Perception Failover
barrier is Zppg: opPcpDisEngF < y in n taxi operations (Section 4.1). As before, opPcpDisEngF measures the number
of failed disengagements of ML-based perception in operation. To determine a suitable exposure n and threshold y,
consider that a conservative range of values for p that would provide the same, or better, risk reduction performance
as its prior mean is the closed interval [p1,, + 0, 1] = [0.8254,1]. In other words, observing 8 or more successful
disengagements or, equivalently, 2 or fewer failed disengagements on demand of ML-based perception over at least
10 taxi operations conducted in the specified operating context would validate the safety performance of the barrier.
Thus, here, n = 10 and y = 2.

Example 3 (Likelihood of Data and Posterior Integrity). After system deployment, suppose that to improve runway
utilization, the control in B4 (see Fig. 2) is relaxed such that ML-based perception is disengaged after a larger distance
(or duration) of position deviation than what was specified in the safety architecture. The metric that records the num-
ber of failed disengagements in operation, opPcpDisEngF (Section 4.2), includes violations of the barrier requirement
as initially specified, which itself includes violations of the barrier requirement after operational modification. That is,
the operational safety metric should not be modified even though the barrier function has been operationally changed.
Supposing opPcpDisEngF = 4 violations have been observed over opTxLowVisW = 10 taxi operations. Given this
data, the likelihood function is £(p|6) = (140)])6(1 — p)*, and the posterior distribution is 7(p|6) ~ Beta(30,12),
whose mean is y,|¢ = 0.7143 and variance is 012)‘6 = 0.0047.

Example 4 (Operational Safety Risk Update). We assume prior data is available (from characterizing the ODD [14]
for the autonomous taxiing function) on how often runway markings are obscured during taxiing due to runway surface
and weather conditions. Hence we can give a prior distribution, say 7(Ez) ~ Beta(10, 190), whose mean is the prior
point estimate Pr(E3) = 0.05. Similarly, let Pr(E;) = 0.05. Given these priors and the barrier integrity values as
in Fig. 2, the prior probability of the consequence event is Pr(E4) = 1.5998 x 10~° corresponding to an RRL of
4D(Low). We recall from Example 3 that 4 barrier violations were observed in 10 taxi operations. Hence E; must
have occurred on z = 4 occasions for By to have been invoked and have failed on demand. Thus, we may reasonably
model this event as a Bernoulli process with a binomial PDF as the likelihood function for the observed data. Thus,
the posterior distribution over E; is 7(Ez|2) ~ Beta(14,196) so that pg,|. = 0.0667 is the point posterior for Pr(Es).
Propagating both the posteriors for E; and B4 through the risk assessment model of the safety architecture [8], we get
the updated prior Pr(E4) = 2.386 x 10~ for the consequence event. The corresponding RRL remains unchanged
suggesting that the operational modification to B, may be acceptably safe.

Example 5 (Safety Risk Level Change and Practical Drift). The risk ratio for the consequence event E4 given the
change to barrier B4 (as in Example 3) is RR(E4) = 2-386/1.5998 ~ 1.49. Thus, despite an unchanged risk level (see
Example 4), the RR indicates increasing safety risk. Now, further suppose that to improve runway utilization, a greater
deviation in CTE from the stated bounds is operationally admitted (see the top event E3 in Fig. 2). Consequently barrier
Bs needs to be relaxed to be invoked after a longer duration than specified (see Fig. 2). Suppose that the posterior
integrity computed from operational safety metrics (omitted here due to space constraints) is Pr(B5) & 0.96. In this
case, the revised prior for E4 is Pr(E4) ~ 2.4 x 1074, the revised RRL is 4C(Medium), and RR(E4) ~ 10. The
updated RRL now violates the TLOS even if no safety effects may have been observed. Moreover, the modifications
to the barriers B4 and Bj are at least an order of magnitude more likely to result in a lateral runway overrun, indicating
an appreciable increase in safety risk relative to the approved baseline, and suggests practical drift.

5 Towards Formal Foundations

As mentioned earlier (Section 2.2), we want to formalize a notion of consistency between the static portion of the safety
case (i.e., its assurance artifacts, see Fig. 1) and the collection of indicators that constitute the SMB. The safety metrics

and indicators represent the objectively quantifiable content referenced in the arguments and the safety architecture,
which in turn provide the justification for how the metrics and indicators collectively provide safety substantiation.
Although operational safety measurement entails updating and revising the risk assessment (Section 4), changing the
SMB may not be necessary. However, in situations where replacing, modifying, or adding metrics and indicators is
required—e.g., to reflect new observable phenomena in the environment—the SMB will change and so would the
associated assurance artifacts to retain consistency. Note that currently we are not considering changes that would
entail modification of the safety architecture (e.g., replacing a barrier). Hence we exclude that from our notion of
consistency for now and focus on consistency with arguments.

We can achieve this consistency if the argument structure reflects the risk reduction rationale implicit in the safety
architecture. That is, the form of the argument structure proceeds from all terminating consequence events in the safety
architecture, working recursively backwards (i.e., leftwards) to all initiating (leftmost) threat events. Thus, each level
of the argument has the following form: all consequence events are acceptably mitigated (i.e., the residual risk level
meets the allocated TLOS), which is supported by the argument that: all their identified precursor events (causes)
are acceptably mitigated, which is supported by the argument that: (a) all applicable barriers are operational and
effective, and (b) all causes have the stated probability of occurrence. In a GSN representation of this argument, the
leaves are solution nodes [20] that have the following evidence assertion: the initiating threat has the stated (assumed)
probability.

Thus, the overall argument states that if the barriers are effective and operational, and the events have the assumed
probabilities, then the consequences have acceptable risk levels. Indicators map into the corresponding claims of
barrier effectiveness and event probabilities, serving to monitor that those values are within the required limits.

Now we briefly outline how to place this consistency on a more rigorous basis. Let Arg and SMB represent the
sets of well-formed arguments and SMBs, respectively, and define mappings F' : Arg — SMB and G : SMB —
Arg, such that F’ extracts the associated indicators from an argument, and G embeds an SMB into a skeleton argument
of the form outlined above. Then we require that F'; G < I and G; F = I (where [is the identity mapping), where
arguments are ordered by refinement. The first inequality ensures that the argument contains the necessary rationale
for the SMB, with the refinement allowing that the argument can contain additional reasoning; the second ensures that
all quantifiable components of the argument are represented in the SMB.

6 Concluding Remarks

We have a preliminary implementation of the SMB in AdvoCATE that currently supports the following functionality:
real-time import of data (i.e., measures) from multiple data sources (simulations or feeds from external sensors);
computation of derived metrics and indicators over multiple data runs; and tracing to assurance artifacts (events and
barriers in the safety architecture, and goals and assumptions in the safety arguments). We display indicators and
the associated assurance artifacts in a dynamically updated table (Fig. 4 shows an example) that highlights when the
conditions on the indicator thresholds have been met (in green) or have not been met (in red). A dashboard (not shown)
allows selection between the various metrics of the SMB with charts displaying real-time updates of their values as
well as other dynamically updated risk status, such as hazards ordered by risk level, and barriers ordered by integrity.

The goal of managing practical drift has mainly informed our choice of safety metrics and indicators. We plan
to leverage the Goal Question Metrics (GQM) approach [2] to define additional metrics suitable for other dynamic
assurance goals, e.g., improving functional performance whilst maintaining safety.

A binomial likelihood may be only initially appropriate for certain kinds of measurement data. Indeed, as more
data is gathered, the preconditions for using a binomial PDF need to be reconfirmed. As such, it may be necessary to
use other PDFs for the likelihood of the data, along with numerical methods for Bayesian inference. Our choice of
beta priors is motivated, in part, by computational convenience, its flexibility to approximate a variety of distributions,
and the domain-specific interpretation of the distribution parameters in different safety metrics. Although we represent
the uncertainty in barrier integrity and event probability by specifying their distributions in the theoretical framework,
our prototype implementation currently represents and propagates their point values (i.e., the distribution means) for
both the pre-deployment risk assessment, and the revisions of the operational risk assessment. We plan to refine this
approach by also propagating the uncertainties through the risk assessment model so as to quantify the corresponding
uncertainty in the residual risk of the safety effects of interest. By so doing, we aim to ground the quantification of
assurance in safety measurement.

Since TLOS is typically assigned to rare events, legitimate concerns can arise about the credibility of using quan-

i < 88 Biér 4 Q iy

& Z;, safecomp24 Dashboard & ElI1 Bow Tie autoTaxi.simulation [Performance Indicators X = 0 8
=
‘o Delete Data Run Create new Data Run Data Source: LowVizSim ~ DataRun: D~ Start Data Run
= &
Metric Definition Threshold Assurance Element Value Status _—
o= A= e
o= opLatRwyEx: Number of lateral = : : .
runway overrun events in operation count (opLatRwyExIn = TRUE) in taxiOpExposure q E2: Lateral runway overrun 0 false gj\?

E1: Aircraft deviation from the
count (opCTEViolationsIn = TRUE) in (taxiOpExposure/100) 2 runway centerline exceeds 0 false
allowed lateral offset

opPcpDisengF: Number of failed
disengagements of ML-based count (opPcpDisEngFIn = TRUE) in pfoDemandExposure 2 B3: Perception Failover
perception in operation

opTxLowVisW: Number of low 3 3
visibility wet runway no crosswind low count (opTxLowVisWIn = TRUE) - EC1: Wft n:/rimila"tnodcrolfswmd' 10 R
speed taxi operations ow visipility, aus|

opCTEViolations: Number of CTE
violations during taxi in operation

devTxLowVisW: Number of low EC1: Wet runway, no crosswind,

visibility wet runway no crosswind low count (devTxLowVisWIn = TRUE) = low visibility, dusk 10 =
speed taxi tests Y

devPcpDisEngS: Number of
successful disengagements of count (devPcpDisEngSIn = TRUE) in taxiTestExposure 8 B3: Perception Failover 9 true
ML-based perception in test

count([(opCTEViolationsin = TRUE) AND (opEmBrkFIn =
FALSE)] OR [(opCTEViolationsin = FALSE) AND 1 B1: Emergency Braking 0 false
(opEmBrkin = TRUE)]) in taxiOpExposure

opEmBrkF: Number of emergency
braking violations in operation

autoTaxiSim

Figure 4: AdvoCATE screenshot: Table of safety indicators for the example system in Section 3.

titative methods as in this paper. Though we have yet to explore how conservative Bayesian inference [19] could be
used in our approach, relative risk metrics such as risk ratio (RR) are a step towards circumventing those concerns.

Practical drift is distinct from operating environment drift in that the former results from changes within the
system boundary, whereas the latter occurs outside that boundary. We reflect the assumptions about the operating
environment in the pre-deployment safety case, for example, as the prior probabilities (conditional on the operating
context) associated with the threat events. We can reflect environment drift via the posterior distributions of the
corresponding event probabilities updated by operational safety metrics associated with the respective events (see
Section 4.2, and Example 4). We additionally distinguish runtime risk assessment [1], from the update and revision
of operational risk as described in this paper: the former occurs during the shorter time span of a mission (e.g., during
a taxi operation), whereas the latter occurs over longer time intervals, between missions, and through the lifecycle of
the system (e.g., over multiple taxiing operations, possibly involving an aircraft fleet).

The numerical examples (Section 4.4) have described a scenario-specific application of our approach, where the
event probabilities and barrier integrities are conditional on the operating context. For a system-level characterization
of how operational risk changes, we must consider the marginal probabilities and integrities in the overall safety
architecture that composes different risk scenarios. However, we have not considered it in this paper, and it is one
avenue for future work.

To further develop our proposed dynamic assurance framework we aim to explore how by thresholding, ranking,
and comparing RR under changes made to individual mitigations or their combinations, we may infer: (i) which
mitigations may be optimized for system performance whilst maintaining safety (possibly necessitating a change to
the safety architecture itself); and, in turn, (ii) which system and safety case changes may be necessary. Some changes
may be automated while will induce fasks requiring manual attention [5]. Additionally, we aim to define a tool-
supported methodology on top of the main components of the framework. This will involve defining and formalizing
the methods and procedures to decompose and allocate safety targets, derive safety indicators, and close the safety
assurance loop, i.e., maintain consistency of the arguments with the SMB) through targeted changes to the system and
its safety case.

Observations of system operations constitute one specific form of evidence that we can use to reason about system
safety. We seek to systematize this through a notion of evidence requirement that will also cover static data. We
are also extending the metrics expression language to express trends, although work remains to integrate it into our

10

methodology and to relate it to the concept of safety objective. A need to update the SMB, e.g., modify indicators and
possibly their thresholds, accompanies operational safety measurement. We aim to better understand the principles
that underlie those modifications and, subsequently, implement the corresponding tool features. However, practically
deploying this framework will necessitate harmonizing with existing safety management system (SMS) [10] infrastruc-
ture, whilst carefully considering the roles of different stakeholders in safety performance monitoring, measurement,
and assurance.

References

[1] Asaadi, E., Denney, E., Menzies, J., Pai, G., Petroff, D.: Dynamic Assurance Cases: A Pathway to Trusted
Autonomy. IEEE Computer 53(12), 35-46 (2020). https://doi.org/10.1109/MC.2020.3022030

[2] Basili, V., Caldiera, G., Rombach, D.: Goal Question Metric Paradigm, pp. 528-532. Encyclopedia of Software
Engineering, John Wiley & Sons, Inc., 2nd edn. (1994)

[3] Busch, A.C.: Methodology for Establishing a Target Level of Safety. Technical Report DOT/FAA/CT-TN85/36,
US DOT, FAA Technical Center (Aug 1985)

[4] Calinescu, R., Weyns, D., Gerasimou, S., Iftikhar, M.U., Habli, 1., Kelly, T.: Engineering Trustworthy Self-
Adaptive Software with Dynamic Assurance Cases. IEEE Transactions on Software Engineering 44(11), 1039—
1069 (Nov 2018)

[5] Denney, E., Habli, L., Pai, G.: Dynamic Safety Cases for Through-life Safety Assurance. In: 37th Intl. Conference
on Software Engineering - Vol. 2, pp. 587-590. (May 2015). https://doi.org/10.1109/ICSE.2015.199

[6] Denney, E., Johnson, M., Pai, G.: Towards a Rigorous Basis for Specific Operations Risk Assessment of UAS.
In: 37th IEEE/AIAA Digital Avionics Systems Conference (2018). https://doi.org/10.1109/DASC.2018.8569475

[7] Denney, E., Pai, G.: Tool Support for Assurance Case Development. Journal of Automated Software Engineering
25(3), pp. 435499 (Sep 2018). https://doi.org/10.1007/s10515-017-0230-5

[8] Denney, E., Pai, G., Whiteside, I.: The Role of Safety Architectures in Aviation Safety Cases. Reliability Engi-
neering and System Safety 191 (2019). https://doi.org/10.1016/j.ress.2019.106502

[9] Edwards, M., Mackay, J.: Determining Required Surveillance Performance for Unmanned Aircraft Sense and
Avoid. In: 17th ATAA Aviation Technology, Integration, and Operations (ATIO) Conference. AIAA 2017-4385
(Jun 2017)

[10] FAA Air Traffic Organization: Safety Management System Manual (Dec 2022)
[11] US Dept. of Transportation, FAA: Safety Risk Management Policy. Order 8040.4C (2023)

[12] Hawkins, R., Conmy, P. R.: Identifying Run-time Monitoring Requirements for Autonomous Systems through
the Analysis of Safety Arguments. In: 42nd Intl. Conference on Computer Safety, Reliability, and Security
(SAFECOMP), LNCS 14181 (Sep 2023)

[13] International Civil Aviation Organization (ICAO): Safety Management Manual (Doc 9859), 4 edn. (2018)

[14] Kaakai, F., Adibhatla, S., Pai, G., Escorihuela, E.: Data-centric Operational Design Domain Characterization for
Machine Learning-based Aeronautical Products. In: 42nd Intl. Conference on Computer Safety, Reliability, and
Security (SAFECOMP), LNCS 14181 (Sep 2023)

[15] Koopman, P.: How Safe is Safe Enough? Measuring and Predicting Autonomous Vehicle Safety. 1st edn. (2022)

[16] Ladkin, P.: Evaluating Software Execution as a Bernoulli Process. Safety-Critical Systems eJournal 1(2) (July
2022)

[17] Reich, J., Trapp, M.: SINADRA: Towards a Framework for Assurable Situation-aware Dynamic Risk Assess-
ment of Autonomous Vehicles. In: 16th European Dependable Computing Conference (EDCC). pp. 47-50 (Sep
2020). https://doi.org/10.1109/EDCC51268.2020.00017

11

[18] Schleiss, P., Carella, F., Kurzidem, I.. Towards continuous safety assurance for autonomous sys-
tems. In: 6th Intl. Conference on System Reliability and Safety (ICSRS 2022). pp. 457-462 (2022).
https://doi.org/10.1109/ICSRS56243.2022.10067323

[19] Strigini, L.: Trustworthy Quantitative Arguments for the Safety of AVs: Challenges and some Modest Proposals.
In: 1st IFIP Workshop on Intelligent Vehicle Dependability and Security IVDS) (Jan 2021)

[20] The Assurance Case Working Group (ACWG): Goal Structuring Notation Community Standard Version 3.
SCSC-141C (May 2021) https://scsc.uk/rl141C:1

[21] Trapp, M., Weiss, G.: Towards Dynamic Safety Management for Autonomous Systems. In: 27th Safety-Critical
Systems Symposium (SSS). pp. 193-204. (Feb 2019)

12

https://scsc.uk/r141C:1

	Introduction
	Related Work
	Contributions and Paper Organization

	Conceptual Background
	Safety Case Metamodel
	Safety Measurement

	Motivating Example
	Baseline Safety
	Practical Drift

	Framework
	Defining Safety Metrics and Indicators
	Updating and Revising the Operational Risk Assessment
	Characterizing the Change to Safety Risk
	Numerical Examples

	Towards Formal Foundations
	Concluding Remarks

