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Abstract—The prediction quality of machine learnt models and
the functionality they ultimately enable (e.g., object detection),
is typically evaluated using a variety of quantitative metrics that
are specified in the associated model performance requirements.
When integrating such models into aeronautical applications,
a top-down safety assessment process must influence both the
model performance metrics selected, and their acceptable range
of values. Often, however, the relationship of system safety
objectives to model performance requirements and the associated
metrics is unclear. Using an example of an aircraft emergency
braking system containing a machine learnt component (MLC)
responsible for object detection and alerting, this paper first
describes a simple abstraction of the required MLC behavior.
Then, based on that abstraction, an initial method is given to
derive the minimum safety-related performance requirements,
the associated metrics, and their targets for the both MLC and
its underlying deep neural network, such that they meet the
quantitative safety objectives obtained from the safety assessment
process. We give rationale as to why the proposed method should
be considered valid, also clarifying the assumptions made, the
constraints on applicability, and the implications for verification.

Index Terms—Machine learning, Model performance, Perfor-
mance requirements, Quantitative metrics, Safety performance,
System safety objectives

I. INTRODUCTION

Amongst the core outcomes of the safety assessment process
for civil aircraft [1] are quantitative safety objectives (QSOs).
They represent an acceptable upper limit on the average prob-
ability of events that result in adverse safety effects. As part
of aircraft system development, QSOs are allocated across the
system hierarchy, from aircraft functions to the implementing
items. In conventional systems not including machine learning
(ML), the decomposition, allocation, refinement, and eventual
verification of QSOs has only been applied to hardware items.

QSOs are not considered for software and the programmable
aspects of hardware, in part, because the prevailing assurance
guidelines [2], [3] intentionally avoid concepts of quantita-
tive reliability or failure probability. Instead the focus is on
applying process rigor to identify and correct development
errors. The goal is providing assurance to an adequate level of
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confidence that the implementations of software or hardware
designs are correct. The extent of the necessary development
process rigor, given in terms of development assurance levels
(DALs), is proportional to the severity of the undesired effects
identified from the safety assessment process.

Although QSOs and DALs each address a different type of
concern, they are associated through the severity of the effects
of function (or item) failures. In particular, functions (or items)
whose failures lead to higher severity effects are assigned a
proportionally higher DAL and lower QSO, than those causing
lower severity effects. Moreover, safety verification expects to
confirm that those functions or items have been developed
to the assigned level of rigor, and also that, for the related
hardware, the QSOs have been attained.

When integrating machine learning (ML)-based functional-
ity into aircraft systems, it is anticipated that in addition to
the assignment of DALSs, allocating QSOs to machine learnt
components (MLCs), and relating the corresponding targets
to the associated performance requirements and metrics will
be mandated.! Performance metrics for MLCs can be seen in
part as quantitative criteria giving a long-term characterization
(i.e., over the duration of their intended use) of their behavior
relative to their requirements. An MLC that fails to meet its
requirements may lead to functional failures and thereby to
system-level safety effects. As such, relating the performance
metrics of an MLC to higher-level safety objectives facilitates
capturing how it contributes to both safety and the overall
functional intent.

Currently available guidance for integrating ML into aero-
nautical systems, e.g., [4], does not clarify how valid MLC
performance requirements should follow from an allocated
QSO. Nor does it clarify how safety-related metrics may be
selected, which metrics may be invoked in those requirements,
or what range of values may be admissible for those metrics.
Although those questions have been previously identified and
investigated in other safety-critical domains (see Section VII
for related work), so far as we are aware they have not yet
been adequately answered. To that end, we adapt the aircraft
emergency braking system (AEBS) from prior literature [5]
as an illustrative example (described in Section III), to make
the following contributions in this paper: first, we describe

'Some regulatory publications expected to inform aviation rulemaking have
proposed to relate QSOs to MLC and MLM performance metrics [4].



an initial method to translate QSOs obtained from a safety
assessment into the safety-related performance requirements
and associated metrics for an MLC (Section IV). Second, we
develop an abstraction of the required behavior (Section V)
that: (i) traces to and meets the allocated QSO, and (ii) is
suitable for determining safety-related performance metrics
and parameters such as the required confirmation threshold
for detecting an object of interest in an image sequence, a
tolerable miss ratio for not detecting that object, and the per
image probability of non detection—a metric directly linked
to the generalization capability of the machine learnt model.
We supply the rationale to substantiate why our method and
the resulting MLC performance requirements should be con-
sidered to be valid in Section VI. This section also discusses
the additional considerations that result from the method, the
constraints that apply, and the implications for verification.

II. CONCEPTUAL BACKGROUND
A. Quantitative Safety Objectives (QSOs)

As mentioned earlier in Section I, a QSO is an acceptable
upper limit on the average per flight probability of an adverse
event, usually normalized by exposure (itself expressed as a
duration or a count). For systems and equipment installed on
aircraft, QSOs may also be viewed as targets for reliability or,
equivalently, probability of (the effects of) so-called failure
conditions: aircraft-level conditions that can directly or indi-
rectly affect an aircraft and its occupants, including the crew,
caused by one or more system failures?, in combination with
operational or environmental conditions encountered during
various flight phases.

QSOs are defined and selected such that they are inversely
proportional to the severity of the credible worst-case safety
effects identified in a functional hazard assessment (FHA). The
acceptable range of values for a QSO relative to effect severity
is codified in civil aviation regulatory guidance documents. For
example, a failure condition of MINOR severity, characterized
as resulting in “a slight reduction of functional capabilities
or safety margins of the airplane, physical discomfort for
passengers, or a slight increase in workload for the crew”,
is associated with an allowable quantitative probability, i.e., a
QSO0, of 10~3 per flight hour (pfh) [6].

The decomposition and allocation of a QSO in aircraft
system development follows the preliminary system safety
assessment (PSSA) process [1]. That process contributes to
a systematic evaluation of a system architecture to determine
how failures of the architectural components lead to the failure
conditions identified in the higher level FHA. The PSSA
can employ different analysis techniques, such as fault tree
analysis (FTA), and Markov models.

A quantitative, combinatorial FTA serves to validate the fail-
ure probability (or reliability) budgets established for architec-

2Failures include both loss of function and malfunction, whose respective
causes encompass but are not limited to one or more component failures
and their combinations, common causes, unintended or undesired emergent
system interactions, and development errors (including errors in requirements)
and their respective effects.

tural components, by confirming that they lead to a probability
of an identified failure condition that is no worse than the
associated QSO. Such a validation is a bottom-up assessment.
A top-down analysis may also be performed to decompose and
allocate the QSO to the architectural components by leveraging
the fault tree logic and various heuristics.

B. Machine Learnt Models, Components, and Characteristics

1) Machine Learnt Model (MLM): An MLM is a mathe-
matical formula or mapping rule, f : X — Y, constructed by
applying learning algorithms to (training) data, which com-
prises examples of the (patterns of) behavior to be learnt [7].
Here, X is the input space (or domain, or feature space), and
Y is the output space (or codomain, or space of responses).
A deep neural network (DNN) is one possible such MLM.
A description of X as captured in the MLM requirements is
known as an operational design domain (ODD) [7].

2) Machine Learnt Component (MLC): An MLC groups
hardware and software implementations of one or more MLMs
and, when appropriate, the supporting functionality (such as
pre- and post-processing) necessary for their execution. An
MLC is treated as a single entity allocated a DAL and a QSO
from a system standpoint.

3) Deterministic Behavior: A trained MLM that does not
continue to learn in use is static. That is, once f has been
constructed, it does not change given some future input j € X.
As such, f is deterministic in the sense that, given a specific
input (vector) x € X for which the model produces a response
(vector) y € Y, any future input j € X that is identical to the
input x will always produce the same response y.

4) Systematic Behavior and Correctness: A suitable MLM
is one that generalizes from the training data inputs to unseen
inputs from X, producing the required responses from Y.

The response y for the input x is correct when it is the
required response, otherwise it is incorrect. More generally,
because f is deterministic, the responses of a static MLM to
its inputs are systematic in being correct or incorrect. That
is, the input x supplied at any future time point will always
produce the same correct or incorrect response y. Moreover, if
g : X — Y is the true (but usually unknown) function relating
the input and output spaces, then f is correct when for all
x € X, f(z) = g(x). That is, f produces the correct response
for any input from X, and is said to generalize perfectly.

However, uncertainties in various aspects of the ML process,
e.g., epistemic uncertainty due to insufficient knowledge about
the nature of ¢ and, therefore, a suitable form for f, as
well as aleatoric uncertainty when sampling from X, together
sampling limitations, can often result in an f that may not
always produce the correct responses for some subset of pre-
viously unseen inputs from X. Such imperfect generalization
can be characterized in terms of the generalization error, a
(performance) metric of how MLM responses in use differ
or deviate from the required responses for previously unseen
inputs. The generalization error cannot be exactly calculated,
but instead, theoretically, it can be probabilistically bounded



to give a probably approximately correct MLM [8], especially
in the context of supervised learning (also see Section V-C).

5) Failure Probability and Insufficient Performance: The
inputs from X may be governed in general by some (possibly
unknown) generating process. The individual inputs can then
be described in terms of (empirical estimates of) their limiting
relative frequencies and, in turn, as a probability function
Prx(x). In fact, a careful characterization of Prx(x) is a
key requirement when defining the ODD [9].

Given the preceding discussion (Sections II-B3 and 1I-B4),
and assuming that f is not a constant function (i.e., f produces
the same response regardless of its inputs), when the inputs
occur according to Prx (x), the relative frequencies of the re-
sponses can also be established. In other words, the responses
can be described through a probability function, Pry (y).

Now, for a discrete input x € X occurring with a probability
Prx(x), let y € Y be the correct response, and let 1;(x)
be an indicator function defined such that 1;(x) = 1 when
f returns an incorrect response (i.e., f(x) # y), and is 0
otherwise. Then, treating all incorrect responses as failures, we
can define a probability of failure of an MLM as in (1), i.e., the
limiting relative frequency of incorrect responses for an infinite
sequence of random discrete? inputs x that occur according to
the input space probability mass function Prx (x):

def
Pr(f(x) #y) € Y 1;(x)Prx(x) (1)
xeX
Later (Section V-C), we describe how such long-term failure
behavior characterizes insufficient performance of an MLM.

C. Performance Metrics and Requirements

Once an MLM has been constructed, quantitative metrics
are typically used to evaluate its prediction quality, i.e., how
well its responses to inputs not previously seen during its
training and development, correspond to the functional intent
and the required responses. Examples of some commonly
used metrics include: (for classification problems) precision,
recall, and FI score, as well as (for regression problems) mean
absolute error, and mean squared error.

When the type of the response of an MLM and its containing
MLC are the same, then the same set of metrics may be used
for each. For instance, an MLC classifying its inputs using
an ensemble of classifiers can be evaluated using the same
classification performance metrics as those used for evaluating
the individual MLMs in the ensemble. However, the specific
values of those metrics for each MLM in the ensemble may
differ from the values of the same metrics when applied to the
containing MLC.

For conventional aircraft systems not integrating ML, per-
formance requirements describe specific attributes of functions
or systems, such as the type of performance, accuracy, range,
fidelity, resolution, and timing behavior [10].

In addition to the above, MLC and MLM performance re-
quirements express the respective desired long-term behaviors,

3For continuous values, an integration and a probability density function,
respectively, replace the summation and the probability mass function.
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Fig. 1: Aircraft Emergency Braking System (AEBS) and its
machine learnt component (MLC), adapted from [5].

for which a probabilistic formulation may often be appropri-
ate. More generally, they invoke the associated performance
metrics and specify their admissible values.

Safety-related performance requirements for an MLC and
MLM are those traceable to QSOs, or to higher-level safety
requirements, whose violation causes or contributes to a failure
condition of the containing (system or aircraft-level) function.
Non safety-related performance requirements are, equivalently,
those whose violation does not cause or contribute to failure
conditions. This paper focuses primarily on the former.

III. ILLUSTRATIVE EXAMPLE

To explain the derivation of safety-related MLC and MLM
performance requirements and metrics from an allocated QSO,
we consider an illustrative example as shown in Fig. 1—an
aircraft emergency braking system (AEBS) adapted from the
prior literature [5] as follows: unlike in Fig. 1, the architecture
in [5] does not include pre-processing. Also, it treats the post-
processing as a part of the emergency braking controller (EBC)
functionality, and (implicitly) equates the machine learnt sign
detector (MLSD) with the MLC.

This section summarizes only those aspects of the AEBS
and its safety assessment that are a necessary background for
this paper. For more and other details on the AEBS, we refer
the reader to [5].

A. System Description

1) Functions: The main AEBS function of relevance for
this paper is generating an alert to warn the flight crew (e.g.,
via cockpit annunciation) of the proximity of the aircraft to
restricted areas of an airport, which are marked by No Entry
runway (NER) signs. A sub-function of this alerting function
allocated to the MLC is NER sign detection and classification.
Note that the emergency braking function of the AEBS is not in
scope for this paper and, as such, affects the safety assessment
described later (see Sections III-B, and IV-B)



2) Machine Learnt Component: As shown in Fig. 1, The
MLC comprises a machine learnt sign detector (MLSD) and
its related pre- and post-processing functionality. The MLSD
is an implementation of an MLM on target hardware. Here, the
MLM is a deep convolutional neural network trained to detect
and classify NER signs using supervised, offline learning.

The MLSD inputs (data flow 2) are sequences of images
produced after pre-processing the video signal (data flow 1)
from an aircraft mounted, forward facing video camera. Video
signal pre-processing represents the functionality necessary
for the runtime consistency of the types of inputs that the
MLSD receives in use, and those on which it is trained offline.
The MLSD responses are a sequence of per image detections
or non-detections (data flow 3), corresponding to the input
image sequence. Those responses undergo post-processing, a
key aspect of which is to confirm or reject confirmation of the
detection of an NER sign in a detection vector, i.e., a fixed size
sub-sequence created from the sequence of MLSD responses.
The detection vector size here is n = 12, based on [5].

The confirmation of NER sign detection from the post-
processing (data flow 4) is then used by the emergency braking
controller (EBC) to send a restricted areas proximity (RAP)
alert (data flow 5) to the flight warning system (FWS), or
an emergency braking activation signal (data flow 6) to the
aircraft braking system. As previously mentioned, we do not
consider the latter for the rest of this paper.

It is worth noting that the post-processing as shown in
Fig. 1 is closely coupled to the NER sign detection sub-
function. Hence, it is an integral and inseparable element of
the MLC. However, in [5] this post-processing is treated as
an element of the EBC and referred to as tracking, with its
failure considered to be the failure to track NER signs (also see
Section III-B). Although, it is in fact detection confirmation,
the term we will use henceforth, rather than true tracking.
The detection confirmation logic uses a confirmation threshold
(i.e., a required number of true per image detections in the
detection vector) to confirm that an NER sign has indeed been
detected when one exists. This confirmation does not require
a specific order of detections in the detection vector.

B. Safety Assessment

The safety effects for which the AEBS is a preventative
safety barrier are: (i) an inadvertent incursion into a prohibited
area, such as a taxiway meant to be used in a given direction;
and (ii) an excursion from an aircraft movement surface onto
one not meant for aircraft, such as an intersecting roadway.

As mentioned earlier (Section III-A), in this paper the scope
of the intended use of the AEBS is mainly pilot assistance,
even though it includes the capacity for automatic intervention
when there is a RAP violation. Thus, the primary safety barrier
is still piloting procedures in the runway environment, i.e., the
pilot visually acquires NER signs whilst taxiing, and deceler-
ates upon approaching a restricted area. As such, the AEBS
serves as an additional protection layer, e.g., by providing a
RAP alert that will warn the crew if they are distracted. This

consideration influences the criticality assigned to the failure
conditions of the AEBS function.

An FHA and PSSA for the AEBS have been given previ-
ously in [5], which we summarize next, to contextualize the
rest of the paper. Specifically, the AEBS functional failure
conditions of interest are LossProxAlrt: Loss of RAP alert
(crew unaware), and ProxAlertMalfn: Malfunction of RAP
alert, each of which are assigned a MINOR severity and a
QSO of 1073 pfh, as per the FHA in [5]. Additionally, the
PSSA invokes a quantitative FTA [5] to relate LossProxAlrt
to so-called ML performance failures, in particular a failure
of the EBC to track NER signs due to MLC false negatives
allocating to it a QSO of 4 x 10™* per flight. That target is
then halved to account for the assumptions of encountering
an average of 2 NER signs per flight, and an average flight
duration of 4h, resulting in an effective QSO of 2 x 10~ per
flight for the MLC.

IV. METHODOLOGY
A. Assumptions

To simplify the illustration of the proposed method, we as-
sume the following: (1) the camera in the AEBS is functional,
operating normally, calibrated, stably mounted, and faithfully
captures and transmits the environmental scene as a sequence
of images; (2) there are no transmission errors in the data
flow from the video camera through the pre-processing, the
MLSD, the post-processing, and the EBC, to the FWS, so
that the data transmitted are uncorrupted and have the correct
temporal order as captured by the video camera; and (3) pre-
processing does not introduce undesired information into the
image stream, e.g., adversarial transformations.

B. Revised PSSA and QSO Allocation

The adaptation of the AEBS (see Section II-B2, and Fig. 1)
from the original architecture in [5] induces modifications to
the previously mentioned safety assessment. Additionally we
identify some corrections to the FTA in [5].

Fig. 2 shows a revised fault tree for the ProxAlertMalfn
failure condition reflecting the following combination of func-
tional failures: first, ProxAlertMalfn can be specialized as
two mutually exclusive states: FPProxAlrt: Inadvertent RAP
alert (alert issued when not required), and FNProxAlrt:
Missing RAP alert (alert not issued when required). In [5],
only the former has been identified in the FHA as a failure
condition, whereas the latter has been incorrectly considered as
equivalent to LossProxAlrt in the FTA. Indeed, FNProxAlrt
can occur when the AEBS and FWS are both operational and
available.

Next, from a functional flow standpoint, ProxAlertMalfn
results from a combination of: (i) FWSIndMalfn: Malfunction
of the FWS indication, (ii) errors in the FWS alerting logic, or
(iii) EBCMalfn: EBC malfunction. EBCMalfn can itself result
from errors in the alerting activation decision logic in the EBC,
or from the input to the EBC (data flow 4 in Fig. 1), reflected as
SgnDetMalfn: MLC malfunction of NER sign detection. That,
in turn, manifests as one of two mutually exclusive states®, i.e.,
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SgnDetF1lsAlrm: False confirmation of an NER sign (a false
positive), and SgnDetFlr: Failure to confirm detection of the
NER sign (a false negative).

Per the recommended practice [1], the fault tree in Fig. 2
excludes events corresponding to errors in conventional soft-
ware, i.e., logic errors in the EBC and the FWS. Additionally,
it includes HWRanFlr: Hardware random failure events, to
aggregate and abstract other hardware failures that can also
lead to the top event. We also include SgnDetMalfn in the
fault tree, noting that this basic event represents insufficient
MLC performance rather than a hardware random failure. This
is a departure from the conventional practice, justified by the
discussion in Section II-B5.

For convenience and comparison to the prior literature, we
retain the failure probability budgets and QSOs from [5] for
both the top event, ProxAlertMalfn, and the basic event
of the malfunction of the MLC, SgnDetMalfn, as shown in
Fig. 2. It can be easily confirmed that the probability budgets
as shown are correct with respect to the fault tree logic.

Thus, as indicated in Section III-B, the effective QSO for
SgnDetMalfn is 2 x 10™% per taxi operation. Also note that
changes to these budgets do not affect the discussion that
follows on the proposed method for deriving performance
requirements; however the concrete requirements will indeed
change.

C. Scope of MLC Behavior

Again, for convenience, ready comparison to [5], and due
to space constraints, in what follows, we mainly focus on the
situations or scenarios where an NER sign is actually present.

As such, the failure condition ProxAlertMalfn effectively
presents as the state FNProxAlrt (i.e., RAP alert not issued

4In general, sign detection malfunctions are false positives or false classi-
fications where, for example, either one type of runway sign is misclassified
as a different type of sign, or as not a sign (i.e., a false negative). However,
in this example, since the MLM is a binary classifier trained specifically for
NER sign detection, the MLC produces a Boolean confirmation response.

when required), and, likewise, the basic event SgnDetMalfn
is the state SgnDetF1r (i.e., a failure of the MLC to confirm
detection of the NER sign). Together with the earlier assump-
tions (Section IV-A), the scope of MLC behavior and the
subsequent analysis for developing safety-related performance
requirements for this paper is constrained as follows:

o When the operating environment contains an NER sign,
then the responses of the MLSD (see Fig. 1) to an input
image containing that NER sign are either: (i) a hit,
i.e., a correct (true positive) detection of the NER sign
(including correct bounding boxes and class labels), or
(ii) a miss, i.e., all MLSD responses that are not a hit.
Effectively, a miss is only a false negative, since false
positives or false classifications cannot be produced in
scenarios where an NER sign is actually present in the
environment.

« Depending on the number of hits and misses determining
the confirmation threshold in the detection vector, the
detection confirmation logic either confirms an NER sign
detection, or it does not confirm an NER sign detection.

o Thus, in all taxiing scenarios where an NER sign is
present in the operating environment, when the post-
processing does not confirm a sign detection, it represents
the occurrence of an MLC malfunction in the state
SgnDetF1r, with an effective QSO of 2 x 10~ per flight
(taxi operation).

D. From Safety Objectives to Safety-related Performance

The QSO allocated to SgnDetMalfn is the starting point
for deriving the MLC performance requirements and metrics
in the AEBS. As clarified above, that event is based on the
per image detections received from the MLSD, in the detection
vector, during post-processing.

Specifically, according to the detection confirmation logic,
a non-detection occurs when the detection vector contains
fewer per image hits than the minimum permissible number
of hits required to confirm detection. In other words, when an
NER sign is present, to avoid SgnDetFlr: (i) the detection
vector must contain at least as many hits as the confirmation
threshold; and (ii) the confirmation threshold should be defined
such that the probability of not confirming a detection must
be lower than the QSO allocated to SgnDetFlr. Note that a
related concept of rejection threshold can be considered that
results in not confirming that an NER sign has been detected.
Thus, the confirmation (or rejection) threshold is a parameter
relevant for safety-related performance.

Additionally, when an NER sign is present in the operat-
ing environment and the detection vector contains more per
image misses than hits, it suggests that the MLSD has a
larger than required per image probability of non-detection
(equivalently, the per image miss probability) leading to the
rejection threshold being satisfied. Thus, the per image miss
probability is a safety-related model performance metric, and
to avoid SgnDetF1r it should be defined such that the rejec-
tion threshold is not met (or, equivalently, the confirmation
threshold is met).
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V. SAFETY-RELATED PERFORMANCE REQUIREMENTS

We now formalize the preceding intuition as an abstraction
of the required behavior (Fig. 3), from which we formulate
safety-related performance metrics and requirements for the
MLC and its underlying MLM. The focus is on specifying
requirements rather than verifying that the requirements have
been met.

A. Abstraction of Required Behavior

Let T'= {0, 1} be a Boolean random variable (RV) for the
event of an MLC response, the output of the post-processing
detection confirmation logic. Those responses are either a con-
firmation of detection of an NER sign, i.e., the event (7' = 1),
or the malfunction SgnDetMalfn, i.e., the event (T" = 0). As
clarified in Sections IV-B and IV-C, SgnDetMalfn occurs as
the state SgnDetF1lr, i.e., a failure to confirm detection of the
NER sign. Hence, SgnDetFlr & (T'=0).

Let the QSO allocated to SgnDetMalfn be ¢. Thus,
a concrete safety-related MLC performance requirement for
NER sign detection, based on the allocation from the PSSA
process (specifically, the FTA in Fig. 2), is:

Requirement 1 (MLC Safety Performance). The average
probability of non-detection of an NER sign per taxi operation
shall be less than gy, i.e., Pr(T =0) < gy < 2 x 1074

We can specify an analogous requirement (not given here
due to space constraints), on the MLC functional performance
as Pr(T"=1) > (1 — g¢y) + 0.9998.

From Fig. 3, the detection vector, d = {dy,ds,...,d,},
of size n, is a finite sequence of responses produced by the
MLSD, f, to a sequence of input images {i;}7_,. Here, d; €
{1, 0} is the realization of D, a Boolean RV representing the
event of the j™ response of f to the j™ input image i;. If
(Dj =1), (D;j = 0) represent a hit and a miss, respectively,
then whenever there is a hit in d, d; = 1, otherwise d; = 0.

Let the confirmation and rejection thresholds be i, and
Ymin, respectively. Also let H, M be the discrete RVs for the
number of hits and misses, respectively, whose realizations
are h,m € {0,1,2,...,n}. As clarified earlier (Section II-B2
and IV-D), the post-processing confirms that an NER sign
has been detected when h > z,,;,. Moreover, since hits do
not need to occur in a specific order in d for a detection
confirmation, the corresponding logic is a K-of-M gate, where
K = zmin and M = n.

We can now readily confirm that % is the sum of the individ-
ual detections in d, and formalize the detection confirmation
logic as: Vd, (h = >27_, dj) > min = (T = 1). We will
concretize this as a requirement next, in Section V-B.

Since d contains a combination of hits and misses, we have
n = h+ m, and when h = Zp;,, then m = (n — Tyin)



represents the maximum permissible per image misses in
d that still results in a detection confirmation. Hence, an
additional miss will result in a failure to confirm detection,
so that Ymin = (’/l - xmin) + 1.

Now, assume that a hit or miss response of f is the result
of a Bernoulli trial, and that each D; € d is independent
and identically distributed (IID). Then, let the per image hit
probability, Pr(D; = 1) = pui, so that the per image miss
probability, Pr(D; = 0) = puiss = 1 — Phis-

We have that d is a realization of a Bernoulli process, i.e.,
a sequence formed by the result of n Bernoulli trials in which
there are h events such that (D; = 1) and m events such
that (D; = 0). Since the sum of the RVs of a Bernoulli
process is another RV that follows a binomial distribution,
H ~ Binomial(n, pui;). Hence, the probability of confirming
an NER sign detection, Pr(T = 1), is

Pr(H > Zmin) = Z (?)pﬁit(l —pi)" )

Then, the probability of failure to confirm detection of the

NER sign, Pr(T' =0), is 1 — Pr(T =1).

B. Concrete MLC and MLSD Performance Requirements

To establish concrete requirements for phit, Prmisss Tmin and
Ymin, W solve (2) to satisfy Req. 1, noting that n = 12 (see
Section III-A2). Fig. 4 shows a graphical solution, varying
Pr(T = 0) on a logarithmic scale, for the rejection thresholds
12 > ymin > m € [4,11], and a range of pumiss = [0,0.5].

The dotted horizontal line in Fig. 4 is the QSO for failing to
confirm NER sign detection. As shown, the QSO is not met in
region A, but is satisfied in region in B for rejection thresholds
Ymin = 12 > m > 5. The region C, between the two vertical
dotted lines, is a sub-region of B, giving a candidate range for
Pmiss =~ [0.087,0.177] and ymin = [6, 8], respectively. Then,
together with the previous discussion (Section V-A), we obtain
a range for pp;; = [0.823,0.913] and zpm;n = [5, 7).

From Fig. 4, we have p ;.. ~ 0.124, where the QSO is
exactly ¢, for xmi, = 6. We can now select, say, Ymin > 6,
and ppiss = 0.1, so that x,;,, = 6 and ppir = 0.9. Then we
can specify additional concrete performance requirements for
the MLC and its elements, namely the MLSD, and its post-
processing.

First, the concrete requirement based on the formalization
of the detection confirmation logic is:

Requirement 2 (MLC Detection Confirmation). The MLC
post-processing shall confirm an NER sign detection whenever
there are at least 6 detections in any detection vector, i.e.,

Vd,xmin >6= (T = 1)

Then, similar to Req. 1, the required MLSD performance
in terms of the respective miss probability is:

Requirement 3 (MLSD Safety Performance). The MLSD
shall have a per image probability of non-detection of an NER
sign of at most 0.1, i.e., ¥d; € d;Pr(D; = 0) = pmiss < 0.1

SSection VI-B justifies these assumptions and discusses their implications.

As earlier, we can give an analogous requirement for MLSD
functional performance (again, not given here due to space
constraints) as: Vd; € d;Pr(D; = 1) = pp;, > 0.9

We additionally specify MLSD safety performance in terms
of a tolerable miss ratio metric, my, i.e., the allowable pro-
portion of missed detections per detection vector, which we
compute as: My = (m+0m)/n & 0.187, where (i, = NPmiss
is the mean, and 02, = NMPmiss(l — Pmiss) is the variance,
respectively, of M ~ Binomial(n, pmiss). Hence:

Requirement 4 (MLC Safety Performance — Miss Ratio). The
tolerable miss ratio for the MLSD shall not exceed 0.187, i.e.,
my < 0.187

C. Generalization Performance

The generalization error R, (f) for an MLM f, also known
as the population risk, is defined as the expected value of
a suitable loss function, £ (f(x),y), evaluated over the joint
distribution Prx y (z,y) of the input and output spaces for f:

Rp(f) déf E(E’Q)NPTX,YE (f(X), y) 3)

For binary classification, a commonly used loss function is
the so-called zero-one loss, defined as

e 1 when f(x
(e y) & 1) = { TX#Y 4
0 otherwise
Substituting (4) into (3), Ry(f) = E(s,y)~pry, 17(z). Then,

from the definition of expectation, a rearrangement of terms,
marginalization over y, and Eq. (1), respectively, R,(f) is:

Zlf PI‘XY .Z‘ y Zlf (ZPFX,Y($79)>
= Zlf Pr(f(x) #y) ®)

Thus, the generalization error is exactly the failure probabil-
ity under the zero-one loss. If x is an input image containing
an NER sign, i;, then as clarified in Section V-A, the required
MLSD response y is d; = 1 in d, i.e., (D; = 1); hence, (5)
is equivalent to Pr(D; = 0), therefore R,(f) = Pl s

However, neither the joint nor the input distribution may be
exactly known. Thus, although we can require R, to be pl_ ;...
its true value cannot be determined. Instead, in practice, R, (f )
is estimated using the empirical test risk metric, Re(f, Diest)s
under the requirement that the test data Dy.s (as well as the
training data) used to learn f are sampled from a represen-
tative joint distribution. For the zero-one loss the empirical
risk measured on dataset D is, in fact, the false classification
rate performance metric [8]. Recalling Section IV-C, the false
classification rate for f is the false negative rate, FNR(f, D).
Thus we refine Req. 3 as:

PI‘X

Requirement 5 (MLSD Performance — False Negative Rate
in Test). The MLSD shall have a false negative rate in test of
at most 0.1, i.e., FNR(f, Diest) < Pmiss < 0.1



Additionally, the true positive rate performance metric (also
known as sensitivity or recall), TPR(f,D), measured on a
dataset D, is the dual of the false negative rate. Thus,

Requirement 6 (MLSD Performance — Recall in Test).
The MLSD shall have a recall in test of at least 0.9, i.e.,
TPR(f; Dtest) > (1 _pmiss) <~ 0.9

The empirical training risk, Re(f, Dirain), is an analogous
metric to the empirical test risk. The difference between the
two gives an estimate of the generalization gap, which is,
itself, the difference between the generalization error and
the empirical training risk, i.e., R,(f) — Re(f, Dirain) =~
Re(fa Dtest) - Re(f> Dtrain)'

We can now give a probabilistic upper bound ¢ to the gener-
alization gap (or its estimate) using Hoeffding’s inequality and
the union bound theorems [8]. Thus, for data D comprising n
samples and a tolerance e in the generalization gap®,

Pr(|R,(f) — Ro(f, D) >€) <0 = 9¢—2n€¢” 6)

By rearranging (6), then selecting the desired tolerance and
bound, the minimum number of independent samples required
to satisfy the bound is 7 > 1/2¢2 In(2/s).

For example, select: (i) 6 = 1 x 1073, proportional to the
order of magnitude of the QSO, and (ii) € = Sy(P} ;s — Priss )
where Sy is a margin of safety. The reasoning here is that a
tolerance greater than the difference in the generalization error
and the required false negative rate, (P! ;s — Pmiss)> results
in a failed detection confirmation. Thus, selecting Sy = 0.5,
and from Fig. 4, p, .. ~ 0.124 = € = 0.012, therefore
n > 26393 independent samples (drawn from a representative
distribution). Depending on whether this procedure is applied
to the generalization gap or to its estimate, we can upper bound
either of the two and derive the sample sizes of the training and
test datasets required at the chosen tolerance. Thus, additional
testing-related requirements can then be specified (again, not
given here due to space constraints).

VI. DISCUSSION
A. Rationale for Assurance of Validity

A robust validation of the proposed method and the conse-
quent performance requirements (Sections IV and V) requires
a careful research design, which is out of scope for this paper,
and an avenue for future work. Instead, this section provides
rationale to justify why the proposed method and the resulting
requirements are a valid step to relate system-level QSOs and
the performance requirements of machine learnt functionality.

1) Suitability of the System Architecture and QSOs: The
MLC and its organization in the AEBS (Fig. 1) represent a
single channel architecture. That is, a loss or malfunction of
any element of the channel compromises the entire channel.
Hence it is the weakest from the standpoint of both reliability
and safety. When decomposing and allocating the QSO to be

5Some of the available literature refers to € as accuracy, and § as confidence.
To avoid misinterpreting the meanings of those terms as used in the contexts
of aircraft certification, system safety, and machine learning, we refer to € as
the tolerance and to § as the (probabilistic) upper bound instead.

achieved by such an architecture to its elements (including an
MLC), the allocated QSOs are more conservative than they
would be for alternative architectures, e.g., with redundancy,
or diversity. In that sense, given the intended use and the safety
assessment (Section III), the chosen architecture and the QSO
for the MLC are the tolerable worst-case. Therefore they are
appropriate and sufficient as a starting point to formulate a
conservative set of MLC performance requirements.

2) Suitability of the Performance Requirements: We model
the probability of failure of the MLSD as the limiting relative
frequency of incorrect responses to random image inputs from
the input space, as given by Egs. (1), (3) — (5). As such, MLSD
failure behavior, as modeled, is equivalent to random failure.

Then, in the FTA for the AEBS (Fig. 2), we capture MLC
malfunction as the EBC malfunction basic event, computing its
failure probability as in Section V-A. This is analogous to the
result of a quantitative FTA for a K -of-M gate (also known as
a voting gate), whose basic events are each of the per image
responses of the MLSD in the detection vector. Here, a per
image non-detection, i.e., an incorrect response, is equivalent
to the random failure of the corresponding basic event with
a constant failure probability py,iss. Thus, the binomial model
for detection confirmation (Section V-A and Fig. 3) abstracts
MLC malfunction also as a random failure.

Now, as clarified in Sections II-B3 and II-B4, the MLSD is
both deterministic and systematic in its behavior. Furthermore,
the MLSD implements a deep convolutional neural network
(Section III-A2), which has a feedforward neural architecture,
i.e., there are no feedback loops between its neurons in the
network layers. Thus, it is also stateless, with the responses
depending only on the current inputs, and not on the history of
inputs or prior responses. Furthermore, detection confirmation
is a deterministic rule-based decision. Together, it implies
that, under the stated assumptions and scope (Sections IV-A
and IV-C), for any input, and input sequence subsequently
formed: (i) the ideal (best case) MLC behavior is a sys-
tematically correct response due to perfect generalization of
the MLSD and a deterministic choice of NER sign detection
confirmation; and (ii) the worst case MLC behavior is a
systematically incorrect response due to consistent MLSD
failure followed by a deterministic choice rejecting NER sign
detection confirmation.

3) Validity: Since random behavior lies between the worst
case and ideal behavior, and since the concrete performance
requirements defined based on random behavior (Section V-B)
have been mathematically derived from the allocated QSO,
we can conclude that: (i) the performance requirements as
specified meet the allocated QSO by construction; (ii) any
systematic MLC behavior up to the ideal, verified to meet or
exceed the specified requirements will also meet the allocated
QSO; and (iii) the requirements as defined are the minimum
required, being the tolerable worst-case.

B. Threats to Validity

First, correct application of the FTA for QSO allocation
(Fig. 2) may potentially challenge the rationale for the suit-



ability of the allocated QSO (Section VI-A1l). Specifically, the
recommended practice for FTA [1] only considers hardware
failure basic events, with associated failure rates, rather than
basic events representing insufficient MLC performance, e.g.,
EBC malfunction with a failure probability.

However, quantitative FTA admits computation with failure
probabilities, and Section II-B5 clarifies why a probability of
failure can indeed be assigned to the MLC malfunction basic
event, thus justifying its inclusion in the FTA. Additionally,
note that the purpose of the FTA as in Section IV-B is to
specify requirements rather than to verify that they have been
met. As such, we contend that the way we have applied FTA is
sound. Furthermore, although changes to the specific value of
the system level QSO can change both the allocated QSO and
the concrete performance requirements, the proposed method
to develop those requirements, itself, is unaffected.

Next, the constraints for applying a binomial model may
potentially challenge its use and the associated rationale for
the suitability of the resulting performance requirements (Sec-
tion VI-A2). We enumerate and substantiate each constraint:

1) Fixed number of Bernoulli trials: Met due to a fixed size
detection vector (n = 12), and by definition (Section V-A),
with Boolean responses for both the MLSD and the MLC.

ii) IID trials: The input to the MLC, and subsequently to
the MLSD, is a temporally ordered sequence of images of the
runway scene as captured and transmitted by the video camera.
Hence, they are a correlated time series from the same gener-
ating process, due to which they are identically distributed but
not independent. The MLSD is systematic, deterministic, and
stateless; hence its responses are also identically distributed but
not independent. Since the MLSD responses are the inputs to
the binomial model, the IID constraint is not met.

However, this constraint effectively implies that the trials
should be random. Thus, our counter argument here is that
maintaining the assumption of IID trials does not invalidate the
requirements because: (a) despite abstracting the MLC failure
behavior as random, the concrete performance requirements
meet the QSO by construction; and (b) as before, we use the
abstraction to define the requirements rather than to verify that
they have been met, which is when the IID constraint would
apply. That is, the MLC must be verified with non-IID data
against Requirements 1-6, even though those requirements
have been defined assuming IID inputs for post-processing.

iii) Constant probability of trial outcomes: Eqs. (1), (3) —
(5) clarify the relationship of the MLSD failure probability
to the distribution of its inputs, showing that the former is
deterministically related to the latter by the identity function.
Since the inputs to the MLSD have been established to be
identically distributed, their moments (e.g., their expected val-
ues) are also identical and therefore constant (but unknown).
Hence the MLSD failure probability is constant.

A concern here is that p,;s may change over the long run,
due to a drift in the input space distribution. Mitigating the
effects of such distribution drift requires carefully describing
the ODD (see Section VI-C1), and consideration of the expo-
sure duration over which the QSO and failure probabilities are

expressed, i.e., the duration for which the input distribution is
expected to be stable, and where pp,iss Will then be constant.

C. Additional Considerations

1) Relevance of the Operational Design Domain: Defining
Prx y(z,y), the joint distribution of the input and output
space, underpins both the ML process and the development of
MLC and MLM performance requirements. That induces spe-
cific additional considerations on sufficiently characterizing:
(i) the marginal input space distribution, Prx (X)), reflecting
the intended operating environment; and (ii) the conditional in-
put space distribution, Prx |y (X|Y"), which reflects functional
intent. Both considerations require, in part, a well-defined and
validated ODD from which data must be sampled to meet
various data properties [4], [7], [9]. The latter consideration in
particular levies requirements on the pre-processing element,
or more generally on the system architecture, to assure that
the MLC only receives inputs consistent with its defined input
space (known as in-ODD or in-domain) and functional intent
(i.e., in-distribution), as considered during the ML process.

2) Robustness Performance: The ML literature treats ro-
bustness performance separately from generalization perfor-
mance. However, from a safety standpoint, we contend that
MLM failures in general, especially those that result from
model fragility under input perturbation or abnormality, stem
from an inadequate definition of both the ODD and the corre-
sponding input space distribution. This viewpoint is consistent
with how, for example, a lack of robustness in conventional
airborne software is treated as a requirements inadequacy [2].
As such, aberrant, limiting, as well as normal range inputs
should all be considered in the ODD and input space distribu-
tion when specifying and evaluating MLM failure probability
and the associated performance requirements.

Thus, in this paper, although MLSD robustness performance
has not been considered, we briefly indicate a potential way
forward for future work: as clarified in Section V-C, the MLSD
generalization error R, (f) equals its failure probability p/ ;...
We propose to treat it as a metric of robust generalization that
considers failures due to both a lack of model robustness and

inadequate generallzatlon for prev1ously unseen mg)uts Thus,
we have R,(f) = RY(f) + R(g (f). where R{”(f) is the

generalization error apportioned to robustness related fallures,
and RZ(,g )( f) is the remainder. This has the advantage of being
able to reuse empirical risk and other related metrics, as in
Section V-C, but for robustness. Future work will thus explore
expressing RZ(,T) (f) appropriately (e.g., in terms of the relative
frequency of abnormal inputs that lead to failures), as well as
the relationship to the prevailing robustness related metrics.

3) Implications for Verification: As previously indicated
(Section VI-B), a consequence of using the method described
in Section V is that the underlying abstraction cannot also
be used to verify that the implementation meets the defined
requirements. In particular, the binomial model cannot be used
because the IID constraint will not be met in verification.

A second implication relates to the dataset sample size 1
necessary to meet the bound on the generalization gap and the



related tolerance (Section V-C). Specifically, Eq. (6) applies
to any RV that can be bounded and does not depend on the
underlying data distribution. Hence, 7 is a pessimistic worst-
case lower bound, which increases quadratically with a smaller
tolerance € in the generalization gap. Thus, alternative methods
(such as using the Normal distribution approximation to the
binomial) can give more favorable sample sizes, subject to the
validity of the assumptions of those alternative methods.

VII. RELATED WORK

Our adaptation of the AEBS (Fig. 1) is from [5], which is
the closest counterpart to this paper. Beyond the modifications
clarified in Section III and IV-B, our paper goes uses a
different formal abstraction to relate the QSO to safety-related
MLC performance metrics, MLM generalization, and sample
size estimates for the test data, thus going further than [5].

The automotive systems domain has progressively consid-
ered the relation between system safety and MLM perfor-
mance. For instance, in the context of pedestrian detection,
[11], [12] give examples of MLM performance and robustness
requirements that impact system safety, along with rationale to
clarify the specific metrics chosen. However, this clarification
is limited regarding the procedures used to determine those
metrics, their values, and how they relate to safety objectives.

In other contemporary research, safety-related visual trans-
formations have been used to determine and verify reliability
requirements for MLCs used for machine vision [13]. In [14],
conformal prediction is leveraged to give a procedure to derive
lower bounds on DNN reliability, while [15] defines reliability
and robustness metrics for DNN classifiers used in undersea
and ground vehicle autonomy contexts.

There exist minimum operational performance standards
(MOPS), and minimum aviation system performance standards
(MASPS), that give function and application specific safety-
related performance requirements, though they do not consider
ML. Thus, our paper aims to mirror such efforts for machine
learnt functionality, extending the state of the practice.

Elements of the work in this paper have previously informed
the ongoing effort of industry consensus-based standards com-
mittees [16], whose members include civil aviation regulators
(e.g., EUROCAE WG-114 and SAE G-34). However, their
work is still in progress and as yet unpublished, hence we are
unable to provide more details and clarification contrasting it
with this paper.

VIII. CONCLUDING REMARKS AND FUTURE WORK

The main contribution of this paper is an initial method,
with rationale for validity, to mathematically translate QSOs
allocated from a system safety assessment into the safety-
related performance requirements and the associated metrics
for an MLC and its underlying MLM, in an aircraft emergency
braking system example. We have illustrated the method at the
system, component, and model levels, showing the relationship
to MLM generalization, and sample size for test data.

There are several avenues to further improve upon this
initial work: first, we intend to extend our method to ad-
dress robustness performance (Section VI-C), for example, by

relaxing the assumptions on pre-processing (Section IV-A).
Next, we also aim to address per image false positives and
false classifications, without which the current requirements
are more optimistic than they should be. A candidate approach
here, is to use a multinomial model, whilst also exploring
Bayesian approaches, e.g., with beta and Dirichlet priors, to
capture and specify the uncertainty in the performance metrics.

Additionally, the following are key to a broader applicability
of our method: (i) addressing applications involving regression
and multi-class classification problems, also considering other
types of loss functions, generalization bounds, and metrics;
and (ii) addressing alternative procedures for detection confir-
mation, e.g., using longer and/or multiple detection sequences.
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