
AdvoCATE: The Assurance Case Automation Toolset at Age 14

Ewen Denney∗ and Ganesh Pai†
KBR Inc., NASA Ames Research Center, Moffett Field, California, 94035

Assurance cases (ACs) are finding increasing adoption in many safety- and security-critical
domains as a paradigm focused on communicating to stakeholders why a system or service can
be relied upon, through an explicit statement of assurance objectives and rationale that shows
how those objectives are met. ACs give the flexibility to both keep pace with technological change,
e.g., with the rapid introduction of new technologies such as machine learning (ML), and to
tailor verification efforts to be proportional to the levels of risk posed. Since the Assurance Case
Automation Toolset (AdvoCATE) was first introduced to the community in 2012, it has inspired
the development of various similar toolsets and capabilities for creating ACs. AdvoCATE
has continued to evolve from its initial focus on creating structured arguments to capture
assurance rationale, using the Goal Structuring Notation (GSN), to encompass a broader suite
of features for safety risk management, including hazard analysis, risk modeling using barrier
models captured using Bow Tie Diagrams (BTDs), capturing requirements, and organization of
substantiating evidence as evidence logs. We use the assurance of an autonomous visual landing
capability with a machine learnt component as a running example to showcase the utility and
applicability of AdvoCATE.

I. Introduction

Consider the following scenario: a new technical system has been engineered to provide a service, e.g., cargo
transportation using an uncrewed electric aircraft or a self-driving road vehicle. But before you can deploy this

system you need approval from a regulatory authority who needs to have confidence that your system and service are
safe and secure. More generally, the stakeholders of your system/service need to be convinced that it can be relied upon.

The assurance case (AC) paradigm is one way to communicate why one can be justifiably confident in trusting a
critical system or service. The necessity for ACs was recognized well over two decades ago, and they have since been
steadily adopted in many safety- and security-critical domains and organizations, including at NASA. For instance, the
NASA System Safety Handbook [1, 2] places particular focus on ACs as a central organizing concept. ACs are also a
core element of the more recent “objectives-driven, risk-informed, case-insured” approach to assurance at NASA [3, 4].

Although there are many notions of what an assurance case is, a common definition, due to [5], is “a reasoned and
compelling argument, supported by a body of evidence, that a system, service or organization will operate as intended
for a defined application in a defined environment”. This is, itself, a generalization of the safety case concept, i.e., an
AC focused on safety [6]. Based on that definition, evidently assurance arguments tend to be a major focus in an AC.
They usually comprise: (i) explicit claims about the intended properties of a system or service in which confidence is
necessary, and which serve as the conclusions of the argument; and (ii) structured reasoning comprising a series of
statements linking those claims to evidence, i.e., verifiable statements of fact linked to information arising from the
development of the system/service, which serve as premises in the argument.

As such, research surrounding ACs (including our own earlier work) has focused on assurance argumentation.
However, informed by our practical experience, our viewpoint has evolved to recognize that the information upon
which an argument rests is as crucial, if not more so. Indeed, as will be described later in this paper, other forms of
reasoning that may not (or need not) take the form of an explicit argument, may better engender confidence [7]. Our
key observations here are that: (i) what an AC needs to deliver is rationale for confidence (with that rationale itself
exhibiting characteristics such as validity), and (ii) arguments serve as one amongst a core set of artifacts answering that
need. Thus, for what follows, our preferred notion of an AC is a comprehensive, defensible, and valid justification that a
system or service will function as intended for a defined application and operating environment [8].

∗Technical Leader and Sr. Technical Fellow, Mission Technology Solutions (Science & Space), AIAA Member.
†Principal Researcher and Sr. Technical Fellow, Mission Technology Solutions (Science & Space), AIAA Associate Fellow.

1

Author's pre-print version.
The definitive version of this article appears in the Proceedings of the 2026 AIAA SciTech Forum. 

DOI: 10.2514/6.2026-1251



A. Tool Support for Assurance Case Development
To both further (our) research in AC development, and support practical engineering work requiring ACs, in 2012

we introduced AdvoCATE, the assurance case automation toolset to the community [9]. As mentioned earlier, the
initial focus was on developing graphical representations of structured arguments using the Goal Structuring Notation
(GSN) [5], and various related capabilities including: integrating the results of formal verification [10]; abstraction
using hierarchy [11], patterns [12], and modularity [13]; and retrieval of the relevant assurance-related information
through queries and views [14].

The broad goal, overall, has been to provide automation support for creating and assembling assurance arguments
(albeit primarily in an aviation context) [15], supported by a methodology where an AC evolves alongside the system or
service for which it is developed, from concept into operation [8]. Not only have we ourselves used AdvoCATE to create
ACs—in particular to support regulatory approval of uncrewed aircraft systems (UAS) operating beyond visual line of
sight (BVLOS) [16, 17]—but also, over the years, the toolset has been distributed both nationally and internationally to
a wide user base that includes both government entities and the safety-critical industry, in the aviation, automotive,
cybersecurity, manufacturing, maritime, medical device, mining, military, nuclear, space, telecommunications, and rail
transportation domains. Additionally, since its introduction, AdvoCATE has inspired various efforts at tool support for
development of AC arguments [18–20]∗.

B. This Paper
The need for consistency between a system and its AC, as the former evolves through life [22], has subsequently

motivated an expansion of our original focus in developing AdvoCATE. Specifically, our toolset is now additionally
concerned with creating and managing the supporting information necessary for assurance, including other mechanisms
to communicate assurance rationale. This revised focus has been both reinforced and sharpened with the introduction of
machine learning (ML)—and more generally learning-enabled functionality—into critical systems [23].

The toolset has been reengineered and remodeled from the version described in earlier papers, but retains key
functionality, such as structured arguments. In this paper, we will provide the first description of other features, including
hazard and requirements logs, improved and extended bow tie diagrams, and evidence and tools logs. At the core of all
these features is an integrated assurance metamodel, which allows AdvoCATE to keep these diverse artifacts consistent,
and enables traceability both between distinct assurance artifacts, as well as between distinct representations: textual
using domain-specific languages (DSLs), tabular, and graphical. This assurance model AdvoCATE enforces numerous
well-formedness constraints on the structure of the assurance case, but does not require the use of formal languages
to describe any of the constituent assurance artifacts. Formal methods can, however, be used to create evidence (see
Section VII).

To illustrate the key features of AdvoCATE, we use a running example of an Autonomous Visual Landing (AVL)
system, we describing the operational concept, also identifying the system boundary and its interfaces to the environment
(Section II). Due to space constraints, we do not give all details of the methodology, so here we give a high-level
overview of the AC development methodology that we typically follow with AdvoCATE:

• First, we conduct a hazard analysis, either as a Preliminary Hazard Analysis (PHA) or a Functional Hazard
Analysis (FHA) based on the application. Either of the PHA or FHA can be documented in a tabular hazard log
in AdvoCATE (Section III).

• Next, we perform a system-level risk analysis and assessment. If the initial risk levels are deemed to be
unacceptable, then we identify additional mitigations—barriers providing a risk reduction function—until the
residual risk is at acceptable levels. We accomplish this, in part, through risk scenario modeling, as an additional
safety technique (Section IV).

• Then, the needs of the safety system, comprising a collection of the identified barriers, are captured in the
requirements log, which can include both safety and assurance requirements, as well as requirements on design
(Section V).

• Thereafter, we capture assurance rationale in the form of GSN arguments for various assurance concerns
(Section VI), including, but not limited to: (i) validity of the mitigations specified for identified hazards,
(ii) rationale for initial risk levels, (iii) why identified mitigations reduce risk, (iv) rationale for residual risk levels,
and (v) assumptions made in the scenario-based risk analysis.

• Lastly, substantiating evidence is documented in the evidence log (Section VII).
We conclude the paper in Section VIII.
∗The review of AC tools listed in [20] also includes various tools that were developed prior to AdvoCATE, e.g., [21].

2



II. Running Example: Autonomous Visual Landing
We consider a running example of an Autonomous Visual Landing (AVL) application from our prior work [24]. In

this application, assurance of ML-based functionality providing perception and landing decision support is required.

A. Operating Concept
To land, the aircraft must enter a standard traffic pattern which consists of defined phases and legs at which the pilot

in command (PIC) makes specific decisions for safe landing. For this example, when the aircraft is on the final leg
of the approach phase, the ML-based functionality is invoked. The aircraft is required to be aligned with the runway,
and descending at a steady rate, i.e., following a typical glide path with a fixed angle, usually between 3◦ – 5◦) to the
horizontal plane of the runway.

The decision whether to continue to land or to go-around, i.e., abort the landing, can be made by the PIC at
any point in the aircraft descent trajectory, depending on the advisory received from the ML-based function on the
(perceived) state of the runway (e.g., the potential for a collision hazard from a runway incursion), and the stability
of the aircraft configuration as it descends. Various additional assumptions and constraints apply for this Concept of
Operations (CONOPS), details of which are not in scope for this paper, but have been described in more detail in [24].

B. System Description

Perception Sensors 
(Cameras)

Runway Clear (ML-
based Detection and 

Tracking)

Landing Decision

Pose Estimation (ML-
based navigation state 

estimation)

Object Track 6DOF Parameters

Land / Go-around

Pose Estimate

Map Data

Object Track
Object Bound

Airport environment scene

Runtime Assurance
Vehicle Manager

Autonomy Executive
Flight Display (to Pilot)

Image stream

Fig. 1 High-level functional architecture for an ML-based Autonomous Visual Landing capability.

As shown by the high-level functional architecture (Fig. 1), the AVL capability is aided by two functions implemented
using ML:

• Runway Clear (RwyClr), responsible for perception, detection, and tracking of potential collision hazards, and
for estimating the future position of the detected hazards relative to the aircraft after it lands;

• Pose Estimation (PosEstm), responsible for determining, respectively, the three dimensional orientation of the
aircraft relative to the runway, and its translational position relative to the touchdown location on the runway.
Effectively this is a sub-function for the Localization function of the aircraft.

For this paper, we mainly focus on PosEstm, in particular, its contribution to overall landing safety. Pos-
Estmreceives a stream of images of a defined resolution at defined rate as input, along with external map data. In
response it produces the Six Degree of Freedom (6-DOF) aircraft pose estimate, along with the pixel locations of the
keypoints of the runways, i.e., specific points of interest in an image or scene, e.g., the 4 end-points of the runway. For
simplicity, we assume a physical architecture comprising dedicated subsystems to which each of the functions aiding
the AVL capability are allocated. That is, we assume that PosEstm is allocated to a Pose Estimation Subsystem. For
additional details of the example—which are, again, out of scope for this paper—refer to [24].

III. Hazard Logs and Risk Assessment

A. Overview
AdvoCATE has a tabular representation for the hazard log, to incrementally record the results of a PHA or FHA. The

hazard log can be populated by stepping through a series of hazard views—accessible through a drop-down menu—each

3



of which is focused on one specific step of the hazard analysis.
Specifically, the hazard identification view shows only those columns of the hazard table that are most relevant

to recording the identified hazards. Thereafter, the risk analysis view shows the columns required for establishing
the initial risk level posed by the (effects of) the identified hazards in the context of pre-existing mitigations. The
risk assessment view then shows the columns needed to specify new mitigations for those hazards whose initial risk
level is unacceptable, and to determine the residual risk level after the introduction of those new mitigations. Lastly,
the mitigation requirements view shows those columns needed to specify the requirements corresponding to the new
mitigations defined in the risk assessment view. These requirements also appear in the requirements log (Section V),
where more details can be provided.

Figs. 2 and 3 show (screenshots of) excerpts from the hazard identification and risk assessment views, respectively,
for the AVL example. As shown in the figures, a hazard analysis in AdvoCATE is organized by a hazardous activity
(shown as a column in the table), and the related system states and environmental conditions (selected via a drop-down
menu, alongside hazard views). Hazardous activities represent operational behaviors that inherently pose risk, such as
an aircraft landing operation. Each such activity can be further characterized in terms of system states, representing the
evolution of the system during that activity. Additionally, environmental conditions capture the operating context for
the hazardous activity and the constituent system states. Thus, in AdvoCATE, a hazard represents a particular loss of
control event (which may be a functional failure condition), that poses a potential for harm when it occurs in a specific
system state of a hazardous activity, under the stated environmental conditions.

Hazardous activities are a central organizing element of risk scenario modeling (described next in Section IV),
which relates hazards to their causes, effects, and mitigations as captured in the hazard log. In effect, hazardous activities
provide a means to connect operational safety assessment to an FHA, which rather focuses on system functions.

Hazards can be associated with the functional and physical elements of the system architecture. Within AdvoCATE,
we formulate the latter using a simple DSL (detailed omitted here) as hierarchical breakdowns of the physical and
functional architectures, which are then allocated to the identified hazards via the corresponding column in the hazard
log (see Fig. 2). Additionally, for each physical/functional element, the DSL allows specifying the respective physical
failure modes, or functional failure conditions. Those can then be selected as the causes of the hazard, as appropriate.

CUI 

 
CUI 
17 

location include B5: Runtime assurance, B2: Primary localization based on machine learning, 
B3: secondary localization based on inertial sensors, and B4: contingency management mecha-
nisms. 

 

Figure 8. Hazard Identification (FHA) in AdvoCATE 

 

Figure 9. Risk Assessment (FHA) in AdvoCATE 
Figure 10 shows an excerpt of the requirements log as recorded using AdvoCATE, con-

taining the safety / mitigation requirements that emerge as a consequence of the FHA. In addition 
to the statement of the requirements, the requirements log records other relevant information, such 
as: the type of requirements, their allocation (to an element of the physical architecture, or a func-
tion in the functional architecture), proposed verification methods, the location of the verification 
results (verification allocation), as well as relations between requirements that help to support ad-
ditional assurance activities such as ensuring internal consistency. 

Fig. 2 AdvoCATE screenshot: FHA excerpt for the AVL example showing the hazard identification view.

Hazards are also associated with risk levels, that are determined according to a risk acceptance matrix, based on the
combination of the likelihood and severity of the corresponding worst-case consequences. Fig. 3, shows a residual risk
level, which represents the risk that remains after the correct implementation and verification of the necessary hazard
mitigations. Not shown is an associated initial risk level, which represents the unmitigated risk posed by a hazard.

4



CUI 

 
CUI 
17 

location include B5: Runtime assurance, B2: Primary localization based on machine learning, 
B3: secondary localization based on inertial sensors, and B4: contingency management mecha-
nisms. 

 

Figure 8. Hazard Identification (FHA) in AdvoCATE 

 

Figure 9. Risk Assessment (FHA) in AdvoCATE 
Figure 10 shows an excerpt of the requirements log as recorded using AdvoCATE, con-

taining the safety / mitigation requirements that emerge as a consequence of the FHA. In addition 
to the statement of the requirements, the requirements log records other relevant information, such 
as: the type of requirements, their allocation (to an element of the physical architecture, or a func-
tion in the functional architecture), proposed verification methods, the location of the verification 
results (verification allocation), as well as relations between requirements that help to support ad-
ditional assurance activities such as ensuring internal consistency. 

Fig. 3 AdvoCATE screenshot: FHA excerpt for the AVL example showing the risk assessment view.

AdvoCATE provides a collection of dashboards that give summary information about the various facets of the
assurance case, and allow simple creation and editing. Fig. 4 shows excerpts from the hazards and evidence dashboard
pages (see also Section VII). Other dashboard pages, not shown here, are provided for arguments, patterns, safety
architecture, requirements, and tools.

B. Example
In the context of the AVL example, main safety assurance objectives are to provide sufficient confidence that under

all specified operating conditions:
• neither the intended behavior of PosEstm nor its failure conditions lead to an unacceptable outcome, and
• PosEstm does not exhibit any unintended behavior that could lead to an unacceptable outcome at a rate more

frequent than that corresponding to an acceptable risk level—or equivalently, a Target Level of Safety (TLOS)—for
those outcomes.

The unacceptable outcomes to be avoided, as identified from an FHA are: Controlled Flight Into Terrain (CFIT); a
landing in an area other than the intended runway; and a runway excursion. These outcomes are causally preceded
by landing safety hazards, which are, as mentioned earlier, a combination of uncontrolled system states and specific
environmental conditions that occur during landing (a hazardous activity). For the operational context relevant to
PosEstm, the relevant landing safety hazard is, primarily, an unstable approach, i.e., when the aircraft does not
maintain its essential flight parameters (such as its attitude, landing configuration, speed, descent rate, and power
settings) within the limits established for an airworthy aircraft type design.

We assume here that RwyClr has established that there is no collision hazard in the landing trajectory. We
additionally assume for simplicity that only a single object in the airport environment can pose a collision hazard at any
given time. Thus, from a system safety standpoint, an additional unacceptable outcome to be avoided during landing (to
which RwyClr contributes) is collision with objects on the ground, such as a ground vehicle on the runway or taxiway,
or another aircraft. Referring to the functional architecture of Fig. 1, the LndDesc function uses the pose estimate and
the track of a detected object to inform the decision/advisory of whether to land.

IV. Risk Scenario Modeling
Risk scenarios and safety architectures created within AdvoCATE offer a different approach from arguments to

substantiate the safety-related claims in an AC. Although, they are closely related to the arguments created within
AdvoCATE, both from a conceptual, and from a modeling standpoint. In particular, risk scenarios are views of a safety
architecture (described in more detail subsequently in this section). Conceptually, the latter implicitly embodies the
defense-in-depth and risk-based mitigation argumentation patterns. That is, the argument underlying a safety architecture
is that layers of independent mitigations, each of which provide a risk reduction function, collectively reduce the risk
of the effects of the identified safety hazards to an acceptable level. From a modeling standpoint, the elements of a
safety architecture in AdvoCATE can be related to the other assurance artifacts, including arguments. For example, an

5



Hazards dashboard

Evidence dashboard

Fig. 4 AdvoCATE dashboard elements showing summary information from the hazard log and evidence log.

argument can be created to substantiate the claim that the mitigations in a safety architecture are independent.

A. Risk Scenarios
The goal of risk scenario modeling is, effectively, to characterize the various operational scenarios of a system

elaborating, (i) the conditions leading to a loss of control and eventually to harm/loss; (ii) the invocations of the
mitigation mechanisms; and (iii) the conditions that compromise the mitigations.

Risk scenarios are causal event chains showing how initiating (operational) events lead to loss of control events
(hazards) that eventually manifest as the undesired effects to be avoided. In AdvoCATE, we use barrier models,
represented using Bow Tie Diagrams (BTDs) to capture risk scenarios. The underlying metamodel has a close connection
to that used as the basis for the hazard log. Thus, a risk scenario allows us to relate the functional hazards, their
precursors, contributing failure conditions, and their inter-relations identified via the FHA.

Fig. 5 shows a fragment of a risk scenario in the BTD notation, for the AVL example discussed in Section II.
This BTD shows threat (i.e., initiating) events (e.g., ‘Adversarial Image Input’) leading to the top event† ‘Errors in
Runway Keypoint Estimates’, that eventually leads to the terminating consequence event (effect) ‘Pose Estimation and
Localization Errors’. Thus, this risk scenario partially models function failure conditions due to the propagation of
sensor errors across the function interface to the ML model that implements the Runway Localization and Keypoint
Estimation sub-functions of PosEstm.

Fig. 5 also shows a series of (hierarchically organized) mitigations, (known as barriers and controls, respectively, in
BTD terminology), that are meant to reduce risk by either preventing or recovering from the identified hazard. For
example, Run time Assurance is a barrier function that serves to mitigate the risk posed by the errors in a sequence of
input images. More specifically, this barrier invokes a control: a monitoring capability to observe sequences of input
images to detect errors, and out-of-distribution (OOD) inputs. Likewise, when errors in keypoint estimation inevitably

†A top event in BTD terminology corresponds to a hazard in FHA.

6



5/29/23, 3:30 PM btd.svg

file:///Users/GPai/Library/CloudStorage/OneDrive-KBR/toARC/publications/dasc2023/dasc2023-ac/Boeing-CP31/exports/btd.svg 1/1

Autonomous Visual Landing 
(AVL) Approach

 
SS: Aircraft on final (airborne)

EC: VMC, No crosswinds

Run time Assurance

Monitor input image
sequence and detect

out of distribution input
images

Barrier Integrity: 0.75

Run time Assurance

Monitor and detect runway
keypoint errors using map
data from navigation and

aircraft database

Barrier Integrity: 0.75

Safety post-processing

Estimate runway keypoints
from runway instance

geometry of safe
segmentation mask

Barrier Integrity: 0.6

Safety post-processing

Shift keypoint by safety
factor to maintain allowed

error bound

Barrier Integrity: 0.6

Errors in runway
keypoint estimates

IRL: 1A (High)
RRL: 1A (High)

Adversarial image input

Likelihood: A (Frequent)

Error in sequence of input 
images

Likelihood: B (Probable)

Pose estimation and 
localization errors

IL: A (Frequent)
IS: 1 (Catastrophic)
IRL: 1A (High)
RL: A (Frequent)
RS: 1 (Catastrophic)
RRL: 1A (High)

Fig. 5 BTD of a risk scenario for keypoint estimation errors in the AVL example.

occur, additional mitigations are to be invoked, including:
• Safety Post-processing, which involves two controls: (i) shifting keypoints by a safety factor such that they are

within a predetermined error bound of the ground-truth keypoint; and (ii) estimating new, corrected, keypoints
from the runway instance that is enclosed by a safe segmentation mask; and

• Run time Assurance, which involves monitoring and detecting keypoint errors that may persist despite safety
post-processing, by using the map data input from the Navigation and Aircraft Database.

The intended risk reduction functionality of barriers and their controls can be associated with requirements, which
can be added directly to the relevant diagram elements in AdvoCATE. Those in turn populate the requirements log
(Section V), which also contains additional relevant information.

BTDs in AdvoCATE have an underlying risk assessment model [7]. In effect, it gives an assessment of the initial
and residual risk levels for each consequence event based on: (i) its respective initial and residual severities; (ii) and the
probabilities of occurrence of its precursor threat events; and (iii) the integrities of the mitigating barriers and controls.

Like requirements, barriers and controls can both be associated with evidence that substantiates the associated
assumptions, e.g., about their integrity, and the probabilities of their precursor threats. This evidence, in turn, populates
the evidence log (Section VII), where additional relations between evidence items can also be provided.

B. Safety Architectures
There can be a plurality of risk scenarios for a given system and its operations. By constructing BTDs of these risk

scenarios, each modeling the different causal chains of events and the associated mitigations, and composing those risk
scenarios, a new, larger, overarching model can be formed which we refer to as the safety architecture. It specifies at a
system level:

• the collection of mitigations used to manage all the identified hazards, and their causes and effects; and
• the collection of circumstances (scenarios) under which those mitigations are invoked.
Fig. 6 gives a zoomed-out fragment of the AVL safety architecture. The shaded rectangular region reflects the

portion of the safety architecture that we have modeled as the BTD in Fig. 5.
Just as system-level scenarios can be modeled, we can create scenario models of the mitigation mechanisms in

AdvoCATE. In other words, these are lower-level scenarios focusing on barrier functions that are deployed in the wider
system. In fact, the BTD in Fig. 5 is actually a barrier-focused scenario model and the barrier function in question is
Localization, of which Pose Estimation is a sub-function. In Fig. 6, this relationship of the barrier-focused scenario to
the higher-level scenario is shown as an escalation link from the (consequence) event to a (higher-level) barrier in the
safety architecture. The semantics are that the effect Pose Estimation and Localization Errors (the node labeled E) in
the barrier-focused scenario defeats the Localization barrier (the node labeled L) at a system level. That barrier, in
turn, is meant to recover from an unstable final approach (the node labeled U) in the system-level risk scenario, without

7



E

LU H

Fig. 6 Safety architecture fragment for the AVL example. The shaded rectangular region corresponds to the
risk scenario of Fig. 5.

which the risk of the unstable approach persisting (the node labeled H) will increase. For more details on the specifics
of safety architecture development, see [7].

C. Phased Scenarios
The initiating and terminating events in a BTD can be further analyzed by extending the event chain in either

direction, i.e., by specifying precursor events to the threats and successor events to the consequence event, as well as
mitigations/barriers to address each of those events. This analysis (i.e., extending the event chain) can be performed in
the same BTD or by creating new BTDs in which the event being analyzed is set either as a threat, top, or consequence
event. Consequently, we can model and link scenarios corresponding to distinct operational phases. For instance, the
safety architecture fragment of Fig. 6 is in fact for the approach phase, and in particular for the final leg (see Section II.A,
and Fig. 7).

By creating and linking such safety architecture fragments for different phases of landing, we can: (i) understand
how the risk profile for an operation can change across the phases, (ii) provide assurance of safety risk mitigation
through the different phases of landing, and (iii) create a safety architecture for the landing operation from the point the
ML-based functionality is invoked until the operation is completed.

In AdvoCATE, we can then abstract this safety architecture for the landing operation in the form of a phases view, as
shown in Fig. 7. This view allows us to hierarchically model the phases of the landing operation, the specific legs that
constitute each phase, and the portion of safety architecture that is applicable to those legs. The links between the legs
and phases model how the consequence events of one phase initiate the risk scenario(s) of the subsequent phase(s).
Effectively, the phases view gives us a mechanism to model, analyze, and provide assurance of phased missions.

V. Requirements Log
As with the hazard log, the requirements log has a tabular depiction in AdvoCATE. This contains, in addition to

the requirements description statements, information on the type of requirements, their allocation (to the elements of

8



Landing Traffic Pattern

Approach Phase

Landing Phase

Fig. 7 Phases view in AdvoCATE modeling phased risk scenarios.

the functional and physical architectures), proposed verification methods, the results of applying those methods, i.e.,
verification allocations, and relations between the requirements. These aid assurance activities such as ensuring internal
consistency amongst the requirements, traceability between requirements, verification methods, and the evidence that
results from applying those methods, i.e., the verification allocation.

Within a safety-focused AC, requirements are mostly used to specify the safety system, i.e., how to implement the
barriers and controls. Requirements can be entered directly in the requirements table, but can also be added directly
within the respective elements of the BTDs. They will then be added to the requirements log. Requirements can also be
added via the Mitigation Requirements view of the hazard log.

Fig. 8 shows (a screenshot of) an excerpt of the requirements log for the running example. An example functional
requirement, as shown, concerns the capability of the runway localization function to provide a so-called segmentation
mask of the active landing runway from input images, i.e., to provide an identification of all the pixels on an input image
that correspond to the active landing runway. This requirement is derived from its parent requirement on PosEstm,
which is both a functional and a safety requirement. Such associations between requirements are captured in the
relations column of the requirements log, whereas the allocations column indicates the particular physical or functional
architecture element with which the requirement is associated.

Also as shown in the figure, a requirement can have multiple verification methods, each of which can have multiple
verification allocations (although Fig. 8 shows each verification method associated with a single verification allocation).
Verification allocations are documented in more detail in the evidence log (described in Section VII).

VI. Capturing Assurance Rationale
AdvoCATE facilitates creating structured arguments using the Goal Structuring Notation (GSN) as a means of

capturing the assurance rationale required to connect elements of an AC, such as (i) linking evidence artifacts to claims;
(ii) justifying assertions about evidence artifacts; (iii) substantiating assumptions used in the risk analysis, (iv) reasoning
about the effectiveness of barriers in the safety architecture, (v) clarifying the context in which the claims made and the
substantiating evidence supplied should be interpreted, and so on.

Assurance arguments for complex functionality may not only leverage reasoning at different levels of the system
hierarchy, but also may require reasoning about a diversity of related concerns. In part, this depends on the level of risk

9



CUI 

 
CUI 
18 

For example, the requirement PE-SF211-R0003: the runway localization function shall 
segment and mask the active landing runways from input images has been allocated to the sub-
function SF2.1.1: Runway Localization, one of the lower-level functions of POSESTM along with 
Keypoint Estimation and PnP Solver State Estimation. Two verification methods have been iden-
tified: VM3: ML item verification on test data set, and VM4: ML item verification on simulated 
data, along with their respective verification allocations. This requirement is itself derived from 
the choice of using ML—in particular a Deep Neural Network (DNN), U-Net [RFB2015]—to 
detect and localize the runway using a segmentation-based approach.  

 

Figure 10. Excerpt of Requirements Log in AdvoCATE 
In addition to the excerpt of requirements show in Figure 10, the main requirement on 

POSESTM is stated as follows: The pose estimate of aircraft attitude, location, and velocity shall be 
consistent with the true aircraft pose. This is both a functional and a safety requirement, since an 
incorrect pose estimate can lead to an unstable approach due to the control system compensating 
when not required. This requirement includes aspects of timing safety (i.e., on the worst-case exe-
cution time and real-time deadlines that apply during pose estimation), and the required navigation 
performance (i.e., the accuracy and precision bounds on the pose estimates produced). Although 
these concerns are within the scope of the DAC, they require specific implementation choices that 
were not in the scope of this effort; hence we do not consider them further.  

Subsystem Safety Analysis 

Subsequent to the FHA, the safety analysis of the Pose Estimation subsystem (or equivalently the 
POSESTM function) additionally involves characterizing the impact of various kinds of inputs (in-
cluding propagated failure conditions from upstream subsystems/items) in terms of the effects 
produced both within the boundary of the function/subsystem, and at its boundary to the wider, 
containing system.  

For instance, inputs to the Pose Estimation Subsystem are images from the Perception sub-
system, in particular an image stream from the perception sensors (cameras), and map data from 
the Navigation and Aircraft Database (see Figure 6 and the accompanying narrative). Sensor fail-
ure conditions can manifest as so-called out-of-distribution (OOD) inputs and/or adversarial inputs 

Fig. 8 AdvoCATE screenshot: Excerpt of the requirements log for autonomous visual landing.

posed by that functionality. For instance, safety of functionality that poses a low level of risk may be substantiated by a
shallow argument that relies only on evidence from, for example, system-level verification. On the other hand, when
increased assurance is necessary for functionality that poses higher risk, the assurance argument may require additional
evidence from lower levels of the system hierarchy, e.g., that the design of the functionality meets the requirements, that
the implementation satisfies the constraints of the design and meets the requirements, and that the integration of the
implementation into the wider system meets the system level requirements.

In general, the comprehensibility of such arguments can be improved by providing a big picture overview of the
assurance argument that abstracts from specific details. AdvoCATE provides functionality for creating such abstractions,
as well as detailed arguments, as discussed next.

A. Argument Architecture
The argument architecture is a high-level tree structure that relates individual sub-arguments, each of which address

a defined assurance scope. Fig. 9 shows the argument architecture for PosEstm, abstracting the overall rationale for the
claim that PosEstm is safe for use (shown as the root of the tree), wherein each node of the tree represents abstractions
of concrete arguments, as shown in Fig. 10 and Fig. 11.

In the figure, each node label indicates the scope of the sub-argument that the node encapsulates, and its color
corresponds to system hierarchy as follows: function/subsystem (blue), sub-function/item (yellow), model (green), data
(mauve). Links between nodes represent support relations, i.e., an argument in a lower-level node supports the argument
of the higher-level node(s) to which it is connected. For instance, the argument for satisfaction of the functional safety
requirements is supported (in part) by the argument that the Perspective n-Point (PnP) solver is accurate. The former is
an argument at the system level, while the latter is an argument about the sub-function.

The notation used for each node of the argument architecture in Fig. 9 is due to [25], and it indicates the splitting of
a large argument structure into smaller portions. Thus, the argument architecture here is created from a collection of
such split sub-arguments. It is worth noting that such a structure can be seen as a type of module view of an overall
argument, with each node of the view corresponding to a single argument module [13], that contains a single argument.

B. Structured Arguments
Fig. 10 shows the top-level of the argument architecture (highlighted by the dotted oval region) abstracting the

decomposition of the main safety claim (the rectangular goal node G30) into three sub-claims (the goal nodes G29, G31,
G32). The necessary context of the main claim also has been clarified (as shown as the rounded rectangular nodes C19,
C57, C20). Additionally, the relevant assumptions (shown as the oval nodes A4, A6, and A7) also are stated.

The main safety claim as shown states that PosEstm is acceptably safe for use. Here, “acceptably safe” is defined
in terms of the unacceptable outcomes (to which PosEstm contributes) not occurring more frequently than the rate
corresponding to the safety target considered acceptable for those outcomes. That safety claim has been decomposed into

10



Pose estimation 
safe for use

Allocated system 
safety requirements 

satisfaction

Functional safety 
requirements 
satisfaction

PnP solver accurate

Keypoint estimation 
accurate (item)

Keypoint estimation 
accurate (ML Model) 

ML Model 
performance 
acceptable

ML Model 
development data 

adequate

Subsystem 
failure 
conditions 
mitigation

Keypoint estimation 
failure conditions 
mitigation

Keypoint estimation 
generalization 
guarantee

Hazardous 
interactions 
mitigation

Fig. 9 Argument architecture for PosEstm showing the high-level structure of the overall safety argument.

lower-level sub-claims, where decomposition represents an inference rule of the argument (shown as the parallelogram
node S14). The resulting sub-claims are:

• G31: PosEstm satisfies its allocated system (safety) requirements;
• G32: All identified failure conditions of PosEstm are sufficiently mitigated; and
• G29: All identified hazardous interactions of PosEstm are sufficiently mitigated.

The first two relate to the intended behavior and the corresponding failure conditions not leading to an unacceptable
outcome, i.e., satisfying its functional safety requirements, whereas the third relates to PosEstm not exhibiting
unintended behavior with unacceptable consequences.

Fig. 11 similarly shows an argument fragment pertaining to a claim of generalization, abstracted by the leaf node of
the argument architecture highlighted by the dotted circle. Specifically, the main claim of this argument (goal node
G101) invokes the mean average precision (mAP) metric of the item implementing ML-based keypoint estimation. This
claim is then decomposed into to sub-claims about the values of those metrics as determined from verification in a real
and unconstrained environment (G51), in a real but controlled environment (G52), and in simulation (G53). For each of
those sub-claims, the necessary contextual information (C36, C37) and assumptions (A2, A3) also have been stated.

Here, we have only given a brief description of each of the arguments for clarity, although more details on the
specifics of the overall assurance argument can be found in [24].

Additionally, although not described here, AdvoCATE also provides functionality to specify argument patterns [12],
which abstract arguments in an orthogonal way to argument modules. Specifically, patterns abstract the content of an
argument and its reasoning structure, whereas modules allow encapsulation of one or more arguments addressing a
common assurance concern. Patterns can be composed [26] and either reused in other ACs, or used in the current
AC to raise the level of abstraction at which reasoning is represented. Ultimately, AdvoCATE supports round-trip
engineering of arguments, whereby arguments are constructed from a combination of instantiated patterns and bespoke
argumentation; edits can be made to the generated arguments, and those edits optionally propagated back to the source
patterns.

11



Fig. 10 Fragment of top-level GSN safety argument structure for PosEstm created using AdvoCATE.

VII. Assurance Substantiation with Evidence
An AC consists of reasoning (e.g., risk analysis and arguments) and substantiating evidence. Evidence is used in

various places in the ACs we create in AdvoCATE, principally as substantiating solution nodes in a GSN structure, and
to justify data in the risk analysis.

Evidence refers to one or more lifecycle artifacts (the products of a process, method, or tool) accompanied by
verifiable evidence assertions (qualitative or quantitative statements of fact), which directly or indirectly provide
confirmation that a claim in an AC can be considered to be true; for example, that a product or service meets its
requirements (and, therefore, can be relied upon). An evidence assertion is thus an attribute of a lifecycle artifact, rather
than the artifact itself, and serves to link that artifact to the argument where it is invoked as evidence.

Here, we use evidence in a general sense to encompass all external artifacts that are linked to the AC in a justifying
or contextual role; for example, verification artifacts such as test data, simulation results, and the application of formal
methods; manufacturer data sheets, formal specifications and models; and documentation such as user guides, test plans,
concepts of operations, etc. Evidence can be obtained from development and verification activities, and can be obtained
both at design time, and after deployment during operations. In practice, evidence tends to be obtained in parallel with
the creation of the AC, as system development and verification activities proceed.

A. Evidence Log
In AdvoCATE, the evidence log documents all the evidence used in the AC, as well as any evidence for which there

are plans for future use. We refer to an individual item of evidence as an evidence artifact (or simply “evidence”, for
short). An evidence artifact can be designated as pending while the AC is still being developed, to indicate that it is
planned to be obtained. The evidence log also captures key attributes of an evidence artifact, such as its description, its
type (e.g., measurement, or analysis), its provenance, status (e.g., pending, to-be-verified, or verified), as well as its
dependencies with other evidence artifacts. This information is also summarized in the evidence dashboard, part of
which is shown in Fig 4.

Fig. 12 shows the argument architecture for the running example, annotated with a selection of evidence artifacts
associated with different nodes, i.e., the arguments that each node abstracts. As shown, evidence comprises lifecycle

12



Fig. 11 Fragment of assurance argument for ML-based keypoint estimation generalization in the AVL example.

data obtained from system development, safety assessment, learning, and implementation processes. The evidence
artifacts have been grouped here according to their provenance. Moreover, depending on the evidence assertion, an
evidence artifact may be invoked in different sub-arguments of the overall argument.

If an evidence artifact is self-contained, then it will have no dependencies on other evidence. Often, however,
evidence is created from other evidence artifacts using some tool—for example, simulation results are created using
a simulator from a model and an initial configuration. Such relations between evidence artifacts can be modeled in
AdvoCATE via an evidence dependency graph, and also depicted graphically. Fig 13 shows a simple fragment of such a
graph for our running example. As shown in the figure, each node of the graph represents a concrete evidence artifact
giving its attributes, while the annotated links indicate the dependencies. For instance, the interface specification for the
RwyClris both a part of the associated subsystem description, and derived from the system architecture specification of
the AVL function.

Just as evidence can be associated with arguments in order to substantiate claims, so arguments can also be associated
with evidence in order to justify properties of evidence. AdvoCATE enforces circularity checks to prevent cyclic
associations and arguments. Focusing on evidence lends itself to a bottom-up style of argument creation, where we first
identify the key evidence, which assurance claims the evidence directly supports (i.e., the evidence assertions), and
then work back to determine how the evidence was created, and which assumptions it relies on; while a top-down style
will start with assurance claims and work towards the evidence that substantiates those claims. In practice, often a
combination of these styles is used.

B. Tools Log
The tools log documents external tools and methods which are used to create evidence artifacts. Such tools can

be informal methods, such as code review and inspection, or the application of formal methods, such as a static code
analyzer, to other artifacts. In both cases, the tool or technique is characterized in terms of its inputs and outputs, each
of which is either a type of evidence artifact or a primitive type. A tool specification gives assumptions on the inputs
and guarantees on the outputs. A tool use represents an application of a tool to concrete evidence artifacts. The tools

13



- Learning assurance activities
• Data accuracy, representativeness, coverage, 

completeness
• Model to implementation transformation fidelity

…

- Property verification on ML model and Item 
• Pixel level keypoint estimation accuracy
• Segmentation mask accuracy
• Keypoint to segmentation mask relations
• Robustness 
• …

- Testing-based statistics on inference 
accuracy, performance metrics at ML 
model and Item level
• Model/item-level inference accuracy
• Model /item-level performance metrics
…

- Subsystem architecture verification
• Keypoint / segmentation mask correction accuracy
• WCET
• Navigation state accuracy
• …

- Safety architecture design
• Runtime monitoring, correction, …

- Operational design domain specification
- Operational envelope specification 
- Operational concept description 
- ….

Fig. 12 Selection of evidence artifacts supporting the PosEstm safety argument.

and evidence logs are thus interrelated and capture the chain of dependencies through which evidence is constructed,
along with the supporting assumptions.

For our running example, some suitable tools that could be used include runtime monitors to provide evidence that
properties continue to hold during operations, test case generators to create suites of test cases, and theorem provers
to prove soundness of model implementations. By associating argument patterns with tool specifications, tool uses
can be used in generate argument fragments which reason about the properties of the tool outputs (the tool guarantees
providing the corresponding evidence assertions). Just as tools can be recursively chained together, so their patterns can
be composed to construct an argument that reasons over the construction of the evidence that is ultimately constructed.
See [27] for an example of creating an argument from a tools log.

VIII. Conclusion
We have described the current suite of functionality for AdvoCATE, an assurance case automation toolset based on

a metamodel that integrates a variety of assurance concepts that enable consistency and traceability. Since the tool
supports a variety of modeling notations, different users are free to pick and choose whatever suits their needs. There
are users who solely create arguments, others who only model risk scenarios using Bow Tie Diagrams (BTDs), and
some who only use the hazard log feature.

ACs complement formal methods, but AdvoCATE, itself, is rigorous, rather than formal, and the tool enforces
approximately 100 well-formedness rules. As ACs are primarily a means of communication to assurance stakeholders,
their value lies in assembling, integrating, and justifying evidence, rather than formal analysis and, instead, formal
evidence generated by tools can be integrated [27].

In ongoing work, we are extending the tool to better support operational assurance. This differs from our earlier
work on dynamic assurance, where we looked at dynamically generating arguments [23, 28]. Our focus now is on
integration of measures, metrics, indicators into arguments [29] as a means of determining the operational validity
of an assurance case. We are currently reengineering the third generation of the tool using modern cloud-based
implementation frameworks, in order to directly support collaborative development, assurance case assessment, and
more naturally support tool interoperability.

14



CUI 

 
CUI 
28 

• Safety architecture design including architectural mechanisms such as runtime monitoring, 
and function output correction; 

 

Figure 20. Evidence Dependency Graph for Pose Estimation Assurance 

• Specifications of the ODD, operational envelope, and concept of operations;  

• Results of verification of properties applicable to the ML model and its implementation 
(i.e., ML item) such as those involving pixel-level keypoint estimation accuracy, segmen-
tation mask accuracy, keypoint to segmentation mask relations, and robustness;  

• Subsystem architecture verification results including properties concerning the accuracy in 
correcting errors in keypoint estimation and segmentation masks, worst case execution 
time (WCET), and navigation state accuracy;  

• Testing-based statistics on ML model and item performance metrics on properties such as 
inference accuracy;  

• Evidence of data accuracy, representativeness, coverage, completeness, and relevance; and 

• Verification results of ML model to implementation transformation fidelity.  
Note that the above are not a comprehensive list. Figure 20 shows an evidence dependency 

graph, as constructed within AdvoCATE, that indicates some of the concrete evidence items and 
their interrelations. For more details on the specifics of the graph and how evidence is captured 
and represented in the tool, see Section 4.4.7. 

Fig. 13 AdvoCATE Screenshot: Evidence Dependency Graph

Acknowledgments
This work was performed under Contract No. 80ARC020D0010 with the National Aeronautics and Space

Administration (NASA), with support from the System-wide Safety project, under the Airspace Operations and Safety
Program of the NASA Aeronautics Research Mission Directorate; the DARPA Assured Autonomy Program under
contract FA8750-18-C-0094; and the FAA Aviation Research Software and Systems Program (ARSS) for Complex
Digital Systems, under contract 692M15-23-T-00014.

References
[1] Dezfuli, H., Benjamin, A., Everett, C., Smith, C., Stamatelatos, M., and Youngblood, R., “Volume 1: System Safety

Framework and Concepts for Implementation,” NASA System Safety Handbook NASA/SP-2010-580, NASA, Nov. 2011. URL
https://ntrs.nasa.gov/citations/20120003291.

[2] Dezfuli, H., Benjamin, A., Everett, C., Smith, C., Stamatelatos, M., and Youngblood, R., “Volume 2: System Safety Concepts,
Guidelines and Implementation Examples,” NASA System Safety Handbook NASA/SP-2014-612, NASA, Nov. 2014. URL
https://ntrs.nasa.gov/citations/20150015500.

[3] Forsbacka, M. J., and Helton, D. M., “Evolution of NASA’s Nuclear Flight Safety Program to Infuse Risk Leadership
and Assurance Framework Concepts,” Journal of Space Safety Engineering, Vol. 10, No. 1, 2023, pp. 95–102. https:
//doi.org/10.1016/j.jsse.2022.11.003.

[4] Dezfuli, H., Everett, H., Youngblood, R., and Forsbacka, M., “Implementing an Objectives-Driven, Risk-Informed, and
Case-Assured Approach to Safety and Mission Success at NASA,” Proceedings of the 17th International Conference on
Probabilistic Safety Assessment and Management (PSAM) & Asian Symposium on Risk Assessment and Management (ASRAM),
Sendai, Japan, 2024. URL https://ntrs.nasa.gov/citations/20240006733.

[5] The Assurance Case Working Group (ACWG), “Goal Structuring Notation Community Standard Version 3,” UK Safety Critical
Systems Club, SCSC-141C, May 2021. URL https://scsc.uk/r141C:1.

[6] UK Ministry of Defence (MOD), “Safety Management Requirements for Defence Systems,” Defence Standard 00-56, Issue 7,
2017.

[7] Denney, E., Pai, G., and Whiteside, I., “The Role of Safety Architectures in Aviation Safety Cases,” Reliability Engineering and
System Safety, Vol. 191, 2019. https://doi.org/10.1016/j.ress.2019.106502.

[8] Denney, E., and Pai, G., “Tool Support for Assurance Case Development,” Journal of Automated Software Engineering, Vol. 25,
No. 3, 2018, pp. 435–499. https://doi.org/10.1007/s10515-017-0230-5.

[9] Denney, E., Pai, G., and Pohl, J., “AdvoCATE: An Assurance Case Automation Toolset,” SAFECOMP 2012 Workshops—Next
Generation of System Assurance Approaches for Safety-Critical Systems (SASSUR), Lecture Notes in Computer Science (LNCS),
Vol. 7613, edited by F. Ortmeier and P. Daniel, Springer-Verlag, 2012. https://doi.org/10.1007/978-3-642-33675-1_2.

[10] Denney, E., Pai, G., and Pohl, J., “Heterogeneous Aviation Safety Cases: Integrating the Formal and the Non-formal,” 17th
IEEE International Conference on Engineering of Complex Computer Systems (ICECCS), Paris, France, 2012, pp. 199–208.
https://doi.org/10.1109/ICECCS20050.2012.6299215.

15

https://ntrs.nasa.gov/citations/20120003291
https://ntrs.nasa.gov/citations/20150015500
https://doi.org/10.1016/j.jsse.2022.11.003
https://doi.org/10.1016/j.jsse.2022.11.003
https://ntrs.nasa.gov/citations/20240006733
https://scsc.uk/r141C:1
https://doi.org/10.1016/j.ress.2019.106502
https://doi.org/10.1007/s10515-017-0230-5
https://doi.org/10.1007/978-3-642-33675-1_2
https://doi.org/10.1109/ICECCS20050.2012.6299215


[11] Denney, E., Pai, G., and Whiteside, I., “Hierarchical Safety Cases,” Proceedings of the 5th NASA Formal Methods Symposium,
LNCS, Vol. 7871, edited by G. Brat, N. Rungta, and A. Venet, Springer-Verlag, 2013, pp. 478–483. https://doi.org/10.1007/978-
3-642-38088-4_37.

[12] Denney, E., and Pai, G., “A Formal Basis for Safety Case Patterns,” Computer Safety, Reliability and Security. SAFECOMP
2013, Lecture Notes in Computer Science (LNCS), Vol. 8153, edited by F. Bitsch, J. Guiochet, and M. Kaâniche, Springer,
2013, pp. 21–32. https://doi.org/10.1007/978-3-642-40793-2_3.

[13] Denney, E., and Pai, G., “Towards a Formal Basis for Modular Safety Cases,” Computer Safety, Reliability, and Security.
SAFECOMP 2015, Lecture Notes in Computer Science (LNCS), Vol. 9337, edited by F. Koornneef and C. van Gulijk, Springer,
2015, pp. 328–343. https://doi.org/10.1007/978-3-319-24255-2_24.

[14] Denney, E., Naylor, D., and Pai, G., “Querying Safety Cases,” Computer Safety, Reliability and Security. SAFECOMP 2014.,
Lecture Notes in Computer Science, Vol. 8666, edited by A. Bondavalli and F. D. Giandomenico, Springer, 2014, pp. 294–309.
https://doi.org/10.1007/978-3-319-10506-2_20.

[15] Denney, E., and Pai, G., “Automating the Assembly of Aviation Safety Cases,” IEEE Transactions on Reliability, Vol. 63, No. 4,
2014, pp. 830–849. https://doi.org/10.1109/TR.2014.2335995.

[16] Berthold, R., Denney, E., Fladeland, M., Pai, G., Storms, B., and Sumich, M., “Assuring Ground-based Detect and Avoid for
UAS Operations,” Proceedings of the 33rd IEEE/AIAA Digital Avionics Systems Conference (DASC), 2014, pp. 6A1–1–6A1–16.
https://doi.org/10.1109/DASC.2014.6979492.

[17] Denney, E., and Pai, G., “Safety considerations for UAS ground-based detect and avoid,” 2016 IEEE/AIAA 35th Digital Avionics
Systems Conference (DASC), 2016, pp. 1–10. https://doi.org/10.1109/DASC.2016.7778077.

[18] Matsuno, Y., “D-Case Communicator: A Web Based GSN Editor for Multiple Stakeholders,” Computer Safety, Reliability, and
Security. SAFECOMP 2017, Lecture Notes in Computer Science (LNCS), Vol. 10489, edited by S. Tonetta, E. Schoitsch, and
F. Bitsch, Springer, 2017, pp. 64–69. https://doi.org/10.1007/978-3-319-66284-8_6.

[19] Diemert, S., Goodenough, J., Joyce, J., and Weinstock, C., “Incremental Assurance Through Eliminative Argumentation,”
Journal of System Safety, Vol. 58, No. 1, 2023, pp. 7–15. https://doi.org/10.56094/jss.v58i1.215.

[20] Roback, K., “Review of Potential Assurance Case Tool Options for DoD,” Technical Report IDA D-33524/2, Institute for
Defense Analyses, Alexandria, VA, January 2024. URL https://apps.dtic.mil/sti/trecms/pdf/AD1211550.pdf.

[21] Adelard, Part of NCC Group, “Assurance and Safety Case Environment (ASCE),” , 2025. URL http://www.adelard.com/asce/.

[22] Denney, E., Habli, I., and Pai, G., “Dynamic Safety Cases for Through-life Safety Assurance,” 2015 IEEE/ACM 37th International
Conference on Software Engineering (ICSE 2015), Florence, Italy, 2015, pp. 587–590. https://doi.org/10.1109/ICSE.2015.199.

[23] Asaadi, E., Denney, E., Menzies, J., Pai, G., and Petroff, D., “Dynamic Assurance Cases: A Pathway to Trusted Autonomy,”
IEEE Computer, Vol. 53, No. 12, 2020, pp. 35–46. https://doi.org/10.1109/MC.2020.3022030.

[24] Denney, E., and Pai, G., “Assurance-driven Design of Machine Learning-based Functionality in an Aviation Systems Context,”
2023 IEEE/AIAA 42nd Digital Avionics Systems Conference (DASC), 2023. https://doi.org/10.1109/DASC58513.2023.10311282.

[25] Spriggs, J., GSN - The Goal Structuring Notation: A Structured Approach to Presenting Arguments, Springer London, 2012.

[26] Denney, E., and Pai, G., “Composition of Safety Argument Patterns,” Computer Safety, Reliability and Security. SAFECOMP
2016., Lecture Notes in Computer Science, Vol. 9922, edited by A. Skavhaug, J. Guiochet, and F. Bitsch, Springer, 2016.
https://doi.org/10.1007/978-3-319-45477-1_5.

[27] Sljivo, I., Denney, E., and Menzies, J., “Guided Integration of Formal Verification in Assurance Cases,” Formal Methods and
Software Engineering. ICFEM 2023., Lecture Notes in Computer Science (LNCS), Vol. 14308, edited by Y. Li and S. Tahar,
Brisbane, Australia, 2023. https://doi.org/10.1007/978-981-99-7584-6_11.

[28] Denney, E., Habli, I., and Pai, G., “Dynamic Safety Cases for Through-life Safety Assurance,” Proceedings of the 37th
International Conference on Software Engineering - Volume 2, IEEE Press, Florence, Italy, 2015, pp. 587–590. https:
//doi.org/10.1109/ICSE.2015.199.

[29] Denney, E., and Pai, G., “Reconciling Safety Measurement and Dynamic Assurance,” 43rd International Conference on
Computer Safety, Reliability, and Security (SAFECOMP 2024), Lecture Notes in Computer Science (LNCS), Vol. 14988, edited
by A. Ceccarelli, M. Trapp, A. Bondavalli, and F. Bitsch, Springer, 2024. https://doi.org/10.1007/978-3-031-68606-1_4.

16

https://doi.org/10.1007/978-3-642-38088-4_37
https://doi.org/10.1007/978-3-642-38088-4_37
https://doi.org/10.1007/978-3-642-40793-2_3
https://doi.org/10.1007/978-3-319-24255-2_24
https://doi.org/10.1007/978-3-319-10506-2_20
https://doi.org/10.1109/TR.2014.2335995
https://doi.org/10.1109/DASC.2014.6979492
https://doi.org/10.1109/DASC.2016.7778077
https://doi.org/10.1007/978-3-319-66284-8_6
https://doi.org/10.56094/jss.v58i1.215
https://apps.dtic.mil/sti/trecms/pdf/AD1211550.pdf
http://www.adelard.com/asce/
https://doi.org/10.1109/ICSE.2015.199
https://doi.org/10.1109/MC.2020.3022030
https://doi.org/10.1109/DASC58513.2023.10311282
https://doi.org/10.1007/978-3-319-45477-1_5
https://doi.org/10.1007/978-981-99-7584-6_11
https://doi.org/10.1109/ICSE.2015.199
https://doi.org/10.1109/ICSE.2015.199
https://doi.org/10.1007/978-3-031-68606-1_4

	Introduction
	Tool Support for Assurance Case Development
	This Paper

	Running Example: Autonomous Visual Landing
	Operating Concept
	System Description

	Hazard Logs and Risk Assessment
	Overview
	Example

	Risk Scenario Modeling
	Risk Scenarios
	Safety Architectures
	Phased Scenarios

	Requirements Log
	Capturing Assurance Rationale
	Argument Architecture
	Structured Arguments

	Assurance Substantiation with Evidence
	Evidence Log
	Tools Log

	Conclusion



